Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations

A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y ij to represent each of the products x i x j of variables appearing in a quadratic form. One advantage of such ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 130; číslo 2; s. 359 - 413
Hlavní autoři: Saxena, Anureet, Bonami, Pierre, Lee, Jon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.12.2011
Springer
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y ij to represent each of the products x i x j of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of x i variables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen-reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver.
AbstractList A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y sub( )ijto represent each of the products x sub( )ix sub( )jof variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint Y - x x T [sccue] 0 and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of x sub( )ivariables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen-reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver.
A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y ij to represent each of the products x i x j of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of x i variables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen-reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver.
A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y ^sub ij^ to represent each of the products x ^sub i^ x ^sub j^ of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint Y − x x T 0 and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of x ^sub i^ variables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen-reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver.[PUBLICATION ABSTRACT]
Author Lee, Jon
Bonami, Pierre
Saxena, Anureet
Author_xml – sequence: 1
  givenname: Anureet
  surname: Saxena
  fullname: Saxena, Anureet
  email: asaxena@axiomainc.com
  organization: Axioma Inc
– sequence: 2
  givenname: Pierre
  surname: Bonami
  fullname: Bonami, Pierre
  organization: Laboratoire d’Informatique Fondamentale de Marseille, CNRS-Marseille Universités
– sequence: 3
  givenname: Jon
  surname: Lee
  fullname: Lee, Jon
  organization: IBM T.J. Watson Research Center
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24797406$$DView record in Pascal Francis
BookMark eNp9kV1LHDEUhkNR6Kr9Ab0bCkJvYk8ms8nEu7LYWhB6o9chmw_JMpNoMlPWf-9ZxyII7c1JSJ73PV8n5Cjl5An5zOCCAchvlQEDSTFQ4B1Q_oGsWMcF7UQnjsgKoF3TtWDwkZzUugMAxvt-ReImpz9-3xQ_mL2ZYk61yaFBd2qXnzHuvWtimvy9L83jbFxBzppheGoQqVMxMSHxUPJ9MWO9PNx23k74FnIZ52GxPSPHwQzVf3o9T8ndj6vbzTW9-f3z1-b7DbVc9hMVWGPgIshtD2bttkYpZ0IneN85uw1hq4AHBwZaYK1SfN0H7lRwzPVBBO_5Kfm6-GIZj7Ovkx5jtX4YTPJ5rhoHpUSrJPSIfnmH7vJcElanMQuTDHiL0PkrZCp2HYpJNlb9UOJoypNuO6lkBwI5uXC25FqLD9rG6aX1w4QGzKsPm9LLpjQGfdiU5qhk75R_zf-naRdNRTbhZt5K_7foGbrWqWM
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s10107_020_01484_3
crossref_primary_10_1007_s11518_013_5234_5
crossref_primary_10_1111_itor_12293
crossref_primary_10_1007_s10107_024_02059_2
crossref_primary_10_1007_s10898_017_0557_2
crossref_primary_10_1007_s10107_023_01965_1
crossref_primary_10_1007_s13675_016_0079_6
crossref_primary_10_1080_02331934_2017_1391253
crossref_primary_10_1109_TCST_2018_2878548
crossref_primary_10_1287_moor_2021_1132
crossref_primary_10_1007_s10589_021_00289_0
crossref_primary_10_1137_140960657
crossref_primary_10_1287_opre_2023_0308
crossref_primary_10_1007_s11590_017_1203_0
crossref_primary_10_1080_10556788_2014_916287
crossref_primary_10_1007_s10589_016_9855_8
crossref_primary_10_1007_s10107_015_0921_2
crossref_primary_10_1016_j_ejor_2015_12_018
crossref_primary_10_1007_s10898_023_01286_9
crossref_primary_10_1287_ijoc_2024_0909
crossref_primary_10_1007_s10898_017_0591_0
crossref_primary_10_1007_s10107_021_01680_9
crossref_primary_10_1016_j_orl_2011_12_004
crossref_primary_10_1080_10556788_2017_1350675
crossref_primary_10_1137_22M1515562
crossref_primary_10_2514_1_G008165
crossref_primary_10_1016_j_sorms_2012_08_001
crossref_primary_10_1111_mafi_12383
crossref_primary_10_1007_s10898_025_01513_5
crossref_primary_10_1007_s12532_018_0142_9
crossref_primary_10_1287_ijoc_2019_0941
crossref_primary_10_1007_s10107_011_0466_y
crossref_primary_10_1007_s10898_013_0128_0
crossref_primary_10_1007_s11081_022_09763_y
crossref_primary_10_1007_s10898_018_0726_y
crossref_primary_10_1017_S0962492913000032
crossref_primary_10_1137_130909597
crossref_primary_10_1007_s11590_018_1283_5
crossref_primary_10_1007_s10957_018_1416_0
crossref_primary_10_1007_s10898_012_9874_7
crossref_primary_10_1007_s10878_012_9560_1
crossref_primary_10_1007_s40305_015_0082_2
crossref_primary_10_1007_s11075_020_01065_7
crossref_primary_10_1007_s10898_020_00975_z
crossref_primary_10_1007_s10898_022_01184_6
crossref_primary_10_1016_j_cor_2014_09_008
crossref_primary_10_1007_s10898_018_0612_7
crossref_primary_10_1007_s10898_022_01218_z
Cites_doi 10.1016/S0098-1354(01)00732-3
10.1016/j.disopt.2006.10.011
10.1007/s10107-004-0559-y
10.1007/s10107-006-0049-5
10.1007/978-3-540-72792-7_23
10.1007/s10107-002-0352-8
10.1016/S0166-218X(98)00136-X
10.1007/s10107-004-0549-0
10.1287/ijoc.1070.0256
10.1007/BF01580665
10.1287/moor.26.2.193.10561
10.1080/1055678031000118482
10.1007/BF00121658
10.1016/0167-6377(92)90037-4
10.1007/s10107-004-0550-7
10.1137/0801021
10.1007/BF01581273
10.1007/3-540-45586-8_2
10.1080/10556780108805819
10.1007/s101070050103
ContentType Journal Article
Copyright Springer and Mathematical Programming Society 2010
2015 INIST-CNRS
Springer and Mathematical Optimization Society 2011
Copyright_xml – notice: Springer and Mathematical Programming Society 2010
– notice: 2015 INIST-CNRS
– notice: Springer and Mathematical Optimization Society 2011
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-010-0340-3
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
EISSN 1436-4646
EndPage 413
ExternalDocumentID 2508219451
24797406
10_1007_s10107_010_0340_3
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c378t-6610f36f7b80a5dba99daf46384dcbffb903fd0a0201299358f3d9fd1d8f6fee3
IEDL.DBID M2P
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297130400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 04 19:32:43 EDT 2025
Thu Sep 25 00:45:37 EDT 2025
Mon Jul 21 09:16:07 EDT 2025
Sat Nov 29 05:49:01 EST 2025
Tue Nov 18 22:33:06 EST 2025
Fri Feb 21 02:32:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords global optimization
90C26 Nonconvex programming
Non convex programming
Subgradient optimization
Constraint satisfaction
Global optimum
Linear programming
Mixed integer programming
Semi definite programming
Quadratic programming
Cut generation
Integer programming
Time average
Disjunctive programming
Heuristic method
Relaxation method
Non convex analysis
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-6610f36f7b80a5dba99daf46384dcbffb903fd0a0201299358f3d9fd1d8f6fee3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 903171032
PQPubID 25307
PageCount 55
ParticipantIDs proquest_miscellaneous_1019629708
proquest_journals_903171032
pascalfrancis_primary_24797406
crossref_citationtrail_10_1007_s10107_010_0340_3
crossref_primary_10_1007_s10107_010_0340_3
springer_journals_10_1007_s10107_010_0340_3
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2011
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References Saxena, A., Goyal, V., Lejeune, M.: MIP Reformulations of the probabilistic set covering problem, To appear in Mathematical Programming
BalasE.SaxenaA.Optimizing over the split closureMath. Program.2008113221924023754811135.9003010.1007/s10107-006-0049-5
NazarethJ.L.The homotopy principle and algorithms for linear programmingSIAM J. Optim.1991131633211125230757.9005310.1137/0801021
MatsuiT.NP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.1996911311914116030868.9011110.1007/BF00121658
WächterA.BieglerL.T.On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programmingMath. Program.20061061255721956161134.9054210.1007/s10107-004-0559-y
McCormickG.P.Computability of global solutions to factorable nonconvex programs: part I Convex underestimating problemsMath. Program.1976101471754692810349.9010010.1007/BF01580665
Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP, IBM Research Report RC24620, 08/2008
VielmaJ.P.AhmedS.NemhauserG.L.A lifted linear programming branch-and-bound algorithm for mixed integer conic quadratic programsInf. J. Comput.200820438450243721010.1287/ijoc.1070.0256
KimS.KojimaM.Second order cone programming relaxation of nonconvex quadratic optimization problemsOptim. Methods Softw.20011520120418925851109.9032710.1080/10556780108805819
BalasE.JuengerM.NaddefD.Projection and lifting in combinatorial optimizationComputational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Lecture Notes in Computer Science, vol. 22412001HeidelbergSpringer2656
BalasE.Disjunctive programming: properties of the convex hull of feasible pointsDiscret. Appl. Math.1998891–334416630990921.9011810.1016/S0166-218X(98)00136-X
BalasE.CeriaS.CornuéjolsG.A lift-and-project cutting plane algorithm for mixed 0–1 programsMath. Program.1993582953240796.9004110.1007/BF01581273
SaxenaA.BonamiP.LeeJ.LodiA.PanconesiA.RinaldiG.Disjunctive cuts for non-convex mixed integer quadratically constrained problemsInteger Programming and Combinatorial Optimization (Bertinoro, 2008). Lecture Notes in Computer Science, vol. 50352008BerlinSpringer1733
BurerS.MonteiroR.D.C.A nonlinear programming algorithm for solving semidefinite programs via low-rank factorizationMath. Program. (series B)20039532935719764841030.9007710.1007/s10107-002-0352-8
RendlF.RinaldiG.WiegeleA.FischettiM.WilliamsonD.P.A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxationsInteger Programming and Combinatorial Optimization (Cornell 2007). Lecture Notes in Computer Science, vol. 45132007BerlinSpringer29530910.1007/978-3-540-72792-7_23
Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: extended formulations, IBM Research Report RC24621, 08/2008
StubbsR.MehrotraS.A branch-and-cut method for 0–1 mixed convex programmingMath. Program.19998651553217337450946.9005410.1007/s101070050103
VandenbusscheD.NemhauserG.L.A polyhedral study of nonconvex quadratic programs with box constraintsMath. Program.2005102353155621362261137.9000910.1007/s10107-004-0549-0
YamashitaM.FujisawaK.KojimaM.Implementation and evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0)Optim. Methods Softw.20031849150520190421106.9036610.1080/1055678031000118482
Ben-TalA.NemirovskiA.On polyhedral approximations of the second-order coneMath. Oper. Res.20012619320518958231082.9013310.1287/moor.26.2.193.10561
Couenne, http://projects.coin-or.org/Couenne
SheraliH.D.AdamsW.P.A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems1998DordechtKluwer
LeeS.GrossmannI.E.A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systemsComput. Chem. Eng.2001251675169710.1016/S0098-1354(01)00732-3
BonamiP.BieglerL.T.ConnA.R.CornuéjolsG.GrossmannI.E.LairdC.D.LeeJ.LodiA.MargotF.SawayaN.WächterA.An algorithmic framework for convex mixed-integer nonlinear programsDiscret. Optim.200851862041151.9002810.1016/j.disopt.2006.10.011
VandenbusscheD.NemhauserG.L.A branch-and-cut algorithm for nonconvex quadratic programs with box constraintsMath. Program.2005102355957521362271137.9001010.1007/s10107-004-0550-7
SenS.Relaxations for probabilistically constrained programs with discrete random variablesOper. Res. Lett.1992112818611674270765.9007110.1016/0167-6377(92)90037-4
GLOBALLib, http://www.gamsworld.org/global/globallib/globalstat.htm
Abhishek, K., Leyffer, S., Linderoth, J.T.: Filmint: An outer-approximation-based solver for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL (2006)
Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality set projection: a new algorithm for the projection of polytopes in halfspace representation. CUED Technical Report CUED/F-INFENG/TR.463
340_CR12
M. Yamashita (340_CR29) 2003; 18
R. Stubbs (340_CR24) 1999; 86
H.D. Sherali (340_CR23) 1998
J.P. Vielma (340_CR27) 2008; 20
A. Saxena (340_CR19) 2008
S. Lee (340_CR14) 2001; 25
D. Vandenbussche (340_CR25) 2005; 102
A. Wächter (340_CR28) 2006; 106
P. Bonami (340_CR8) 2008; 5
E. Balas (340_CR2) 1998; 89
S. Burer (340_CR9) 2003; 95
E. Balas (340_CR3) 1993; 58
E. Balas (340_CR4) 2001
340_CR21
S. Sen (340_CR22) 1992; 11
340_CR20
T. Matsui (340_CR15) 1996; 9
J.L. Nazareth (340_CR17) 1991; 1
A. Ben-Tal (340_CR7) 2001; 26
340_CR1
S. Kim (340_CR13) 2001; 15
F. Rendl (340_CR18) 2007
D. Vandenbussche (340_CR26) 2005; 102
340_CR10
E. Balas (340_CR5) 2008; 113
340_CR6
340_CR11
G.P. McCormick (340_CR16) 1976; 10
References_xml – reference: MatsuiT.NP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.1996911311914116030868.9011110.1007/BF00121658
– reference: YamashitaM.FujisawaK.KojimaM.Implementation and evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0)Optim. Methods Softw.20031849150520190421106.9036610.1080/1055678031000118482
– reference: VandenbusscheD.NemhauserG.L.A branch-and-cut algorithm for nonconvex quadratic programs with box constraintsMath. Program.2005102355957521362271137.9001010.1007/s10107-004-0550-7
– reference: SheraliH.D.AdamsW.P.A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems1998DordechtKluwer
– reference: BalasE.JuengerM.NaddefD.Projection and lifting in combinatorial optimizationComputational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Lecture Notes in Computer Science, vol. 22412001HeidelbergSpringer2656
– reference: BalasE.CeriaS.CornuéjolsG.A lift-and-project cutting plane algorithm for mixed 0–1 programsMath. Program.1993582953240796.9004110.1007/BF01581273
– reference: BonamiP.BieglerL.T.ConnA.R.CornuéjolsG.GrossmannI.E.LairdC.D.LeeJ.LodiA.MargotF.SawayaN.WächterA.An algorithmic framework for convex mixed-integer nonlinear programsDiscret. Optim.200851862041151.9002810.1016/j.disopt.2006.10.011
– reference: BalasE.SaxenaA.Optimizing over the split closureMath. Program.2008113221924023754811135.9003010.1007/s10107-006-0049-5
– reference: McCormickG.P.Computability of global solutions to factorable nonconvex programs: part I Convex underestimating problemsMath. Program.1976101471754692810349.9010010.1007/BF01580665
– reference: RendlF.RinaldiG.WiegeleA.FischettiM.WilliamsonD.P.A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxationsInteger Programming and Combinatorial Optimization (Cornell 2007). Lecture Notes in Computer Science, vol. 45132007BerlinSpringer29530910.1007/978-3-540-72792-7_23
– reference: KimS.KojimaM.Second order cone programming relaxation of nonconvex quadratic optimization problemsOptim. Methods Softw.20011520120418925851109.9032710.1080/10556780108805819
– reference: VandenbusscheD.NemhauserG.L.A polyhedral study of nonconvex quadratic programs with box constraintsMath. Program.2005102353155621362261137.9000910.1007/s10107-004-0549-0
– reference: BalasE.Disjunctive programming: properties of the convex hull of feasible pointsDiscret. Appl. Math.1998891–334416630990921.9011810.1016/S0166-218X(98)00136-X
– reference: BurerS.MonteiroR.D.C.A nonlinear programming algorithm for solving semidefinite programs via low-rank factorizationMath. Program. (series B)20039532935719764841030.9007710.1007/s10107-002-0352-8
– reference: VielmaJ.P.AhmedS.NemhauserG.L.A lifted linear programming branch-and-bound algorithm for mixed integer conic quadratic programsInf. J. Comput.200820438450243721010.1287/ijoc.1070.0256
– reference: Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: extended formulations, IBM Research Report RC24621, 08/2008
– reference: WächterA.BieglerL.T.On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programmingMath. Program.20061061255721956161134.9054210.1007/s10107-004-0559-y
– reference: Couenne, http://projects.coin-or.org/Couenne
– reference: StubbsR.MehrotraS.A branch-and-cut method for 0–1 mixed convex programmingMath. Program.19998651553217337450946.9005410.1007/s101070050103
– reference: SaxenaA.BonamiP.LeeJ.LodiA.PanconesiA.RinaldiG.Disjunctive cuts for non-convex mixed integer quadratically constrained problemsInteger Programming and Combinatorial Optimization (Bertinoro, 2008). Lecture Notes in Computer Science, vol. 50352008BerlinSpringer1733
– reference: Abhishek, K., Leyffer, S., Linderoth, J.T.: Filmint: An outer-approximation-based solver for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL (2006)
– reference: Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality set projection: a new algorithm for the projection of polytopes in halfspace representation. CUED Technical Report CUED/F-INFENG/TR.463
– reference: NazarethJ.L.The homotopy principle and algorithms for linear programmingSIAM J. Optim.1991131633211125230757.9005310.1137/0801021
– reference: Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP, IBM Research Report RC24620, 08/2008
– reference: GLOBALLib, http://www.gamsworld.org/global/globallib/globalstat.htm
– reference: LeeS.GrossmannI.E.A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systemsComput. Chem. Eng.2001251675169710.1016/S0098-1354(01)00732-3
– reference: Ben-TalA.NemirovskiA.On polyhedral approximations of the second-order coneMath. Oper. Res.20012619320518958231082.9013310.1287/moor.26.2.193.10561
– reference: Saxena, A., Goyal, V., Lejeune, M.: MIP Reformulations of the probabilistic set covering problem, To appear in Mathematical Programming
– reference: SenS.Relaxations for probabilistically constrained programs with discrete random variablesOper. Res. Lett.1992112818611674270765.9007110.1016/0167-6377(92)90037-4
– ident: 340_CR21
– volume: 25
  start-page: 1675
  year: 2001
  ident: 340_CR14
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(01)00732-3
– volume: 5
  start-page: 186
  year: 2008
  ident: 340_CR8
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2006.10.011
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 340_CR28
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– volume: 113
  start-page: 219
  issue: 2
  year: 2008
  ident: 340_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0049-5
– start-page: 295
  volume-title: Integer Programming and Combinatorial Optimization (Cornell 2007). Lecture Notes in Computer Science, vol. 4513
  year: 2007
  ident: 340_CR18
  doi: 10.1007/978-3-540-72792-7_23
– ident: 340_CR11
– volume: 95
  start-page: 329
  year: 2003
  ident: 340_CR9
  publication-title: Math. Program. (series B)
  doi: 10.1007/s10107-002-0352-8
– volume: 89
  start-page: 3
  issue: 1–3
  year: 1998
  ident: 340_CR2
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(98)00136-X
– volume: 102
  start-page: 531
  issue: 3
  year: 2005
  ident: 340_CR25
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0549-0
– volume: 20
  start-page: 438
  year: 2008
  ident: 340_CR27
  publication-title: Inf. J. Comput.
  doi: 10.1287/ijoc.1070.0256
– volume: 10
  start-page: 147
  year: 1976
  ident: 340_CR16
  publication-title: Math. Program.
  doi: 10.1007/BF01580665
– ident: 340_CR1
– volume: 26
  start-page: 193
  year: 2001
  ident: 340_CR7
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.26.2.193.10561
– volume-title: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems
  year: 1998
  ident: 340_CR23
– volume: 18
  start-page: 491
  year: 2003
  ident: 340_CR29
  publication-title: Optim. Methods Softw.
  doi: 10.1080/1055678031000118482
– volume: 9
  start-page: 113
  year: 1996
  ident: 340_CR15
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF00121658
– volume: 11
  start-page: 81
  issue: 2
  year: 1992
  ident: 340_CR22
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(92)90037-4
– volume: 102
  start-page: 559
  issue: 3
  year: 2005
  ident: 340_CR26
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0550-7
– ident: 340_CR10
– ident: 340_CR12
– volume: 1
  start-page: 316
  year: 1991
  ident: 340_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/0801021
– start-page: 17
  volume-title: Integer Programming and Combinatorial Optimization (Bertinoro, 2008). Lecture Notes in Computer Science, vol. 5035
  year: 2008
  ident: 340_CR19
– volume: 58
  start-page: 295
  year: 1993
  ident: 340_CR3
  publication-title: Math. Program.
  doi: 10.1007/BF01581273
– ident: 340_CR6
– start-page: 26
  volume-title: Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Lecture Notes in Computer Science, vol. 2241
  year: 2001
  ident: 340_CR4
  doi: 10.1007/3-540-45586-8_2
– volume: 15
  start-page: 201
  year: 2001
  ident: 340_CR13
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780108805819
– ident: 340_CR20
– volume: 86
  start-page: 515
  year: 1999
  ident: 340_CR24
  publication-title: Math. Program.
  doi: 10.1007/s101070050103
SSID ssj0001388
Score 2.2506216
Snippet A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 359
SubjectTerms Algorithms
Applied sciences
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Computation
Constraints
Construction
Exact sciences and technology
Full Length Paper
Heuristic
Linear programming
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mixed integer
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Optimization
Quadratic forms
Studies
Theoretical
Variables
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6dg8bZR_tytxsRYM9bRhkS7OkvpWw0JeWsS_yZmRLgkCWtHEy0v--d_5KMrbB9mCDLVmcPk73893pDuBtkYYiSxITC09mxtK52EiVxdIZmZHeP82aZBPq-lqPx-ZTe4676rzdO5NkvVNvHXZLajdJHnMhcfN4AAco7TTla_j85Xu__SZC6y5PK4GDzpT5uyZ2hNHhja1wXEKT0GIHcf5iJK1lz-jpf1H9DJ60UJNdNGvjOez52RE83gpAiE9XfdTW6hgmQ3JBXzM637JuNHlsHthsPovLpuTHZO0dq0NM-AW7XVlHCwi7M71jJSFNSjiBNVqvr-qctZoefEfouM0VVr2Ab6OPX4eXcZuKIS6F0ssYpTgPIguq0Nx-cIU1xtkgkXmlK4sQCsNFcNwi-EQAQbbVIJwJLnE6ZMF7cQL7SK1_CSx4JY1VXuAlvdCWa4UosEyLRNjUqQh4Nyd52cYpJ-qn-SbCMo1pjrecxjQXEbzrP7lpgnT8rfLZzkT3X6RS4c8VzyIYdDOftwxd5di_RFHwwQje9KXIiWResTM_X1XkLGey1CiuI3jfLYZNC38k6PSfag_gUa3Wrj1qXsH-crHyr-Fh-XM5qRZnNSvcA1jkA_Y
  priority: 102
  providerName: Springer Nature
Title Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations
URI https://link.springer.com/article/10.1007/s10107-010-0340-3
https://www.proquest.com/docview/903171032
https://www.proquest.com/docview/1019629708
Volume 130
WOSCitedRecordID wos000297130400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQfQxDdaGFRB4glk4cReHPOCoNqEhFpVGx-Dl8iJbanSaLumReW_5y5xMorEXnjISY7txM7545e78x3AizL1ZZYkmglHasbKWqalypi0WmYk90-zNtiEGo_z83M9CbY5dTCr7NbEZqG284pk5K81jj5F3t_eLi4ZBY0i5WqIoLEDewhsErLoGqWTfiFORJ53EVsJJnRKzfbkXNLYXHLGhcSVaGtb2l-YGr-Qb0NbbGHPv9SlzS50cvc_238P7gT4Gb9rx8t9uOFmD-D2H04JMTXqPbnWD2E6JLP0TUxnXjatdC-e-3g2n7Gqzfkx3TgbN24n3DK-XBtLgwo7dvErrgh9UhAKLBEsweo3cZD-4D1CzCF-WP0IPp8cfxp-YCE8A6uEylcMd3buReZVmXNzZEujtTVe4oSWtiq9L7HL3nKDgBRBBelbvbDa28TmPvPOicewi611BxB7p6Q2ygm8pBO54blCZFilZSJMalUEvONOUQXf5dT6i-LK6zIxtEBSEEMLEcHLvsqiddxxXeHBFsv7GqlU-MPFswgOO64WYZLXRc_SCJ73uTg7SeViZm6-rsmATmepVjyP4FU3dK6e8M8GPbn2fYdwqxFtN1Y1T2F3tVy7Z3Cz-rma1ssB7Kiv3waw9_54PDnF1EfFkI74cNBMD6LqDOnk6DvS07MvvwGcPRV1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSo4lUQoVCMBBdQ1MQ2cVwJIVSoWrVd9VCk3oLjh7RS2d1udmH7o_iPzORVFoneeuCQSIkd27E_j8cz4xmA1yUPZZamOhae1IzWuVhLlcXSaZmR3J9nTbAJNRjkp6f6eAV-dWdhyKyyo4k1oXZjSzLyLY3oU-T97ePkPKagUaRc7SJoNKg48Bc_ccdWfdj_jMP7hvPdLyc7e3EbVCC2QuWzGNejJIgsqDJPzHtXGq2dCRJhKJ0tQyixouASg2wULoWkJQzC6eBSl4cseC-w3BtwU5JjMbIU5Mc94U9FnncRYokt6ZSozUm9tLbxTOJESKR8S8vg2sRUOCKhCaWxxOv-pZ6tV73d-_9Zfz2Aey17zT418-EhrPjRI7j7h9NFfDrqPdVW6zDcIbP7BaMzPYtGesnGgY3Go9g2Kd-HC-9Y7VbDT9n53DiaNNiRZxfMEndNQTYwR2vpVm2zVrqF72hH0MZHqx7D12v58yewiq31T4EFr6Q2ygu8pBe5SXKFnK_lZSoMdyqCpENDYVvf7NT6s-LSqzQBqMBbQQAqRARv-08mjWOSqzJvLkGs_4JLhRvKJItgo0NR0RKxqughFMGrPhWpD6mUzMiP5xUZCOqMa5XkEbzroHpZwj8b9OzK-l7C7b2To8PicH9wsAF3ajF-bUH0HFZn07l_Abfsj9mwmm7WE5DBt-tG8G_vr20n
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB-0FbGU-izdVmsEPylLs5t0k_hNqoeiHgUf9NuS3SRwUPeut3fl_O-d2Vd7ooL4YRd28yCPmeSXmckMwPMiDUWWJCYWntSMpXOxkSqLpTMyI7l_mrXBJtR4rM_OzGkX57Turd17lWR7p4G8NFWLo5kLR9cuviWNySSPuZC4kNyETUl29HRc__xtWIoToXUfs5WAQq_W_F0VaxvT9szWOEahDW6xhj5_UZg2-9Do7n_34B7sdBCUvW5p5j7c8NUD2LrmmBC_Pg3eXOuHMDkh0_QVo3svq1bCx6aBVdMqLtuU75OVd6xxPeHn7GJpHREWdu38BysJgVIgCszRWYPVr1gnAcJ_hJq7GGL1I_g6evvl5F3chWiIS6H0IsbdnQeRBVVobo9dYY1xNkhkaunKIoTCcBEctwhKEViQzjUIZ4JLnA5Z8F7swga21u8BC15JY5UX-EgvtOVaITos0yIRNnUqAt7PT152_sup9ef5ledlGtMcXzmNaS4ieDEUmbXOO_6W-XBt0ocSqVR46OJZBAc9FeQdo9c59i9R5JQwgmdDKnIoqV1s5afLmozoTJYaxXUEL3vCuKrhjw3a_6fcT-H26ZtR_vH9-MMB3Gkk343RzWPYWMyX_gncKi8Xk3p-2HDIT7zfD74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+relaxations+of+non-convex+mixed+integer+quadratically+constrained+programs%3A+projected+formulations&rft.jtitle=Mathematical+programming&rft.au=SAXENA%2C+Anureet&rft.au=BONAMI%2C+Pierre&rft.au=LEE%2C+Jon&rft.date=2011-12-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=130&rft.issue=2&rft.spage=359&rft.epage=413&rft_id=info:doi/10.1007%2Fs10107-010-0340-3&rft.externalDBID=n%2Fa&rft.externalDocID=24797406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon