Numerical computation of fractional Kersten-Krasil’shchik coupled KdV-mKdV system occurring in multi-component plasmas

In this paper, we study the nonlinear behaviour of multi-component plasma. For this an efficient technique, called Homotopy perturbation Sumudu transform method (HPSTM) is introduced. The power of method is represented by solving the time fractional Kersten-Krasil’shchik coupled KdV-mKdV nonlinear s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 5; číslo 3; s. 2346 - 2368
Hlavní autoři: AmitGoswami, Sushila, Singh, Jagdev, Kumar, Devendra
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2020
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we study the nonlinear behaviour of multi-component plasma. For this an efficient technique, called Homotopy perturbation Sumudu transform method (HPSTM) is introduced. The power of method is represented by solving the time fractional Kersten-Krasil’shchik coupled KdV-mKdV nonlinear system. This coupled nonlinear system usually arises as a description of waves in multi-component plasmas, traffic flow, electric circuits, electrodynamics and elastic media, shallow water waves etc. The prime purpose of this study is to provide a new class of technique, which need not to use small parameters for finding approximate solution of fractional coupled systems and eliminate linearization and unrealistic factors. Numerical solutions represent that proposed technique is efficient, reliable, and easy to use to large variety of physical systems. This study shows that numerical solutions gained by HPSTM are very accurate and effective for analysis the nonlinear behaviour of system. This study also states that HPSTM is much easier, more convenient and efficient than other available analytical methods.
AbstractList In this paper, we study the nonlinear behaviour of multi-component plasma. For this an efficient technique, called Homotopy perturbation Sumudu transform method (HPSTM) is introduced. The power of method is represented by solving the time fractional Kersten-Krasil’shchik coupled KdV-mKdV nonlinear system. This coupled nonlinear system usually arises as a description of waves in multi-component plasmas, traffic flow, electric circuits, electrodynamics and elastic media, shallow water waves etc. The prime purpose of this study is to provide a new class of technique, which need not to use small parameters for finding approximate solution of fractional coupled systems and eliminate linearization and unrealistic factors. Numerical solutions represent that proposed technique is efficient, reliable, and easy to use to large variety of physical systems. This study shows that numerical solutions gained by HPSTM are very accurate and effective for analysis the nonlinear behaviour of system. This study also states that HPSTM is much easier, more convenient and efficient than other available analytical methods.
Author AmitGoswami
Kumar, Devendra
Singh, Jagdev
Sushila
Author_xml – sequence: 1
  surname: AmitGoswami
  fullname: AmitGoswami
– sequence: 2
  surname: Sushila
  fullname: Sushila
– sequence: 3
  givenname: Jagdev
  surname: Singh
  fullname: Singh, Jagdev
– sequence: 4
  givenname: Devendra
  surname: Kumar
  fullname: Kumar, Devendra
BookMark eNptUctu2zAQJIoUaOr41g_gB0QpH5IoHosgbQIH6cXIlSBXpE1XEg2SAppbfiO_ly8pHbtAEfSyu9idGQx2PqOzKUwWoS-UXHHJ66-jztsrRhihTfMBnbNa8KqVXXf2z_wJLVPaEUIYZTUT9Tn6_TCPNnrQA4Yw7uessw8TDg67qOEwl8vKxpTtVK2iTn54fX5JW9j6X4Ux7wfb41X_WI2l4PRUcCMOAHOMftpgP-FxHrKvDuLF75TxftBp1OkCfXR6SHZ56gu0_n6zvr6t7n_-uLv-dl8BF12umhZaIJqANLzpuBPMclmsC1YTa401goimd9Q6QxuA3nDZiYKk1ICRmi_Q3VG2D3qn9tGPOj6poL16W4S4UTpmD4NVraxb2VLeUtLXtHfG9dJqJgywupONLFrsqAUxpBStU-CP_8pR-0FRog5JqEMS6pREIV2-I_018V_4H0p3kG0
CitedBy_id crossref_primary_10_1186_s13662_020_03052_7
crossref_primary_10_1186_s13662_020_02923_3
crossref_primary_10_1155_2022_3688916
crossref_primary_10_3389_fphy_2024_1374452
crossref_primary_10_1186_s13662_022_03709_5
crossref_primary_10_1002_num_22725
crossref_primary_10_1142_S0218348X25400900
crossref_primary_10_1002_mma_7401
crossref_primary_10_1515_phys_2021_0015
crossref_primary_10_1002_mma_7865
crossref_primary_10_1088_1572_9494_adeb5a
crossref_primary_10_1007_s13538_024_01660_2
crossref_primary_10_3390_sym13091592
crossref_primary_10_1007_s13538_025_01773_2
crossref_primary_10_1007_s11071_025_11614_1
crossref_primary_10_1108_EC_02_2025_0112
crossref_primary_10_1142_S0218348X25401577
crossref_primary_10_1515_phys_2020_0177
crossref_primary_10_1016_j_jksus_2021_101643
crossref_primary_10_1186_s13662_020_02741_7
crossref_primary_10_1007_s11071_025_10961_3
crossref_primary_10_1515_ms_2022_0112
crossref_primary_10_3390_fractalfract8010040
crossref_primary_10_1007_s12043_020_02001_z
crossref_primary_10_1002_mma_6644
crossref_primary_10_1007_s13538_025_01724_x
crossref_primary_10_1515_phys_2021_0009
crossref_primary_10_1007_s12346_024_01152_3
crossref_primary_10_1186_s13662_020_02657_2
crossref_primary_10_1155_2021_6668092
crossref_primary_10_1515_phys_2021_0046
crossref_primary_10_1155_2022_6304896
crossref_primary_10_1016_j_apnum_2021_03_015
Cites_doi 10.1002/mma.4081
10.1016/j.asej.2017.03.004
10.1016/j.chaos.2019.03.013
10.1016/j.joes.2019.01.003
10.1016/j.physleta.2018.10.052
10.1016/j.dynatmoce.2018.11.001
10.1002/mma.4414
10.1088/0253-6102/58/1/15
10.1016/S0960-0779(03)00302-3
10.1007/s11071-017-3694-8
10.1016/j.physa.2019.04.058
10.1016/j.physa.2015.07.025
10.1016/j.camwa.2015.11.006
10.1016/j.chaos.2007.06.034
10.1143/JPSJ.26.1305
10.1016/j.physa.2016.02.061
10.1063/1.1558903
ContentType Journal Article
CorporateAuthor 2 Department of Physics, Vivekananda Global University, Jaipur-303012, Rajasthan, India
4 Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India
1 Department of Physics, Jagan Nath University, Jaipur-303901, Rajasthan, India
3 Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India
CorporateAuthor_xml – name: 3 Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India
– name: 4 Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India
– name: 1 Department of Physics, Jagan Nath University, Jaipur-303901, Rajasthan, India
– name: 2 Department of Physics, Vivekananda Global University, Jaipur-303012, Rajasthan, India
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2020155
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 2368
ExternalDocumentID oai_doaj_org_article_69469613610d41dfbfd9ea27bc248959
10_3934_math_2020155
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-56c6c0a0c9b3583f72e394277240eebeb7075df1efb15ccdb398735811bcb9a3
IEDL.DBID DOA
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520850800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:52:29 EDT 2025
Sat Nov 29 06:04:13 EST 2025
Tue Nov 18 21:04:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-56c6c0a0c9b3583f72e394277240eebeb7075df1efb15ccdb398735811bcb9a3
OpenAccessLink https://doaj.org/article/69469613610d41dfbfd9ea27bc248959
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_69469613610d41dfbfd9ea27bc248959
crossref_citationtrail_10_3934_math_2020155
crossref_primary_10_3934_math_2020155
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References A. R. Seadawy (7)
A. Goswami, J. Singh, D. Kumar (17)
23
A. R. Seadawy (9)
A. Goswami, J. Singh, D. Kumar (19)
25
26
D. Kumar, J. Singh, D. Baleanu (22)
28
R. Zhang, L. Yang, J. Song (13)
29
A. R. Seadawy (5)
R. Zhang, Q. Liu, L. Yang (6)
A. Goswami, J. Singh, D. Kumar (20)
A. R. Seadawy (10)
30
31
11
34
15
16
18
Q. Liu, R. Zhang, L. Yang (14)
Y. Qin, Y. T. Gao, X. Yu (27)
A. Ghorbani (24)
A. K. Kalkanli, S. Y. Sakovich, I. Yurdusen (33)
R. Zhang, L. Yang (12)
4
Y. C. Hon, E. G. Fan (32)
T. Kakutani, H. Ono (8)
21
References_xml – ident: 15
  article-title: i>A new fractional model of nonlinear shock wave equation arising in flow of gases</i
– ident: 11
  article-title: i>Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas</i
– ident: 10
  article-title: i>Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma</i
  publication-title: Mathematical methods and applied Sciences
  doi: 10.1002/mma.4081
– ident: 20
  article-title: i>Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves</i
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2017.03.004
– ident: 6
  article-title: t al. Nonlinear planetary-synoptic wave interaction under generalized beta effect and its solutions</i
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2019.03.013
– ident: 18
  article-title: i>Homotopy perturbation method: a new nonlinear analytical technique</i
– ident: 29
  article-title: i>Complete integrability of the coupled KdV-mKdV system</i
– ident: 17
  article-title: t al. An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma</i
  publication-title: Journal of Ocean Engineering and Science
  doi: 10.1016/j.joes.2019.01.003
– ident: 14
  article-title: t al. A new model equation for nonlinear Ross by waves and some of its solutions</i
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.10.052
– ident: 12
  article-title: i>Nonlinear Rossby waves in zonally varying flow under generalized beta approximation</i
  publication-title: Dynam. Atmos. Oceans
  doi: 10.1016/j.dynatmoce.2018.11.001
– ident: 22
  article-title: i>A new analysis for fractional model of regularized long wave equation arising in ion acoustic plasma waves</i
  publication-title: Math. Method. Appl. Sci.
  doi: 10.1002/mma.4414
– ident: 27
  article-title: t al. Bell polynomial approach and N-soliton solutions for a coupled KdV-mKdV system</i
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/58/1/15
– ident: 28
  article-title: i>Bilinear approach to quasi-periodic wave solutions of the Kersten-Krasil'shchik coupled KdV-mKdV system</i
– ident: 32
  article-title: i>Solitary wave and doubly periodic wave solutions for the Kersten-Krasil'shchik coupled KdV-mKdV system</i
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/S0960-0779(03)00302-3
– ident: 13
  article-title: t al. (2 + 1)-Dimensional nonlinear Rossby solitary waves under the effects of generalized beta and slowly varying topography</i
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-017-3694-8
– ident: 19
  article-title: t al. An analytical approach to the fractional Equal Width equations describing hydro-magnetic waves in cold plasma</i
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.04.058
– ident: 34
  article-title: i>Approximate Solution of the Kersten-Krasil'shchik Coupled KdV-mKdV System via Reduced Differential Transform Method</i
– ident: 5
  article-title: i>Nonlinear wave solutions of the three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma</i
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.07.025
– ident: 7
  article-title: i>Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma</i
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.11.006
– ident: 25
  article-title: i>Sumudu transform- a new integral transform to solve differential equations and control engineering problems</i
– ident: 21
  article-title: i>Homotopy perturbation Sumudu transform method for nonlinear equations</i
– ident: 26
  article-title: i>Analytical investigations of the Sumudu transform and applications to integral production equations</i
– ident: 4
  article-title: i>A reliable algorithm for KdV equations arising in warm plasma</i
– ident: 30
  article-title: i>Reduced differential transform method for partial differential equations</i
– ident: 23
  article-title: i>He's homotopy perturbation method for calculating Adomian polynomials</i
– ident: 24
  article-title: i>Beyond Adomian polynomials: He polynomials</i
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2007.06.034
– ident: 16
  article-title: i>A reliable algorithm for solving discontinued problems arising in nanotechnology</i
– ident: 31
  article-title: i>Reduced differential transform method for generalized KdV equations</i
– ident: 8
  article-title: i>Weak non-linear hydromagnetic waves in a cold collision free plasma</i
  publication-title: J. Phys. Soc. JPN
  doi: 10.1143/JPSJ.26.1305
– ident: 9
  article-title: i>Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma</i
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.02.061
– ident: 33
  article-title: i>Integrability of Kersten-Krasil'shchik coupled KdV-mKdV equations: singularity analysis and Lax pair</i
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1558903
SSID ssj0002124274
Score 2.3640144
Snippet In this paper, we study the nonlinear behaviour of multi-component plasma. For this an efficient technique, called Homotopy perturbation Sumudu transform...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 2346
SubjectTerms he’s polynomials
homotopy perturbation method
kersten-krasil’shchik coupled kdv-mkdv system
multi-component plasmas
sumudu transform
Title Numerical computation of fractional Kersten-Krasil’shchik coupled KdV-mKdV system occurring in multi-component plasmas
URI https://doaj.org/article/69469613610d41dfbfd9ea27bc248959
Volume 5
WOSCitedRecordID wos000520850800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxQAD4inKSx5gQlGbOKnjEVArpNKKoaq6RX7SiDatkhYxIX6D3-NLuI5DVQbEwpIhcRzr-Mb3XD_ORehSCaC9CsLUiDHphcb-UkxAsCKAI3ERBKZM5zN8oP1-PBqxx7VUX3ZPmJMHdsA1WgwCOPA54OZV6CsjjGKaB1TIIIxZVB7dA9azFkzZMRgG5BDiLbfTnTASNoD_2bWHwHKEHz5oTaq_9CmdXbRTkUF84xqxhzZ0to-2eysl1eIAvfaXbk1lgmWZgKFEEs8MNrk7kwBPupbD6czr5rxIJ5_vH8VYjtNneGM5n2iFu2roTeGCnW4znklpZ_6yJ5xmuNxS6NnKZxl4IDwHPj3lxSEadNqDu3uvypbgSULjhRe1ZEs2eVMyQaKYGBpowgAECj5bQ1cJCuxAGV8b4UdSKkFYTK36mS-kYJwcoVoG3zlGOFLCMKkZMzQMta-Y4UorX4kmNZxzUUfX3_AlslIStwktJglEFBbsxIKdVGDX0dWq9NwpaPxS7tb2xKqM1b0ub4A1JJU1JH9Zw8l_VHKKtmyb3ETLGaot8qU-R5vyZZEW-UVpaHDtvbW_AHgl3l0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+computation+of+fractional+Kersten-Krasil%E2%80%99shchik+coupled+KdV-mKdV+system+occurring+in+multi-component+plasmas&rft.jtitle=AIMS+mathematics&rft.au=Amit+Goswami&rft.au=Sushila&rft.au=Jagdev+Singh&rft.au=Devendra+Kumar&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=3&rft.spage=2346&rft.epage=2368&rft_id=info:doi/10.3934%2Fmath.2020155&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69469613610d41dfbfd9ea27bc248959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon