Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations
A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y ij to represent each of the products x i x j of variables appearing in a quadratic form. One advantage of such ex...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 130; číslo 2; s. 359 - 413 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.12.2011
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables
Y
ij
to represent each of the products
x
i
x
j
of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint
and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of
x
i
variables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new
eigen-reformulation
for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver. |
|---|---|
| AbstractList | A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y sub( )ijto represent each of the products x sub( )ix sub( )jof variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint Y - x x T [sccue] 0 and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of x sub( )ivariables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen-reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver. A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y ij to represent each of the products x i x j of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of x i variables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen-reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver. A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y ^sub ij^ to represent each of the products x ^sub i^ x ^sub j^ of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint Y − x x T 0 and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of x ^sub i^ variables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen-reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver.[PUBLICATION ABSTRACT] |
| Author | Lee, Jon Bonami, Pierre Saxena, Anureet |
| Author_xml | – sequence: 1 givenname: Anureet surname: Saxena fullname: Saxena, Anureet email: asaxena@axiomainc.com organization: Axioma Inc – sequence: 2 givenname: Pierre surname: Bonami fullname: Bonami, Pierre organization: Laboratoire d’Informatique Fondamentale de Marseille, CNRS-Marseille Universités – sequence: 3 givenname: Jon surname: Lee fullname: Lee, Jon organization: IBM T.J. Watson Research Center |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24797406$$DView record in Pascal Francis |
| BookMark | eNp9kV1LHDEUhkNR6Kr9Ab0bCkJvYk8ms8nEu7LYWhB6o9chmw_JMpNoMlPWf-9ZxyII7c1JSJ73PV8n5Cjl5An5zOCCAchvlQEDSTFQ4B1Q_oGsWMcF7UQnjsgKoF3TtWDwkZzUugMAxvt-ReImpz9-3xQ_mL2ZYk61yaFBd2qXnzHuvWtimvy9L83jbFxBzppheGoQqVMxMSHxUPJ9MWO9PNx23k74FnIZ52GxPSPHwQzVf3o9T8ndj6vbzTW9-f3z1-b7DbVc9hMVWGPgIshtD2bttkYpZ0IneN85uw1hq4AHBwZaYK1SfN0H7lRwzPVBBO_5Kfm6-GIZj7Ovkx5jtX4YTPJ5rhoHpUSrJPSIfnmH7vJcElanMQuTDHiL0PkrZCp2HYpJNlb9UOJoypNuO6lkBwI5uXC25FqLD9rG6aX1w4QGzKsPm9LLpjQGfdiU5qhk75R_zf-naRdNRTbhZt5K_7foGbrWqWM |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1007_s10107_020_01484_3 crossref_primary_10_1007_s11518_013_5234_5 crossref_primary_10_1111_itor_12293 crossref_primary_10_1007_s10107_024_02059_2 crossref_primary_10_1007_s10898_017_0557_2 crossref_primary_10_1007_s10107_023_01965_1 crossref_primary_10_1007_s13675_016_0079_6 crossref_primary_10_1080_02331934_2017_1391253 crossref_primary_10_1109_TCST_2018_2878548 crossref_primary_10_1287_moor_2021_1132 crossref_primary_10_1007_s10589_021_00289_0 crossref_primary_10_1137_140960657 crossref_primary_10_1287_opre_2023_0308 crossref_primary_10_1007_s11590_017_1203_0 crossref_primary_10_1080_10556788_2014_916287 crossref_primary_10_1007_s10589_016_9855_8 crossref_primary_10_1007_s10107_015_0921_2 crossref_primary_10_1016_j_ejor_2015_12_018 crossref_primary_10_1007_s10898_023_01286_9 crossref_primary_10_1287_ijoc_2024_0909 crossref_primary_10_1007_s10898_017_0591_0 crossref_primary_10_1007_s10107_021_01680_9 crossref_primary_10_1016_j_orl_2011_12_004 crossref_primary_10_1080_10556788_2017_1350675 crossref_primary_10_1137_22M1515562 crossref_primary_10_2514_1_G008165 crossref_primary_10_1016_j_sorms_2012_08_001 crossref_primary_10_1111_mafi_12383 crossref_primary_10_1007_s10898_025_01513_5 crossref_primary_10_1007_s12532_018_0142_9 crossref_primary_10_1287_ijoc_2019_0941 crossref_primary_10_1007_s10107_011_0466_y crossref_primary_10_1007_s10898_013_0128_0 crossref_primary_10_1007_s11081_022_09763_y crossref_primary_10_1007_s10898_018_0726_y crossref_primary_10_1017_S0962492913000032 crossref_primary_10_1137_130909597 crossref_primary_10_1007_s11590_018_1283_5 crossref_primary_10_1007_s10957_018_1416_0 crossref_primary_10_1007_s10898_012_9874_7 crossref_primary_10_1007_s10878_012_9560_1 crossref_primary_10_1007_s40305_015_0082_2 crossref_primary_10_1007_s11075_020_01065_7 crossref_primary_10_1007_s10898_020_00975_z crossref_primary_10_1007_s10898_022_01184_6 crossref_primary_10_1016_j_cor_2014_09_008 crossref_primary_10_1007_s10898_018_0612_7 crossref_primary_10_1007_s10898_022_01218_z |
| Cites_doi | 10.1016/S0098-1354(01)00732-3 10.1016/j.disopt.2006.10.011 10.1007/s10107-004-0559-y 10.1007/s10107-006-0049-5 10.1007/978-3-540-72792-7_23 10.1007/s10107-002-0352-8 10.1016/S0166-218X(98)00136-X 10.1007/s10107-004-0549-0 10.1287/ijoc.1070.0256 10.1007/BF01580665 10.1287/moor.26.2.193.10561 10.1080/1055678031000118482 10.1007/BF00121658 10.1016/0167-6377(92)90037-4 10.1007/s10107-004-0550-7 10.1137/0801021 10.1007/BF01581273 10.1007/3-540-45586-8_2 10.1080/10556780108805819 10.1007/s101070050103 |
| ContentType | Journal Article |
| Copyright | Springer and Mathematical Programming Society 2010 2015 INIST-CNRS Springer and Mathematical Optimization Society 2011 |
| Copyright_xml | – notice: Springer and Mathematical Programming Society 2010 – notice: 2015 INIST-CNRS – notice: Springer and Mathematical Optimization Society 2011 |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-010-0340-3 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Applied Sciences |
| EISSN | 1436-4646 |
| EndPage | 413 |
| ExternalDocumentID | 2508219451 24797406 10_1007_s10107_010_0340_3 |
| Genre | Feature |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB IQODW 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c378t-6610f36f7b80a5dba99daf46384dcbffb903fd0a0201299358f3d9fd1d8f6fee3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297130400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 04 19:32:43 EDT 2025 Thu Sep 25 00:45:37 EDT 2025 Mon Jul 21 09:16:07 EDT 2025 Sat Nov 29 05:49:01 EST 2025 Tue Nov 18 22:33:06 EST 2025 Fri Feb 21 02:32:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | global optimization 90C26 Nonconvex programming Non convex programming Subgradient optimization Constraint satisfaction Global optimum Linear programming Mixed integer programming Semi definite programming Quadratic programming Cut generation Integer programming Time average Disjunctive programming Heuristic method Relaxation method Non convex analysis |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-6610f36f7b80a5dba99daf46384dcbffb903fd0a0201299358f3d9fd1d8f6fee3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 903171032 |
| PQPubID | 25307 |
| PageCount | 55 |
| ParticipantIDs | proquest_miscellaneous_1019629708 proquest_journals_903171032 pascalfrancis_primary_24797406 crossref_citationtrail_10_1007_s10107_010_0340_3 crossref_primary_10_1007_s10107_010_0340_3 springer_journals_10_1007_s10107_010_0340_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-12-01 |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2011 |
| Publisher | Springer-Verlag Springer Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
| References | Saxena, A., Goyal, V., Lejeune, M.: MIP Reformulations of the probabilistic set covering problem, To appear in Mathematical Programming BalasE.SaxenaA.Optimizing over the split closureMath. Program.2008113221924023754811135.9003010.1007/s10107-006-0049-5 NazarethJ.L.The homotopy principle and algorithms for linear programmingSIAM J. Optim.1991131633211125230757.9005310.1137/0801021 MatsuiT.NP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.1996911311914116030868.9011110.1007/BF00121658 WächterA.BieglerL.T.On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programmingMath. Program.20061061255721956161134.9054210.1007/s10107-004-0559-y McCormickG.P.Computability of global solutions to factorable nonconvex programs: part I Convex underestimating problemsMath. Program.1976101471754692810349.9010010.1007/BF01580665 Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP, IBM Research Report RC24620, 08/2008 VielmaJ.P.AhmedS.NemhauserG.L.A lifted linear programming branch-and-bound algorithm for mixed integer conic quadratic programsInf. J. Comput.200820438450243721010.1287/ijoc.1070.0256 KimS.KojimaM.Second order cone programming relaxation of nonconvex quadratic optimization problemsOptim. Methods Softw.20011520120418925851109.9032710.1080/10556780108805819 BalasE.JuengerM.NaddefD.Projection and lifting in combinatorial optimizationComputational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Lecture Notes in Computer Science, vol. 22412001HeidelbergSpringer2656 BalasE.Disjunctive programming: properties of the convex hull of feasible pointsDiscret. Appl. Math.1998891–334416630990921.9011810.1016/S0166-218X(98)00136-X BalasE.CeriaS.CornuéjolsG.A lift-and-project cutting plane algorithm for mixed 0–1 programsMath. Program.1993582953240796.9004110.1007/BF01581273 SaxenaA.BonamiP.LeeJ.LodiA.PanconesiA.RinaldiG.Disjunctive cuts for non-convex mixed integer quadratically constrained problemsInteger Programming and Combinatorial Optimization (Bertinoro, 2008). Lecture Notes in Computer Science, vol. 50352008BerlinSpringer1733 BurerS.MonteiroR.D.C.A nonlinear programming algorithm for solving semidefinite programs via low-rank factorizationMath. Program. (series B)20039532935719764841030.9007710.1007/s10107-002-0352-8 RendlF.RinaldiG.WiegeleA.FischettiM.WilliamsonD.P.A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxationsInteger Programming and Combinatorial Optimization (Cornell 2007). Lecture Notes in Computer Science, vol. 45132007BerlinSpringer29530910.1007/978-3-540-72792-7_23 Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: extended formulations, IBM Research Report RC24621, 08/2008 StubbsR.MehrotraS.A branch-and-cut method for 0–1 mixed convex programmingMath. Program.19998651553217337450946.9005410.1007/s101070050103 VandenbusscheD.NemhauserG.L.A polyhedral study of nonconvex quadratic programs with box constraintsMath. Program.2005102353155621362261137.9000910.1007/s10107-004-0549-0 YamashitaM.FujisawaK.KojimaM.Implementation and evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0)Optim. Methods Softw.20031849150520190421106.9036610.1080/1055678031000118482 Ben-TalA.NemirovskiA.On polyhedral approximations of the second-order coneMath. Oper. Res.20012619320518958231082.9013310.1287/moor.26.2.193.10561 Couenne, http://projects.coin-or.org/Couenne SheraliH.D.AdamsW.P.A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems1998DordechtKluwer LeeS.GrossmannI.E.A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systemsComput. Chem. Eng.2001251675169710.1016/S0098-1354(01)00732-3 BonamiP.BieglerL.T.ConnA.R.CornuéjolsG.GrossmannI.E.LairdC.D.LeeJ.LodiA.MargotF.SawayaN.WächterA.An algorithmic framework for convex mixed-integer nonlinear programsDiscret. Optim.200851862041151.9002810.1016/j.disopt.2006.10.011 VandenbusscheD.NemhauserG.L.A branch-and-cut algorithm for nonconvex quadratic programs with box constraintsMath. Program.2005102355957521362271137.9001010.1007/s10107-004-0550-7 SenS.Relaxations for probabilistically constrained programs with discrete random variablesOper. Res. Lett.1992112818611674270765.9007110.1016/0167-6377(92)90037-4 GLOBALLib, http://www.gamsworld.org/global/globallib/globalstat.htm Abhishek, K., Leyffer, S., Linderoth, J.T.: Filmint: An outer-approximation-based solver for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL (2006) Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality set projection: a new algorithm for the projection of polytopes in halfspace representation. CUED Technical Report CUED/F-INFENG/TR.463 340_CR12 M. Yamashita (340_CR29) 2003; 18 R. Stubbs (340_CR24) 1999; 86 H.D. Sherali (340_CR23) 1998 J.P. Vielma (340_CR27) 2008; 20 A. Saxena (340_CR19) 2008 S. Lee (340_CR14) 2001; 25 D. Vandenbussche (340_CR25) 2005; 102 A. Wächter (340_CR28) 2006; 106 P. Bonami (340_CR8) 2008; 5 E. Balas (340_CR2) 1998; 89 S. Burer (340_CR9) 2003; 95 E. Balas (340_CR3) 1993; 58 E. Balas (340_CR4) 2001 340_CR21 S. Sen (340_CR22) 1992; 11 340_CR20 T. Matsui (340_CR15) 1996; 9 J.L. Nazareth (340_CR17) 1991; 1 A. Ben-Tal (340_CR7) 2001; 26 340_CR1 S. Kim (340_CR13) 2001; 15 F. Rendl (340_CR18) 2007 D. Vandenbussche (340_CR26) 2005; 102 340_CR10 E. Balas (340_CR5) 2008; 113 340_CR6 340_CR11 G.P. McCormick (340_CR16) 1976; 10 |
| References_xml | – reference: MatsuiT.NP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.1996911311914116030868.9011110.1007/BF00121658 – reference: YamashitaM.FujisawaK.KojimaM.Implementation and evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0)Optim. Methods Softw.20031849150520190421106.9036610.1080/1055678031000118482 – reference: VandenbusscheD.NemhauserG.L.A branch-and-cut algorithm for nonconvex quadratic programs with box constraintsMath. Program.2005102355957521362271137.9001010.1007/s10107-004-0550-7 – reference: SheraliH.D.AdamsW.P.A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems1998DordechtKluwer – reference: BalasE.JuengerM.NaddefD.Projection and lifting in combinatorial optimizationComputational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Lecture Notes in Computer Science, vol. 22412001HeidelbergSpringer2656 – reference: BalasE.CeriaS.CornuéjolsG.A lift-and-project cutting plane algorithm for mixed 0–1 programsMath. Program.1993582953240796.9004110.1007/BF01581273 – reference: BonamiP.BieglerL.T.ConnA.R.CornuéjolsG.GrossmannI.E.LairdC.D.LeeJ.LodiA.MargotF.SawayaN.WächterA.An algorithmic framework for convex mixed-integer nonlinear programsDiscret. Optim.200851862041151.9002810.1016/j.disopt.2006.10.011 – reference: BalasE.SaxenaA.Optimizing over the split closureMath. Program.2008113221924023754811135.9003010.1007/s10107-006-0049-5 – reference: McCormickG.P.Computability of global solutions to factorable nonconvex programs: part I Convex underestimating problemsMath. Program.1976101471754692810349.9010010.1007/BF01580665 – reference: RendlF.RinaldiG.WiegeleA.FischettiM.WilliamsonD.P.A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxationsInteger Programming and Combinatorial Optimization (Cornell 2007). Lecture Notes in Computer Science, vol. 45132007BerlinSpringer29530910.1007/978-3-540-72792-7_23 – reference: KimS.KojimaM.Second order cone programming relaxation of nonconvex quadratic optimization problemsOptim. Methods Softw.20011520120418925851109.9032710.1080/10556780108805819 – reference: VandenbusscheD.NemhauserG.L.A polyhedral study of nonconvex quadratic programs with box constraintsMath. Program.2005102353155621362261137.9000910.1007/s10107-004-0549-0 – reference: BalasE.Disjunctive programming: properties of the convex hull of feasible pointsDiscret. Appl. Math.1998891–334416630990921.9011810.1016/S0166-218X(98)00136-X – reference: BurerS.MonteiroR.D.C.A nonlinear programming algorithm for solving semidefinite programs via low-rank factorizationMath. Program. (series B)20039532935719764841030.9007710.1007/s10107-002-0352-8 – reference: VielmaJ.P.AhmedS.NemhauserG.L.A lifted linear programming branch-and-bound algorithm for mixed integer conic quadratic programsInf. J. Comput.200820438450243721010.1287/ijoc.1070.0256 – reference: Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: extended formulations, IBM Research Report RC24621, 08/2008 – reference: WächterA.BieglerL.T.On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programmingMath. Program.20061061255721956161134.9054210.1007/s10107-004-0559-y – reference: Couenne, http://projects.coin-or.org/Couenne – reference: StubbsR.MehrotraS.A branch-and-cut method for 0–1 mixed convex programmingMath. Program.19998651553217337450946.9005410.1007/s101070050103 – reference: SaxenaA.BonamiP.LeeJ.LodiA.PanconesiA.RinaldiG.Disjunctive cuts for non-convex mixed integer quadratically constrained problemsInteger Programming and Combinatorial Optimization (Bertinoro, 2008). Lecture Notes in Computer Science, vol. 50352008BerlinSpringer1733 – reference: Abhishek, K., Leyffer, S., Linderoth, J.T.: Filmint: An outer-approximation-based solver for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL (2006) – reference: Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality set projection: a new algorithm for the projection of polytopes in halfspace representation. CUED Technical Report CUED/F-INFENG/TR.463 – reference: NazarethJ.L.The homotopy principle and algorithms for linear programmingSIAM J. Optim.1991131633211125230757.9005310.1137/0801021 – reference: Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP, IBM Research Report RC24620, 08/2008 – reference: GLOBALLib, http://www.gamsworld.org/global/globallib/globalstat.htm – reference: LeeS.GrossmannI.E.A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systemsComput. Chem. Eng.2001251675169710.1016/S0098-1354(01)00732-3 – reference: Ben-TalA.NemirovskiA.On polyhedral approximations of the second-order coneMath. Oper. Res.20012619320518958231082.9013310.1287/moor.26.2.193.10561 – reference: Saxena, A., Goyal, V., Lejeune, M.: MIP Reformulations of the probabilistic set covering problem, To appear in Mathematical Programming – reference: SenS.Relaxations for probabilistically constrained programs with discrete random variablesOper. Res. Lett.1992112818611674270765.9007110.1016/0167-6377(92)90037-4 – ident: 340_CR21 – volume: 25 start-page: 1675 year: 2001 ident: 340_CR14 publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(01)00732-3 – volume: 5 start-page: 186 year: 2008 ident: 340_CR8 publication-title: Discret. Optim. doi: 10.1016/j.disopt.2006.10.011 – volume: 106 start-page: 25 issue: 1 year: 2006 ident: 340_CR28 publication-title: Math. Program. doi: 10.1007/s10107-004-0559-y – volume: 113 start-page: 219 issue: 2 year: 2008 ident: 340_CR5 publication-title: Math. Program. doi: 10.1007/s10107-006-0049-5 – start-page: 295 volume-title: Integer Programming and Combinatorial Optimization (Cornell 2007). Lecture Notes in Computer Science, vol. 4513 year: 2007 ident: 340_CR18 doi: 10.1007/978-3-540-72792-7_23 – ident: 340_CR11 – volume: 95 start-page: 329 year: 2003 ident: 340_CR9 publication-title: Math. Program. (series B) doi: 10.1007/s10107-002-0352-8 – volume: 89 start-page: 3 issue: 1–3 year: 1998 ident: 340_CR2 publication-title: Discret. Appl. Math. doi: 10.1016/S0166-218X(98)00136-X – volume: 102 start-page: 531 issue: 3 year: 2005 ident: 340_CR25 publication-title: Math. Program. doi: 10.1007/s10107-004-0549-0 – volume: 20 start-page: 438 year: 2008 ident: 340_CR27 publication-title: Inf. J. Comput. doi: 10.1287/ijoc.1070.0256 – volume: 10 start-page: 147 year: 1976 ident: 340_CR16 publication-title: Math. Program. doi: 10.1007/BF01580665 – ident: 340_CR1 – volume: 26 start-page: 193 year: 2001 ident: 340_CR7 publication-title: Math. Oper. Res. doi: 10.1287/moor.26.2.193.10561 – volume-title: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems year: 1998 ident: 340_CR23 – volume: 18 start-page: 491 year: 2003 ident: 340_CR29 publication-title: Optim. Methods Softw. doi: 10.1080/1055678031000118482 – volume: 9 start-page: 113 year: 1996 ident: 340_CR15 publication-title: J. Glob. Optim. doi: 10.1007/BF00121658 – volume: 11 start-page: 81 issue: 2 year: 1992 ident: 340_CR22 publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(92)90037-4 – volume: 102 start-page: 559 issue: 3 year: 2005 ident: 340_CR26 publication-title: Math. Program. doi: 10.1007/s10107-004-0550-7 – ident: 340_CR10 – ident: 340_CR12 – volume: 1 start-page: 316 year: 1991 ident: 340_CR17 publication-title: SIAM J. Optim. doi: 10.1137/0801021 – start-page: 17 volume-title: Integer Programming and Combinatorial Optimization (Bertinoro, 2008). Lecture Notes in Computer Science, vol. 5035 year: 2008 ident: 340_CR19 – volume: 58 start-page: 295 year: 1993 ident: 340_CR3 publication-title: Math. Program. doi: 10.1007/BF01581273 – ident: 340_CR6 – start-page: 26 volume-title: Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Lecture Notes in Computer Science, vol. 2241 year: 2001 ident: 340_CR4 doi: 10.1007/3-540-45586-8_2 – volume: 15 start-page: 201 year: 2001 ident: 340_CR13 publication-title: Optim. Methods Softw. doi: 10.1080/10556780108805819 – ident: 340_CR20 – volume: 86 start-page: 515 year: 1999 ident: 340_CR24 publication-title: Math. Program. doi: 10.1007/s101070050103 |
| SSID | ssj0001388 |
| Score | 2.2506216 |
| Snippet | A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space... |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 359 |
| SubjectTerms | Algorithms Applied sciences Calculus of Variations and Optimal Control; Optimization Combinatorics Computation Constraints Construction Exact sciences and technology Full Length Paper Heuristic Linear programming Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Mixed integer Numerical Analysis Operational research and scientific management Operational research. Management science Optimization Quadratic forms Studies Theoretical Variables |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6dg8bZR_tytxsRYM9bRhkS7OkvpWw0JeWsS_yZmRLgkCWtHEy0v--d_5KMrbB9mCDLVmcPk73893pDuBtkYYiSxITC09mxtK52EiVxdIZmZHeP82aZBPq-lqPx-ZTe4676rzdO5NkvVNvHXZLajdJHnMhcfN4AAco7TTla_j85Xu__SZC6y5PK4GDzpT5uyZ2hNHhja1wXEKT0GIHcf5iJK1lz-jpf1H9DJ60UJNdNGvjOez52RE83gpAiE9XfdTW6hgmQ3JBXzM637JuNHlsHthsPovLpuTHZO0dq0NM-AW7XVlHCwi7M71jJSFNSjiBNVqvr-qctZoefEfouM0VVr2Ab6OPX4eXcZuKIS6F0ssYpTgPIguq0Nx-cIU1xtkgkXmlK4sQCsNFcNwi-EQAQbbVIJwJLnE6ZMF7cQL7SK1_CSx4JY1VXuAlvdCWa4UosEyLRNjUqQh4Nyd52cYpJ-qn-SbCMo1pjrecxjQXEbzrP7lpgnT8rfLZzkT3X6RS4c8VzyIYdDOftwxd5di_RFHwwQje9KXIiWResTM_X1XkLGey1CiuI3jfLYZNC38k6PSfag_gUa3Wrj1qXsH-crHyr-Fh-XM5qRZnNSvcA1jkA_Y priority: 102 providerName: Springer Nature |
| Title | Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations |
| URI | https://link.springer.com/article/10.1007/s10107-010-0340-3 https://www.proquest.com/docview/903171032 https://www.proquest.com/docview/1019629708 |
| Volume | 130 |
| WOSCitedRecordID | wos000297130400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQfQxDdaGFRB4glk4cReHPOCoNqEhFpVGx-Dl8iJbanSaLumReW_5y5xMorEXnjISY7txM7545e78x3AizL1ZZYkmglHasbKWqalypi0WmYk90-zNtiEGo_z83M9CbY5dTCr7NbEZqG284pk5K81jj5F3t_eLi4ZBY0i5WqIoLEDewhsErLoGqWTfiFORJ53EVsJJnRKzfbkXNLYXHLGhcSVaGtb2l-YGr-Qb0NbbGHPv9SlzS50cvc_238P7gT4Gb9rx8t9uOFmD-D2H04JMTXqPbnWD2E6JLP0TUxnXjatdC-e-3g2n7Gqzfkx3TgbN24n3DK-XBtLgwo7dvErrgh9UhAKLBEsweo3cZD-4D1CzCF-WP0IPp8cfxp-YCE8A6uEylcMd3buReZVmXNzZEujtTVe4oSWtiq9L7HL3nKDgBRBBelbvbDa28TmPvPOicewi611BxB7p6Q2ygm8pBO54blCZFilZSJMalUEvONOUQXf5dT6i-LK6zIxtEBSEEMLEcHLvsqiddxxXeHBFsv7GqlU-MPFswgOO64WYZLXRc_SCJ73uTg7SeViZm6-rsmATmepVjyP4FU3dK6e8M8GPbn2fYdwqxFtN1Y1T2F3tVy7Z3Cz-rma1ssB7Kiv3waw9_54PDnF1EfFkI74cNBMD6LqDOnk6DvS07MvvwGcPRV1 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSo4lUQoVCMBBdQ1MQ2cVwJIVSoWrVd9VCk3oLjh7RS2d1udmH7o_iPzORVFoneeuCQSIkd27E_j8cz4xmA1yUPZZamOhae1IzWuVhLlcXSaZmR3J9nTbAJNRjkp6f6eAV-dWdhyKyyo4k1oXZjSzLyLY3oU-T97ePkPKagUaRc7SJoNKg48Bc_ccdWfdj_jMP7hvPdLyc7e3EbVCC2QuWzGNejJIgsqDJPzHtXGq2dCRJhKJ0tQyixouASg2wULoWkJQzC6eBSl4cseC-w3BtwU5JjMbIU5Mc94U9FnncRYokt6ZSozUm9tLbxTOJESKR8S8vg2sRUOCKhCaWxxOv-pZ6tV73d-_9Zfz2Aey17zT418-EhrPjRI7j7h9NFfDrqPdVW6zDcIbP7BaMzPYtGesnGgY3Go9g2Kd-HC-9Y7VbDT9n53DiaNNiRZxfMEndNQTYwR2vpVm2zVrqF72hH0MZHqx7D12v58yewiq31T4EFr6Q2ygu8pBe5SXKFnK_lZSoMdyqCpENDYVvf7NT6s-LSqzQBqMBbQQAqRARv-08mjWOSqzJvLkGs_4JLhRvKJItgo0NR0RKxqughFMGrPhWpD6mUzMiP5xUZCOqMa5XkEbzroHpZwj8b9OzK-l7C7b2To8PicH9wsAF3ajF-bUH0HFZn07l_Abfsj9mwmm7WE5DBt-tG8G_vr20n |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB-0FbGU-izdVmsEPylLs5t0k_hNqoeiHgUf9NuS3SRwUPeut3fl_O-d2Vd7ooL4YRd28yCPmeSXmckMwPMiDUWWJCYWntSMpXOxkSqLpTMyI7l_mrXBJtR4rM_OzGkX57Turd17lWR7p4G8NFWLo5kLR9cuviWNySSPuZC4kNyETUl29HRc__xtWIoToXUfs5WAQq_W_F0VaxvT9szWOEahDW6xhj5_UZg2-9Do7n_34B7sdBCUvW5p5j7c8NUD2LrmmBC_Pg3eXOuHMDkh0_QVo3svq1bCx6aBVdMqLtuU75OVd6xxPeHn7GJpHREWdu38BysJgVIgCszRWYPVr1gnAcJ_hJq7GGL1I_g6evvl5F3chWiIS6H0IsbdnQeRBVVobo9dYY1xNkhkaunKIoTCcBEctwhKEViQzjUIZ4JLnA5Z8F7swga21u8BC15JY5UX-EgvtOVaITos0yIRNnUqAt7PT152_sup9ef5ledlGtMcXzmNaS4ieDEUmbXOO_6W-XBt0ocSqVR46OJZBAc9FeQdo9c59i9R5JQwgmdDKnIoqV1s5afLmozoTJYaxXUEL3vCuKrhjw3a_6fcT-H26ZtR_vH9-MMB3Gkk343RzWPYWMyX_gncKi8Xk3p-2HDIT7zfD74 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+relaxations+of+non-convex+mixed+integer+quadratically+constrained+programs%3A+projected+formulations&rft.jtitle=Mathematical+programming&rft.au=SAXENA%2C+Anureet&rft.au=BONAMI%2C+Pierre&rft.au=LEE%2C+Jon&rft.date=2011-12-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=130&rft.issue=2&rft.spage=359&rft.epage=413&rft_id=info:doi/10.1007%2Fs10107-010-0340-3&rft.externalDBID=n%2Fa&rft.externalDocID=24797406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |