Optimal parameter identification strategy applied to lithium-ion battery model for electric vehicles using drive cycle data

The optimal parameter identification of lithium-ion (Li-ion) battery models is essential for accurately capturing battery behavior and performance in electric vehicle (EV) applications. Traditional methods for parameter identification often rely on manual tuning or trial-and-error approaches, which...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports Vol. 11; pp. 2049 - 2058
Main Authors: Ghadbane, Houssam Eddine, Rezk, Hegazy, Ferahtia, Seydali, Barkat, Said, Al-Dhaifallah, Mujahed
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2024
Elsevier
Subjects:
ISSN:2352-4847, 2352-4847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The optimal parameter identification of lithium-ion (Li-ion) battery models is essential for accurately capturing battery behavior and performance in electric vehicle (EV) applications. Traditional methods for parameter identification often rely on manual tuning or trial-and-error approaches, which can be time-consuming and yield suboptimal results. In recent years, metaheuristic optimization algorithms have emerged as powerful tools for efficiently searching and identifying optimal parameter values. This paper proposes an optimal parameter identification strategy using a metaheuristic optimization algorithm applied to a Shepherd model for EV applications. The identification technique that was based on the Self-adaptive Bonobo Optimizer (SaBO) performed extremely well when it came to the process of identifying the battery's unidentified properties. Because of this, the overall voltage error of the suggested identification technique has been lowered to 4.2377 × 10−3, and the root mean square error (RMSE) between the model and the data has been calculated to be 8.64 × 10−3. In addition, compared to the other optimization methods, the optimization efficiency was able to attain 96.6%, which validated its efficiency.
AbstractList The optimal parameter identification of lithium-ion (Li-ion) battery models is essential for accurately capturing battery behavior and performance in electric vehicle (EV) applications. Traditional methods for parameter identification often rely on manual tuning or trial-and-error approaches, which can be time-consuming and yield suboptimal results. In recent years, metaheuristic optimization algorithms have emerged as powerful tools for efficiently searching and identifying optimal parameter values. This paper proposes an optimal parameter identification strategy using a metaheuristic optimization algorithm applied to a Shepherd model for EV applications. The identification technique that was based on the Self-adaptive Bonobo Optimizer (SaBO) performed extremely well when it came to the process of identifying the battery's unidentified properties. Because of this, the overall voltage error of the suggested identification technique has been lowered to 4.2377 × 10 -3 , and the root mean square error (RMSE) between the model and the data has been calculated to be 8.64 × 10 -3 . In addition, compared to the other optimization methods, the optimization efficiency was able to attain 96.6%, which validated its efficiency.
The optimal parameter identification of lithium-ion (Li-ion) battery models is essential for accurately capturing battery behavior and performance in electric vehicle (EV) applications. Traditional methods for parameter identification often rely on manual tuning or trial-and-error approaches, which can be time-consuming and yield suboptimal results. In recent years, metaheuristic optimization algorithms have emerged as powerful tools for efficiently searching and identifying optimal parameter values. This paper proposes an optimal parameter identification strategy using a metaheuristic optimization algorithm applied to a Shepherd model for EV applications. The identification technique that was based on the Self-adaptive Bonobo Optimizer (SaBO) performed extremely well when it came to the process of identifying the battery's unidentified properties. Because of this, the overall voltage error of the suggested identification technique has been lowered to 4.2377 × 10−3, and the root mean square error (RMSE) between the model and the data has been calculated to be 8.64 × 10−3. In addition, compared to the other optimization methods, the optimization efficiency was able to attain 96.6%, which validated its efficiency.
Author Al-Dhaifallah, Mujahed
Ghadbane, Houssam Eddine
Ferahtia, Seydali
Rezk, Hegazy
Barkat, Said
Author_xml – sequence: 1
  givenname: Houssam Eddine
  surname: Ghadbane
  fullname: Ghadbane, Houssam Eddine
  organization: Electrical Engineering Laboratory of Guelma (LGEG), Electrotechnical and Automatic Engineering Department, Université 8 Mai 1945, Guelma 24000, Algeria
– sequence: 2
  givenname: Hegazy
  surname: Rezk
  fullname: Rezk, Hegazy
  organization: Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Saudi Arabia
– sequence: 3
  givenname: Seydali
  surname: Ferahtia
  fullname: Ferahtia, Seydali
  organization: University of Nantes, IREENA Laboratory, Industrial Engineering Department, France
– sequence: 4
  givenname: Said
  surname: Barkat
  fullname: Barkat, Said
  organization: University of M’sila, Electrical Engineering Laboratory, Electrical Engineering Departement, Algeria
– sequence: 5
  givenname: Mujahed
  surname: Al-Dhaifallah
  fullname: Al-Dhaifallah, Mujahed
  email: mujahed@kfupm.edu.sa
  organization: Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
BackLink https://nantes-universite.hal.science/hal-05082174$$DView record in HAL
BookMark eNp9kEtr3DAQgEVIIY_mD_Skaw929PLahl5CaJrAQi7JWcjSKDuL1jaSsrD0z1fulhJy2NMMM_PNMN8VOR-nEQj5xlnNGV_dbmt4O8RaMKFqxmvWyjNyKWQjKtWp9vxDfkFuUtoyxngvmFrJS_L7ec64M4HOJpodZIgUHYwZPVqTcRppytHkcoCaeQ4IjuaJBswbfN9VS38wuVAHupscBOqnSCGAzREt3cMGbYBE3xOOb9RF3AO1h1KizmTzlXzxJiS4-RevyevDz5f7x2r9_Ovp_m5dWdl2uVr10jVtD1a5fpCc-VaseMehM1KqXhnoBi9FO3TOt6AG03jGjHJeWNPYBqS8Jt-Pezcm6DmWd-NBTwb1491aLzXWsE7wVu15mRXHWRunlCL4_wBnerGtt3qxrRfbmnFdbBeo-wRZzH_tFXcYTqM_jigUAXuEqJNFGC04jMWidhOewv8AWwif1Q
CitedBy_id crossref_primary_10_3390_mca29040052
crossref_primary_10_1016_j_rineng_2024_102845
crossref_primary_10_1007_s00202_025_03213_5
crossref_primary_10_3390_asi7050075
crossref_primary_10_1515_mt_2025_0291
crossref_primary_10_1016_j_est_2025_117389
crossref_primary_10_1155_er_8883900
crossref_primary_10_1016_j_measurement_2025_118449
crossref_primary_10_3390_math13091504
crossref_primary_10_1016_j_compchemeng_2024_108894
crossref_primary_10_1149_1945_7111_adeece
crossref_primary_10_55525_tjst_1437348
crossref_primary_10_1007_s11581_025_06578_6
crossref_primary_10_1016_j_egyr_2024_04_039
crossref_primary_10_3390_en17194988
Cites_doi 10.1016/j.egyr.2022.02.026
10.1016/j.electacta.2019.03.199
10.1109/ACCESS.2017.2678598
10.1007/s00521-023-08261-1
10.1016/j.engappai.2017.06.029
10.1016/j.epsr.2015.10.018
10.1002/er.6614
10.1049/iet-pel.2019.1589
10.1016/j.isatra.2019.08.004
10.1016/j.cma.2020.113609
10.1109/TVT.2010.2103333
10.1109/TEC.2006.874229
10.1109/TII.2014.2299237
10.1016/j.est.2021.103485
10.1016/j.egyr.2021.10.086
10.1109/TPEL.2012.2210564
10.3389/fmech.2022.1126450
10.1016/j.egyr.2023.09.082
10.1002/er.6921
10.1109/ACCESS.2022.3172789
10.1016/j.engappai.2022.105075
10.1016/j.jpowsour.2019.227575
10.1016/j.egyr.2021.07.029
10.1016/j.egyr.2021.08.182
10.1016/j.est.2021.103848
10.1002/er.7834
10.1016/j.isatra.2022.08.025
10.1016/j.egyr.2023.01.109
10.1109/ACCESS.2020.3015919
10.1016/j.egyr.2023.01.018
10.1016/j.enconman.2020.112595
10.1109/ACCESS.2021.3133286
10.1002/er.6315
10.1016/j.egyr.2022.10.059
10.1016/j.engappai.2012.09.013
10.1016/j.ensm.2020.11.026
10.1016/j.neucom.2023.02.010
10.1016/j.electacta.2018.08.076
10.1016/j.egyr.2023.03.091
10.1016/j.egyr.2021.06.051
10.1016/j.energy.2018.09.101
ContentType Journal Article
Copyright 2024 The Authors
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2024 The Authors
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.egyr.2024.01.073
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 2058
ExternalDocumentID oai:HAL:hal-05082174v1
10_1016_j_egyr_2024_01_073
S2352484724000738
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
NCXOZ
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c378t-693d579ec4d9b310f726181e8a33494ae8bf327b8df7e4ba5f00a4df2ca5c5e33
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174787400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Sat Nov 15 06:26:14 EST 2025
Sat Nov 29 01:39:08 EST 2025
Tue Nov 18 21:53:30 EST 2025
Sat Oct 19 15:53:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristic optimization algorithms
Electric vehicles
Li-ion battery
Parameters identification
Electric vehicles, Li-ion battery, Metaheuristic optimization algorithms, Parameters identification
Language English
License This is an open access article under the CC BY-NC-ND license.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-693d579ec4d9b310f726181e8a33494ae8bf327b8df7e4ba5f00a4df2ca5c5e33
OpenAccessLink http://dx.doi.org/10.1016/j.egyr.2024.01.073
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_05082174v1
crossref_primary_10_1016_j_egyr_2024_01_073
crossref_citationtrail_10_1016_j_egyr_2024_01_073
elsevier_sciencedirect_doi_10_1016_j_egyr_2024_01_073
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hu (bib21) 2022; vol. 8
Bhide, Shim (bib5) 2011; vol. 60
Zhang, Shang, Li, Cui, Duan, Zhang (bib43) 2020; vol. 97
Houssein, Hashim, Ferahtia, Rezk (bib20) 2022; vol. 46
Pang, Mou, Guo, Zhang (bib27) 2019; vol. 307
Chen, Rincón-Mora (bib7) 2006; vol. 21
Shehadeh (bib32) 2023; vol. 35
Lai (bib25) 2021; vol. 35
Kumar, Saikat, Dilip, Pratihar (bib23) 2023
Andre, Nuhic, Soczka-Guth, Sauer (bib2) 2013; vol. 26
El Marghichi (bib13) 2023; vol. 10
Shen, Li (bib33) 2017; vol. 5
Dusmez, Khaligh (bib11) 2014; vol. 10
Trojovska, Dehghani, Trojovsky (bib38) 2022; vol. 10
Babu, Vasudevan, Ramachandaramurthy, Sani, Chemud, Lajim (bib4) 2020; vol. 8
Ferahtia, Djeroui, Rezk, Chouder, Houari, Machmoum (bib16) 2021; vol. 45
Sánchez, Couso, Blanco (bib30) 2017; vol. 64
Yang (bib41) 2020; vol. 208
Su (bib35) 2023; vol. 532
Assaad, El-sehiemy, Ginidi, Elattar, Shaheen (bib3) 2022; vol. 51
Sánchez, Couso, Blanco (bib29) 2017; vol. 64
Gao (bib18) 2023; vol. 9
Wang, Jin, Bai, Fan, Shi, Fernandez (bib40) 2021; vol. 7
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (bib1) 2021; vol. 376
Zhu (bib45) 2020; vol. 448
Wang, Kang, Tan, Luo (bib39) 2018; vol. 289
Tian, Li, Liu, Yang, Wang, Chang (bib36) 2022; vol. 8
Dehghani, Hubalovsky, Trojovsky (bib10) 2021; vol. 9
Einhorn, Conte, Kral, Fleig (bib12) 2013; vol. 28
Tremblay, Dessaint (bib37) 2009; vol. 3
Zazoum (bib42) 2023; vol. 9
Guo, Yang, Han, Feng, Lu, Ouyang (bib19) 2021; vol. 45
Chen, Xiao, Yan, Guo (bib6) 2021; vol. 7
Ferahtia, Rezk, Djerioui, Houari, Motahhir, Zeghlache (bib17) 2023; vol. 134
Shaheen, Hamida, El-Sehiemy, Elattar (bib31) 2021; vol. 7
Hu, Li, Li, Fu, Qin, Li (bib22) 2018; vol. 165
Mesbahi, Khenfri, Rizoug, Chaaban, Bartholomeüs, Le Moigne (bib26) 2016; vol. 131
Chen, Li, Sun, Zhao, Guo (bib8) 2023; vol. 9
Zhao, Zhang, Ma, Chen (bib44) 2022; vol. 114
Fathy, Ferahtia, Rezk, Yousri, Abdelkareem, Olabi (bib15) 2022; vol. 46
Lai (bib24) 2021; vol. 45
Ren, Xie, Sun, Zhang, Yan (bib28) 2020; vol. 13
Shi, Guo, Chen (bib34) 2021; vol. 44
Dehghani, Trojovský (bib9) 2023; vol. 8
Essiet, Sun (bib14) 2021; vol. 7
Houssein (10.1016/j.egyr.2024.01.073_bib20) 2022; vol. 46
Hu (10.1016/j.egyr.2024.01.073_bib21) 2022; vol. 8
Shaheen (10.1016/j.egyr.2024.01.073_bib31) 2021; vol. 7
Zhao (10.1016/j.egyr.2024.01.073_bib44) 2022; vol. 114
Assaad (10.1016/j.egyr.2024.01.073_bib3) 2022; vol. 51
Andre (10.1016/j.egyr.2024.01.073_bib2) 2013; vol. 26
Pang (10.1016/j.egyr.2024.01.073_bib27) 2019; vol. 307
Shehadeh (10.1016/j.egyr.2024.01.073_bib32) 2023; vol. 35
Su (10.1016/j.egyr.2024.01.073_bib35) 2023; vol. 532
Trojovska (10.1016/j.egyr.2024.01.073_bib38) 2022; vol. 10
Chen (10.1016/j.egyr.2024.01.073_bib7) 2006; vol. 21
Dehghani (10.1016/j.egyr.2024.01.073_bib10) 2021; vol. 9
Bhide (10.1016/j.egyr.2024.01.073_bib5) 2011; vol. 60
Ren (10.1016/j.egyr.2024.01.073_bib28) 2020; vol. 13
Zhang (10.1016/j.egyr.2024.01.073_bib43) 2020; vol. 97
Ferahtia (10.1016/j.egyr.2024.01.073_bib16) 2021; vol. 45
Dusmez (10.1016/j.egyr.2024.01.073_bib11) 2014; vol. 10
Shen (10.1016/j.egyr.2024.01.073_bib33) 2017; vol. 5
Guo (10.1016/j.egyr.2024.01.073_bib19) 2021; vol. 45
Lai (10.1016/j.egyr.2024.01.073_bib25) 2021; vol. 35
Einhorn (10.1016/j.egyr.2024.01.073_bib12) 2013; vol. 28
Wang (10.1016/j.egyr.2024.01.073_bib40) 2021; vol. 7
El Marghichi (10.1016/j.egyr.2024.01.073_bib13) 2023; vol. 10
Zhu (10.1016/j.egyr.2024.01.073_bib45) 2020; vol. 448
Babu (10.1016/j.egyr.2024.01.073_bib4) 2020; vol. 8
Yang (10.1016/j.egyr.2024.01.073_bib41) 2020; vol. 208
Fathy (10.1016/j.egyr.2024.01.073_bib15) 2022; vol. 46
Ferahtia (10.1016/j.egyr.2024.01.073_bib17) 2023; vol. 134
Dehghani (10.1016/j.egyr.2024.01.073_bib9) 2023; vol. 8
Lai (10.1016/j.egyr.2024.01.073_bib24) 2021; vol. 45
Sánchez (10.1016/j.egyr.2024.01.073_bib30) 2017; vol. 64
Zazoum (10.1016/j.egyr.2024.01.073_bib42) 2023; vol. 9
Shi (10.1016/j.egyr.2024.01.073_bib34) 2021; vol. 44
Chen (10.1016/j.egyr.2024.01.073_bib8) 2023; vol. 9
Kumar (10.1016/j.egyr.2024.01.073_bib23) 2023
Mesbahi (10.1016/j.egyr.2024.01.073_bib26) 2016; vol. 131
Tian (10.1016/j.egyr.2024.01.073_bib36) 2022; vol. 8
Wang (10.1016/j.egyr.2024.01.073_bib39) 2018; vol. 289
Abualigah (10.1016/j.egyr.2024.01.073_bib1) 2021; vol. 376
Hu (10.1016/j.egyr.2024.01.073_bib22) 2018; vol. 165
Sánchez (10.1016/j.egyr.2024.01.073_bib29) 2017; vol. 64
Essiet (10.1016/j.egyr.2024.01.073_bib14) 2021; vol. 7
Chen (10.1016/j.egyr.2024.01.073_bib6) 2021; vol. 7
Gao (10.1016/j.egyr.2024.01.073_bib18) 2023; vol. 9
Tremblay (10.1016/j.egyr.2024.01.073_bib37) 2009; vol. 3
References_xml – volume: vol. 208
  year: 2020
  ident: bib41
  article-title: Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification
  publication-title: Energy Convers. Manag.
– volume: vol. 45
  start-page: 16741
  year: 2021
  end-page: 16753
  ident: bib16
  article-title: Optimal parameter identification strategy applied to lithium-ion battery model
  publication-title: Int. J. Energy Res.
– volume: vol. 64
  start-page: 367
  year: 2017
  end-page: 377
  ident: bib29
  article-title: Engineering applications of artificial intelligence A class of Monotone Fuzzy rule-based Wiener systems with an application to Li-ion battery modelling
  publication-title: Eng. Appl. Artif. Intell.
– volume: vol. 9
  start-page: 1152
  year: 2023
  end-page: 1158
  ident: bib42
  article-title: Lithium-ion battery state of charge prediction based on machine learning approach
  publication-title: Energy Rep.
– volume: vol. 114
  year: 2022
  ident: bib44
  article-title: Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
– volume: vol. 10
  start-page: 1960
  year: 2014
  end-page: 1971
  ident: bib11
  article-title: A supervisory power-splitting approach for a new ultracapacitor-battery vehicle deploying two propulsion machines
  publication-title: IEEE Trans. Ind. Inform.
– volume: vol. 64
  start-page: 367
  year: 2017
  end-page: 377
  ident: bib30
  article-title: A class of Monotone Fuzzy rule-based Wiener systems with an application to Li-ion battery modelling
  publication-title: Eng. Appl. Artif. Intell.
– volume: vol. 44
  year: 2021
  ident: bib34
  article-title: Parameter identification method for lithium-ion batteries based on recursive least square with sliding window difference forgetting factor
  publication-title: J. Energy Storage
– volume: vol. 448
  year: 2020
  ident: bib45
  article-title: Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance
  publication-title: J. Power Sources
– volume: vol. 35
  start-page: 10733
  year: 2023
  end-page: 10749
  ident: bib32
  article-title: Chernobyl disaster optimizer (CDO): a novel meta-heuristic method for global optimization
  publication-title: Neural Comput. Appl.
– volume: vol. 7
  start-page: 320
  year: 2021
  end-page: 329
  ident: bib6
  article-title: A novel hybrid equivalent circuit model for lithium-ion battery considering nonlinear capacity effects
  publication-title: Energy Rep.
– volume: vol. 97
  start-page: 448
  year: 2020
  end-page: 457
  ident: bib43
  article-title: A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries
  publication-title: ISA Trans.
– volume: vol. 46
  start-page: 10564
  year: 2022
  end-page: 10575
  ident: bib15
  article-title: Robust parameter estimation approach of Lithium-ion batteries employing bald eagle search algorithm
  publication-title: Int. J. Energy Res.
– volume: vol. 532
  start-page: 183
  year: 2023
  end-page: 214
  ident: bib35
  article-title: RIME: a physics-based optimization
  publication-title: Neurocomputing
– volume: vol. 3
  start-page: 289
  year: 2009
  end-page: 298
  ident: bib37
  article-title: Experimental validation of a battery dynamic model for EV applications
  publication-title: World Electr. Veh. J. 2009
– volume: vol. 307
  start-page: 474
  year: 2019
  end-page: 487
  ident: bib27
  article-title: Electrochimica acta parameter identi fi cation and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries
  publication-title: Electrochim. Acta
– volume: vol. 10
  start-page: 49445
  year: 2022
  end-page: 49473
  ident: bib38
  article-title: Zebra optimization algorithm: a new bio-inspired optimization algorithm for solving optimization algorithm
  publication-title: IEEE Access
– volume: vol. 9
  start-page: 1937
  year: 2023
  end-page: 1947
  ident: bib8
  article-title: SOC estimation of retired lithium-ion batteries for electric vehicle with improved particle filter by H-infinity filter
  publication-title: Energy Rep.
– volume: vol. 8
  year: 2023
  ident: bib9
  article-title: Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems
  publication-title: Front. Mech. Eng.
– volume: vol. 134
  start-page: 357
  year: 2023
  end-page: 379
  ident: bib17
  article-title: Modified bald eagle search algorithm for lithium-ion battery model parameters extraction
  publication-title: ISA Trans.
– volume: vol. 289
  start-page: 376
  year: 2018
  end-page: 388
  ident: bib39
  article-title: Electrochimica acta an online method to simultaneously identify the parameters and estimate states for lithium ion batteries
  publication-title: Electrochim. Acta
– volume: vol. 60
  start-page: 819
  year: 2011
  end-page: 829
  ident: bib5
  article-title: Novel predictive electric Li-ion battery model incorporating thermal and rate factor effects
  publication-title: IEEE Trans. Veh. Technol.
– volume: vol. 28
  start-page: 1429
  year: 2013
  end-page: 1437
  ident: bib12
  article-title: Comparison, selection, and parameterization of electrical battery models for automotive applications
  publication-title: IEEE Trans. Power Electron
– volume: vol. 7
  start-page: 5562
  year: 2021
  end-page: 5574
  ident: bib40
  article-title: A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries
  publication-title: Energy Rep.
– volume: vol. 26
  start-page: 951
  year: 2013
  end-page: 961
  ident: bib2
  article-title: Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles
  publication-title: Eng. Appl. Artif. Intell.
– volume: vol. 46
  year: 2022
  ident: bib20
  article-title: Battery parameter identification strategy based on modified coot optimization algorithm
  publication-title: J. Energy Storage
– volume: vol. 376
  year: 2021
  ident: bib1
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: vol. 8
  start-page: 13723
  year: 2022
  end-page: 13734
  ident: bib36
  article-title: Lithium-ion battery charging optimization based on electrical, thermal and aging mechanism models
  publication-title: Energy Rep.
– volume: vol. 8
  start-page: 774
  year: 2022
  end-page: 784
  ident: bib21
  article-title: Performance evaluation strategy for battery pack of electric vehicles: online estimation and offline evaluation
  publication-title: Energy Rep.
– volume: vol. 10
  start-page: 2710
  year: 2023
  end-page: 2724
  ident: bib13
  article-title: Enhancing battery capacity estimation accuracy using the bald eagle search algorithm
  publication-title: Energy Rep.
– volume: vol. 45
  start-page: 12825
  year: 2021
  end-page: 12837
  ident: bib19
  article-title: Parameter identification of fractional-order model with transfer learning for aging lithium-ion batteries
  publication-title: Int. J. Energy Res.
– volume: vol. 8
  start-page: 148702
  year: 2020
  end-page: 148721
  ident: bib4
  article-title: A comprehensive review of hybrid energy storage systems: converter topologies, control strategies and future prospects
  publication-title: IEEE Access
– volume: vol. 131
  start-page: 195
  year: 2016
  end-page: 204
  ident: bib26
  article-title: Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm
  publication-title: Electr. Power Syst. Res.
– volume: vol. 165
  start-page: 153
  year: 2018
  end-page: 163
  ident: bib22
  article-title: Lithium-ion battery modeling and parameter identification based on fractional theory
  publication-title: Energy
– volume: vol. 45
  start-page: 7326
  year: 2021
  end-page: 7340
  ident: bib24
  article-title: Online internal short circuit detection method considering equalization electric quantity for lithium-ion battery pack in electric vehicles
  publication-title: Int. J. Energy Res.
– year: 2023
  ident: bib23
  article-title: An improved design of knee orthosis using self ‑ adaptive bonobo optimizer ( SaBO)
  publication-title: J. Intell. Robot. Syst.
– volume: vol. 7
  start-page: 7170
  year: 2021
  end-page: 7185
  ident: bib31
  article-title: Optimal parameter identification of linear and non-linear models for Li-Ion Battery Cells
  publication-title: Energy Rep.
– volume: vol. 7
  start-page: 4348
  year: 2021
  end-page: 4359
  ident: bib14
  article-title: Optimal open-circuit voltage (OCV) model for improved electric vehicle battery state-of-charge in V2G services
  publication-title: Energy Rep.
– volume: vol. 5
  start-page: 4377
  year: 2017
  end-page: 4387
  ident: bib33
  article-title: A sensitivity-based group-wise parameter identification algorithm for the electric model of Li-ion battery
  publication-title: IEEE Access
– volume: vol. 13
  start-page: 2531
  year: 2020
  end-page: 2537
  ident: bib28
  article-title: Parameter identification of a lithium-ion battery based on the improved recursive least square algorithm
  publication-title: IET Power Electron
– volume: vol. 51
  year: 2022
  ident: bib3
  article-title: Parameter identification and state of charge estimation of Li-Ion batteries used in electric vehicles using artificial hummingbird optimizer
  publication-title: J. Energy Storage
– volume: vol. 35
  start-page: 470
  year: 2021
  end-page: 499
  ident: bib25
  article-title: Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives
  publication-title: Energy Storage Mater.
– volume: vol. 21
  start-page: 504
  year: 2006
  end-page: 511
  ident: bib7
  article-title: Accurate electrical battery model capable of predicting runtime and I-V performance
  publication-title: IEEE Trans. Energy Convers.
– volume: vol. 9
  start-page: 162059
  year: 2021
  end-page: 162080
  ident: bib10
  article-title: Northern Goshawk optimization: a new swarm-based algorithm for solving optimization problems
  publication-title: IEEE Access
– volume: vol. 9
  start-page: 2577
  year: 2023
  end-page: 2590
  ident: bib18
  article-title: HFCM-LSTM: a novel hybrid framework for state-of-health estimation of lithium-ion battery
  publication-title: Energy Rep.
– volume: vol. 8
  start-page: 774
  year: 2022
  ident: 10.1016/j.egyr.2024.01.073_bib21
  article-title: Performance evaluation strategy for battery pack of electric vehicles: online estimation and offline evaluation
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.02.026
– volume: vol. 307
  start-page: 474
  year: 2019
  ident: 10.1016/j.egyr.2024.01.073_bib27
  article-title: Electrochimica acta parameter identi fi cation and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.199
– volume: vol. 5
  start-page: 4377
  year: 2017
  ident: 10.1016/j.egyr.2024.01.073_bib33
  article-title: A sensitivity-based group-wise parameter identification algorithm for the electric model of Li-ion battery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2678598
– volume: vol. 35
  start-page: 10733
  issue: 15
  year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib32
  article-title: Chernobyl disaster optimizer (CDO): a novel meta-heuristic method for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08261-1
– volume: vol. 3
  start-page: 289
  issue: 2
  year: 2009
  ident: 10.1016/j.egyr.2024.01.073_bib37
  article-title: Experimental validation of a battery dynamic model for EV applications
  publication-title: World Electr. Veh. J. 2009
– volume: vol. 64
  start-page: 367
  year: 2017
  ident: 10.1016/j.egyr.2024.01.073_bib30
  article-title: A class of Monotone Fuzzy rule-based Wiener systems with an application to Li-ion battery modelling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.06.029
– volume: vol. 131
  start-page: 195
  year: 2016
  ident: 10.1016/j.egyr.2024.01.073_bib26
  article-title: Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.10.018
– volume: vol. 45
  start-page: 12825
  issue: 9
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib19
  article-title: Parameter identification of fractional-order model with transfer learning for aging lithium-ion batteries
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6614
– volume: vol. 13
  start-page: 2531
  issue: 12
  year: 2020
  ident: 10.1016/j.egyr.2024.01.073_bib28
  article-title: Parameter identification of a lithium-ion battery based on the improved recursive least square algorithm
  publication-title: IET Power Electron
  doi: 10.1049/iet-pel.2019.1589
– volume: vol. 97
  start-page: 448
  year: 2020
  ident: 10.1016/j.egyr.2024.01.073_bib43
  article-title: A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.08.004
– volume: vol. 376
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib1
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– volume: vol. 60
  start-page: 819
  issue: 3
  year: 2011
  ident: 10.1016/j.egyr.2024.01.073_bib5
  article-title: Novel predictive electric Li-ion battery model incorporating thermal and rate factor effects
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2010.2103333
– volume: vol. 21
  start-page: 504
  issue: 2
  year: 2006
  ident: 10.1016/j.egyr.2024.01.073_bib7
  article-title: Accurate electrical battery model capable of predicting runtime and I-V performance
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2006.874229
– volume: vol. 10
  start-page: 1960
  issue: 3
  year: 2014
  ident: 10.1016/j.egyr.2024.01.073_bib11
  article-title: A supervisory power-splitting approach for a new ultracapacitor-battery vehicle deploying two propulsion machines
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2299237
– volume: vol. 44
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib34
  article-title: Parameter identification method for lithium-ion batteries based on recursive least square with sliding window difference forgetting factor
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103485
– volume: vol. 7
  start-page: 7170
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib31
  article-title: Optimal parameter identification of linear and non-linear models for Li-Ion Battery Cells
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.10.086
– volume: vol. 28
  start-page: 1429
  issue: 3
  year: 2013
  ident: 10.1016/j.egyr.2024.01.073_bib12
  article-title: Comparison, selection, and parameterization of electrical battery models for automotive applications
  publication-title: IEEE Trans. Power Electron
  doi: 10.1109/TPEL.2012.2210564
– volume: vol. 8
  year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib9
  article-title: Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2022.1126450
– volume: vol. 64
  start-page: 367
  year: 2017
  ident: 10.1016/j.egyr.2024.01.073_bib29
  article-title: Engineering applications of artificial intelligence A class of Monotone Fuzzy rule-based Wiener systems with an application to Li-ion battery modelling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.06.029
– volume: vol. 10
  start-page: 2710
  year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib13
  article-title: Enhancing battery capacity estimation accuracy using the bald eagle search algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.09.082
– volume: vol. 45
  start-page: 16741
  issue: 11
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib16
  article-title: Optimal parameter identification strategy applied to lithium-ion battery model
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6921
– volume: vol. 10
  start-page: 49445
  year: 2022
  ident: 10.1016/j.egyr.2024.01.073_bib38
  article-title: Zebra optimization algorithm: a new bio-inspired optimization algorithm for solving optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172789
– volume: vol. 114
  year: 2022
  ident: 10.1016/j.egyr.2024.01.073_bib44
  article-title: Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105075
– volume: vol. 448
  year: 2020
  ident: 10.1016/j.egyr.2024.01.073_bib45
  article-title: Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227575
– volume: vol. 7
  start-page: 4348
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib14
  article-title: Optimal open-circuit voltage (OCV) model for improved electric vehicle battery state-of-charge in V2G services
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.07.029
– volume: vol. 7
  start-page: 5562
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib40
  article-title: A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.08.182
– volume: vol. 46
  year: 2022
  ident: 10.1016/j.egyr.2024.01.073_bib20
  article-title: Battery parameter identification strategy based on modified coot optimization algorithm
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103848
– volume: vol. 46
  start-page: 10564
  issue: 8
  year: 2022
  ident: 10.1016/j.egyr.2024.01.073_bib15
  article-title: Robust parameter estimation approach of Lithium-ion batteries employing bald eagle search algorithm
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7834
– volume: vol. 134
  start-page: 357
  year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib17
  article-title: Modified bald eagle search algorithm for lithium-ion battery model parameters extraction
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.08.025
– volume: vol. 9
  start-page: 2577
  year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib18
  article-title: HFCM-LSTM: a novel hybrid framework for state-of-health estimation of lithium-ion battery
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.01.109
– volume: vol. 8
  start-page: 148702
  year: 2020
  ident: 10.1016/j.egyr.2024.01.073_bib4
  article-title: A comprehensive review of hybrid energy storage systems: converter topologies, control strategies and future prospects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015919
– volume: vol. 9
  start-page: 1937
  year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib8
  article-title: SOC estimation of retired lithium-ion batteries for electric vehicle with improved particle filter by H-infinity filter
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.01.018
– volume: vol. 208
  year: 2020
  ident: 10.1016/j.egyr.2024.01.073_bib41
  article-title: Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112595
– volume: vol. 9
  start-page: 162059
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib10
  article-title: Northern Goshawk optimization: a new swarm-based algorithm for solving optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133286
– volume: vol. 45
  start-page: 7326
  issue: 5
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib24
  article-title: Online internal short circuit detection method considering equalization electric quantity for lithium-ion battery pack in electric vehicles
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6315
– volume: vol. 8
  start-page: 13723
  year: 2022
  ident: 10.1016/j.egyr.2024.01.073_bib36
  article-title: Lithium-ion battery charging optimization based on electrical, thermal and aging mechanism models
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.059
– volume: vol. 26
  start-page: 951
  issue: 3
  year: 2013
  ident: 10.1016/j.egyr.2024.01.073_bib2
  article-title: Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.09.013
– volume: vol. 35
  start-page: 470
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib25
  article-title: Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.11.026
– volume: vol. 532
  start-page: 183
  year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib35
  article-title: RIME: a physics-based optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.010
– volume: vol. 289
  start-page: 376
  year: 2018
  ident: 10.1016/j.egyr.2024.01.073_bib39
  article-title: Electrochimica acta an online method to simultaneously identify the parameters and estimate states for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.076
– volume: vol. 9
  start-page: 1152
  year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib42
  article-title: Lithium-ion battery state of charge prediction based on machine learning approach
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.03.091
– volume: vol. 51
  year: 2022
  ident: 10.1016/j.egyr.2024.01.073_bib3
  article-title: Parameter identification and state of charge estimation of Li-Ion batteries used in electric vehicles using artificial hummingbird optimizer
  publication-title: J. Energy Storage
– volume: vol. 7
  start-page: 320
  year: 2021
  ident: 10.1016/j.egyr.2024.01.073_bib6
  article-title: A novel hybrid equivalent circuit model for lithium-ion battery considering nonlinear capacity effects
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.06.051
– volume: vol. 165
  start-page: 153
  year: 2018
  ident: 10.1016/j.egyr.2024.01.073_bib22
  article-title: Lithium-ion battery modeling and parameter identification based on fractional theory
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.101
– year: 2023
  ident: 10.1016/j.egyr.2024.01.073_bib23
  article-title: An improved design of knee orthosis using self ‑ adaptive bonobo optimizer ( SaBO)
  publication-title: J. Intell. Robot. Syst.
SSID ssj0001920463
Score 2.3868256
Snippet The optimal parameter identification of lithium-ion (Li-ion) battery models is essential for accurately capturing battery behavior and performance in electric...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2049
SubjectTerms Electric vehicles
Engineering Sciences
Li-ion battery
Metaheuristic optimization algorithms
Parameters identification
Title Optimal parameter identification strategy applied to lithium-ion battery model for electric vehicles using drive cycle data
URI https://dx.doi.org/10.1016/j.egyr.2024.01.073
https://nantes-universite.hal.science/hal-05082174
Volume 11
WOSCitedRecordID wos001174787400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoELAgGipVQrxC1yZa_trH2MSqMgQqhoQb2t1rtrnDaPKnGipkj8SH4Rsw_bCY-qHLisorWdx86X2ZnZmW8QehOEWYeTjvBUkvleRBPhZbKjvFDKIKC5zIWpev8yoMNhcn6enrRaP6pamNWYTqfJ9XV69V9FDXMgbF06-w_irt8UJuA1CB1GEDuMdxL8R1ACE11fxXXeleZAHEmXEmSFvbCEtOs2dxYomJ9gjBej5cTT1zNDubm2TXIsJbjplTMS7ZUqTBpde2lCDHKu847EWujqK1vk1oT5bVGhO5Oo03wKLjOXXtufLRcLPmkfS7lxuP9J3Vza_fArv6nj_T0FSrG0ib2nai3Be2hisPNLXtrotkvPd1EMEjXZVja05uyARvsRsAy9KLF0nIfqD3OV-g429a9vCVDdXk58ywv_2z5hQxYXh7DYmhSWRIa71TZV2Sbl7ndP2cnbHhu8G77fvrqRydjvDmAs-NjzweDVXt4KPPL7hMap3iw-fN-I-6VEk7SZnofu17haLpt2-Os3-pu9dK-oIv_GEjp7jB45FwZ3LfSeoJaaPkXfHOxwDTu8DTtcwQ472OFyhjdghx3ssIEdBtjhCna4gh02sMMGdtjADmvYPUOfe8dnR33PNfbwREiT0uukoYxpqkQk0wz8i5yCH58EKuGhZkvioDfykNAskTlVUcbj3Pd5JHMieCxiFYbP0c50NlUvEE4DGcWZpErQPNLHhUGQdwiIIARFQyXZRUG1fEw41nvdfGXMqvTGC6aXnOklZ37AYMl3Ubt-5spyvtx6d1xJhTmr1VqjDMB263OvQYT1B2iad4AR03MNiPbuctNL9LD5S-2jnXK-VK_QA7EqR4v5gYkyHRgQ_gRbX8hn
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+parameter+identification+strategy+applied+to+lithium-ion+battery+model+for+electric+vehicles+using+drive+cycle+data&rft.jtitle=Energy+reports&rft.au=Ghadbane%2C+Houssam+Eddine&rft.au=Rezk%2C+Hegazy&rft.au=Ferahtia%2C+Seydali&rft.au=Barkat%2C+Said&rft.date=2024-06-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=11&rft.spage=2049&rft.epage=2058&rft_id=info:doi/10.1016%2Fj.egyr.2024.01.073&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-05082174v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon