Walsh-based surrogate-assisted multi-objective combinatorial optimization: A fine-grained analysis for pseudo-boolean functions

The aim of this paper is to study surrogate-assisted algorithms for expensive multiobjective combinatorial optimization problems. Targeting pseudo-boolean domains, we provide a fine-grained analysis of an optimization framework using the Walsh basis as a core surrogate model. The considered framewor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 136; s. 110061
Hlavní autoři: Derbel, Bilel, Pruvost, Geoffrey, Liefooghe, Arnaud, Verel, Sébastien, Zhang, Qingfu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2023
Elsevier
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim of this paper is to study surrogate-assisted algorithms for expensive multiobjective combinatorial optimization problems. Targeting pseudo-boolean domains, we provide a fine-grained analysis of an optimization framework using the Walsh basis as a core surrogate model. The considered framework uses decomposition in the objective space, and integrates three different components, namely, (i) an inner optimizer for searching promising solutions with respect to the so-constructed surrogate, (ii) a selection strategy to decide which solution is to be evaluated by the expensive objectives, and (iii) the strategy used to setup the Walsh order hyper-parameter. Based on extensive experiments using two benchmark problems, namely bi-objective NK-landscapes and unconstrained binary quadratic programming problems (UBQP), we conduct a comprehensive in-depth analysis of the combined effects of the considered components on search performance, and provide evidence on the effectiveness of the proposed search strategies. As a by-product, our work shed more light on the key challenges for designing a successful surrogate-assisted multi-objective combinatorial search process. •A surrogate-assisted framework for multiobjective pseudo-boolean problems is studied.•Evolutionary techniques are combined with Walsh functions as discrete surrogates.•The impact of design components is analyzed on MNK-landscapes and UBQP.•Strong dependencies exist between the surrogate optimizer and the selection strategy.•The configuration of the Walsh surrogate order is highly impactful.
AbstractList The aim of this paper is to study surrogate-assisted algorithms for expensive multiobjective combinatorial optimization problems. Targeting pseudo-boolean domains, we provide a fine-grained analysis of an optimization framework using the Walsh basis as a core surrogate model. The considered framework uses decomposition in the objective space, and integrates three different components, namely, (i) an inner optimizer for searching promising solutions with respect to the so-constructed surrogate, (ii) a selection strategy to decide which solution is to be evaluated by the expensive objectives, and (iii) the strategy used to setup the Walsh order hyper-parameter. Based on extensive experiments using two benchmark problems, namely bi-objective NK-landscapes and unconstrained binary quadratic programming problems (UBQP), we conduct a comprehensive in-depth analysis of the combined effects of the considered components on search performance, and provide evidence on the effectiveness of the proposed search strategies. As a by-product, our work shed more light on the key challenges for designing a successful surrogate-assisted multi-objective combinatorial search process.
The aim of this paper is to study surrogate-assisted algorithms for expensive multiobjective combinatorial optimization problems. Targeting pseudo-boolean domains, we provide a fine-grained analysis of an optimization framework using the Walsh basis as a core surrogate model. The considered framework uses decomposition in the objective space, and integrates three different components, namely, (i) an inner optimizer for searching promising solutions with respect to the so-constructed surrogate, (ii) a selection strategy to decide which solution is to be evaluated by the expensive objectives, and (iii) the strategy used to setup the Walsh order hyper-parameter. Based on extensive experiments using two benchmark problems, namely bi-objective NK-landscapes and unconstrained binary quadratic programming problems (UBQP), we conduct a comprehensive in-depth analysis of the combined effects of the considered components on search performance, and provide evidence on the effectiveness of the proposed search strategies. As a by-product, our work shed more light on the key challenges for designing a successful surrogate-assisted multi-objective combinatorial search process. •A surrogate-assisted framework for multiobjective pseudo-boolean problems is studied.•Evolutionary techniques are combined with Walsh functions as discrete surrogates.•The impact of design components is analyzed on MNK-landscapes and UBQP.•Strong dependencies exist between the surrogate optimizer and the selection strategy.•The configuration of the Walsh surrogate order is highly impactful.
ArticleNumber 110061
Author Derbel, Bilel
Zhang, Qingfu
Verel, Sébastien
Liefooghe, Arnaud
Pruvost, Geoffrey
Author_xml – sequence: 1
  givenname: Bilel
  surname: Derbel
  fullname: Derbel, Bilel
  email: bilel.derbel@univ-lille.fr
  organization: Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
– sequence: 2
  givenname: Geoffrey
  surname: Pruvost
  fullname: Pruvost, Geoffrey
  email: geoffrey.pruvost@univ-lille.fr
  organization: Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
– sequence: 3
  givenname: Arnaud
  surname: Liefooghe
  fullname: Liefooghe, Arnaud
  email: arnaud.liefooghe@univ-lille.fr
  organization: Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
– sequence: 4
  givenname: Sébastien
  surname: Verel
  fullname: Verel, Sébastien
  email: verel@univ-littoral.fr
  organization: Univ. Littoral Côte d’Opale, UR 4491, LISIC, F-62100 Calais, France
– sequence: 5
  givenname: Qingfu
  surname: Zhang
  fullname: Zhang, Qingfu
  email: qingfu.zhang@cityu.edu.hk
  organization: City University of Hong Kong, Kowloon Tong, Hong Kong
BackLink https://hal.science/hal-04073811$$DView record in HAL
BookMark eNp9kEtrGzEQgEVJoHn9gZ507UGutLK12tKLCU1TMPTSkqMYSbOJzFoykmxIL_nr1dbNpYecZhjmm8d3Sc5iikjIB8EXggv1abuAktyi451cCMG5Eu_IhdB9xwalxVnLV0qz5bBU78llKVveoKHTF-TlAabyxCwU9LQcck6PUJFBKaHUVtodphpYslt0NRyRurSzIUJNOcBE076GXfgNNaT4ma7pGCKyxwwteAoRpuc2ho4p033Bg0_MpjQhRDoeopuhck3Ox3YB3vyLV-TX3deft_ds8-Pb99v1hjnZ68pWclSge88tgvd-kLhyDjvgGkbrVO-9BdVZ9J4PSjiNKyHASwRwiksr5RX5eJr7BJPZ57CD_GwSBHO_3pi5xpe8l1qIo2i9-tTrciol42hcqH9_rO21yQhuZulma2bpZpZuTtIb2v2Hvu56E_pygrAJOAbMpriA0aEPuWk3PoW38D8y4aH9
CitedBy_id crossref_primary_10_1016_j_asoc_2024_111600
crossref_primary_10_1007_s40747_024_01465_5
Cites_doi 10.1016/j.ejor.2006.08.008
10.1109/TEVC.2005.851274
10.1016/j.knosys.2021.107049
10.1109/TEVC.2008.925798
10.1109/TEVC.2009.2033671
10.1109/TETCI.2018.2872055
10.1016/j.sbspro.2012.09.782
10.1016/j.knosys.2021.106919
10.1016/j.asoc.2017.01.039
10.1109/4235.996017
10.1007/s00500-017-2965-0
10.1016/j.envsoft.2021.105272
10.1016/j.swevo.2011.05.001
10.1016/j.asoc.2020.106429
10.1162/evco_a_00257
10.1109/TEVC.2018.2802784
10.1287/ijoc.1100.0417
10.1109/TEVC.2018.2828091
10.1109/TEVC.2013.2281534
10.1007/s12293-021-00326-9
10.1109/TEVC.2003.810758
10.1109/TEVC.2016.2622301
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.ejor.2004.08.024
10.1016/j.asoc.2013.11.008
10.1109/TEVC.2018.2869001
10.1109/TEVC.2013.2281535
10.2307/2387224
10.1007/s10878-014-9734-0
10.1109/TCYB.2018.2869674
10.1016/j.knosys.2022.108416
10.1016/j.ejor.2012.12.019
10.1145/3453141
10.1002/mcda.1605
10.1109/TEVC.2007.892759
10.1023/A:1010933404324
10.1016/j.ejor.2006.08.004
10.1007/s40747-020-00249-x
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.asoc.2023.110061
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID oai:HAL:hal-04073811v1
10_1016_j_asoc_2023_110061
S1568494623000790
GrantInformation_xml – fundername: French national research agency
  grantid: ANR-16-CE23-0013-01
  funderid: http://dx.doi.org/10.13039/501100001665
– fundername: Research Grants Council of Hong Kong
  grantid: A-CityU101/16
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c378t-53f6a87d0beaddd93e5cce2a08afbc67ddba62bedd0961c8e511ad3eaac603b33
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967176800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 15:05:11 EST 2025
Sat Nov 29 07:04:34 EST 2025
Tue Nov 18 22:28:44 EST 2025
Fri Feb 23 02:38:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Discrete surrogates
Multi-objective optimization
Decomposition
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-53f6a87d0beaddd93e5cce2a08afbc67ddba62bedd0961c8e511ad3eaac603b33
ORCID 0000-0003-3283-3122
0000-0003-1661-4093
OpenAccessLink https://hal.science/hal-04073811
ParticipantIDs hal_primary_oai_HAL_hal_04073811v1
crossref_citationtrail_10_1016_j_asoc_2023_110061
crossref_primary_10_1016_j_asoc_2023_110061
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110061
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-03
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Deshwal, Belakaria, Doppa (b59) 2021
Leprêtre, Fonlupt, Verel, Marion (b52) 2020
Zhang, Li (b22) 2007; 11
Walsh (b67) 1923; 45
Aguirre, Tanaka (b74) 2007; 181
Li, Wang, Dong, Shen, Chen (b34) 2022; 242
Zaefferer, Stork, Friese, Fischbach, Naujoks, Bartz-Beielstein (b40) 2014
Bethke (b70) 1980
Negoescu, Frazier, Powell (b55) 2011; 23
Miettinen (b10) 1998; vol. 12
Jin, Wang, Chugh, Guo, Miettinen (b6) 2019; 23
Hakanen, Malmberg, Ojalehto, Eyvindson (b48) 2018
Breiman (b20) 2001; 45
Deshwal, Belakaria, Doppa, Fern (b65) 2020
Chugh, Sindhya, Hakanen, Miettinen (b2) 2019; 23
Sun, Duan, Mao (b45) 2022; 148
Zaefferer (b38) 2018
Leprêtre, Fonlupt, Verel, Marion (b62) 2019
Leprêtre, Verel, Fonlupt, Marion (b57) 2019
Swingler (b60) 2020; 28
Kauffman (b78) 1993
Tian, Yang, Zhang, Duan, Zhang (b51) 2019; 3
Zitzler, Künzli (b27) 2004
Deb, Hussein, Roy, Pulido (b7) 2019; 23
Liefooghe, Verel, Hao (b76) 2014; 16
Moraglio, Kattan (b39) 2011
Trivedi, Srinivasan, Sanyal, Ghosh (b21) 2017; 21
Pruvost, Derbel, Liefooghe, Verel, Zhang (b68) 2020
Tibshirani (b72) 1996; 58
Ehrgott (b11) 2005
Hutter, Hoos, Leyton-Brown (b66) 2011
Zapotecas Martinez, Coello Coello (b30) 2013
Ponweiser, Wagner, Biermann, Vincze (b33) 2008
Goodfellow, Bengio, Courville (b18) 2016
Jin (b5) 2011; 1
Baptista, Poloczek (b41) 2018
Zitzler, Thiele, Laumanns, Fonseca, Grunert da Fonseca (b79) 2003; 7
Rieser (b53) 2010
Bartz-Beielstein, Zaefferer (b3) 2017; 55
Dushatskiy, Alderliesten, Bosman (b63) 2021; 1
Krige (b14) 1951; 52
Berveglieri, Derbel, Liefooghe, Aguirre, Tanaka (b37) 2019
Drouet, Verel, Do (b47) 2020
Buhmann (b17) 2009; vol. 12
Deb, Pratap, Agarwal, Meyarivan (b23) 2002; 6
Hussein, Deb (b32) 2016
Coello Coello, Lamont, Van Veldhuizen (b13) 2007
Rasmussen (b15) 2003; vol. 3176
Deb, Jain (b24) 2014; 18
Dong, Li, Wang, Song, Yu (b36) 2021; 220
Dong, Wang, Song, Zhang, An (b42) 2020; 94
Drucker, Burges, Kaufman, Smola, Vapnik (b16) 1996
Deb (b12) 2001
Horn, Wagner, Biermann, Weihs, Bischl (b8) 2015
Zhang, Liu, Tsang, Virginas (b29) 2010; 14
Verel, Liefooghe, Jourdan, Dhaenens (b75) 2013; 227
Gu, Wang, Xiong, Jiang, Chen (b44) 2021; 8
Wang, Jin (b50) 2020; 50
Breiman, Friedman, Olshen, Stone (b19) 1984
Li, Zhang (b69) 2009; 13
Romero, Ibeas, Moura, Benavente, Alonso (b54) 2012; 54
Regis (b46) 2021
Han, Wang (b61) 2021; 13
Dushatskiy, Mendrik, Alderliesten, Bosman (b58) 2019
Kochenberger, Hao, Glover, Lewis, Lü, Wang, Wang (b77) 2014; 28
Vérel, Derbel, Liefooghe, Aguirre, Tanaka (b56) 2018; vol. 11102
Pan, He, Tian, Wang, Zhang, Jin (b35) 2019; 23
Hastie, Tibshirani, Wainwright (b71) 2015
Paquete, Stützle (b73) 2006; 169
Allmendinger, Emmerich, Hakanen, Jin, Rigoni (b9) 2017; 24
Jain, Deb (b25) 2014; 18
Chugh, Jin, Miettinen, Hakanen, Sindhya (b31) 2018; 22
Regis (b49) 2020
Hansen, Auger, Finck, Ros (b80) 2009
Unanue, Merino, Lozano (b64) 2021
T. Bartz-Beielstein, A survey of model-based methods for global optimization, in: International Conference on Bioinspired Optimization Methods and their Applications, BIOMA, 2016, pp. 1–18.
Beume, Naujoks, Emmerich (b26) 2007; 181
Stork, Friese, Zaefferer, Bartz-Beielstein, Fischbach, Breiderhoff, Naujoks, Tusar (b1) 2020; vol. 833
Knowles (b28) 2006; 10
Gu, Wang, Li, Li (b43) 2021; 223
Horn (10.1016/j.asoc.2023.110061_b8) 2015
Coello Coello (10.1016/j.asoc.2023.110061_b13) 2007
Hakanen (10.1016/j.asoc.2023.110061_b48) 2018
Trivedi (10.1016/j.asoc.2023.110061_b21) 2017; 21
Hussein (10.1016/j.asoc.2023.110061_b32) 2016
Leprêtre (10.1016/j.asoc.2023.110061_b52) 2020
Kauffman (10.1016/j.asoc.2023.110061_b78) 1993
Dushatskiy (10.1016/j.asoc.2023.110061_b63) 2021; 1
Hutter (10.1016/j.asoc.2023.110061_b66) 2011
Regis (10.1016/j.asoc.2023.110061_b46) 2021
Liefooghe (10.1016/j.asoc.2023.110061_b76) 2014; 16
Jin (10.1016/j.asoc.2023.110061_b5) 2011; 1
Chugh (10.1016/j.asoc.2023.110061_b31) 2018; 22
Drouet (10.1016/j.asoc.2023.110061_b47) 2020
Li (10.1016/j.asoc.2023.110061_b34) 2022; 242
Zhang (10.1016/j.asoc.2023.110061_b29) 2010; 14
Zaefferer (10.1016/j.asoc.2023.110061_b40) 2014
Han (10.1016/j.asoc.2023.110061_b61) 2021; 13
Swingler (10.1016/j.asoc.2023.110061_b60) 2020; 28
Miettinen (10.1016/j.asoc.2023.110061_b10) 1998; vol. 12
Romero (10.1016/j.asoc.2023.110061_b54) 2012; 54
Sun (10.1016/j.asoc.2023.110061_b45) 2022; 148
Negoescu (10.1016/j.asoc.2023.110061_b55) 2011; 23
Unanue (10.1016/j.asoc.2023.110061_b64) 2021
Tian (10.1016/j.asoc.2023.110061_b51) 2019; 3
Zaefferer (10.1016/j.asoc.2023.110061_b38) 2018
Jain (10.1016/j.asoc.2023.110061_b25) 2014; 18
Chugh (10.1016/j.asoc.2023.110061_b2) 2019; 23
Leprêtre (10.1016/j.asoc.2023.110061_b62) 2019
Vérel (10.1016/j.asoc.2023.110061_b56) 2018; vol. 11102
Wang (10.1016/j.asoc.2023.110061_b50) 2020; 50
Aguirre (10.1016/j.asoc.2023.110061_b74) 2007; 181
Dong (10.1016/j.asoc.2023.110061_b42) 2020; 94
Deshwal (10.1016/j.asoc.2023.110061_b59) 2021
Drucker (10.1016/j.asoc.2023.110061_b16) 1996
Buhmann (10.1016/j.asoc.2023.110061_b17) 2009; vol. 12
Hansen (10.1016/j.asoc.2023.110061_b80) 2009
Pruvost (10.1016/j.asoc.2023.110061_b68) 2020
Zitzler (10.1016/j.asoc.2023.110061_b79) 2003; 7
Jin (10.1016/j.asoc.2023.110061_b6) 2019; 23
Allmendinger (10.1016/j.asoc.2023.110061_b9) 2017; 24
10.1016/j.asoc.2023.110061_b4
Dong (10.1016/j.asoc.2023.110061_b36) 2021; 220
Stork (10.1016/j.asoc.2023.110061_b1) 2020; vol. 833
Berveglieri (10.1016/j.asoc.2023.110061_b37) 2019
Pan (10.1016/j.asoc.2023.110061_b35) 2019; 23
Li (10.1016/j.asoc.2023.110061_b69) 2009; 13
Deshwal (10.1016/j.asoc.2023.110061_b65) 2020
Bartz-Beielstein (10.1016/j.asoc.2023.110061_b3) 2017; 55
Rieser (10.1016/j.asoc.2023.110061_b53) 2010
Deb (10.1016/j.asoc.2023.110061_b7) 2019; 23
Rasmussen (10.1016/j.asoc.2023.110061_b15) 2003; vol. 3176
Gu (10.1016/j.asoc.2023.110061_b43) 2021; 223
Leprêtre (10.1016/j.asoc.2023.110061_b57) 2019
Kochenberger (10.1016/j.asoc.2023.110061_b77) 2014; 28
Tibshirani (10.1016/j.asoc.2023.110061_b72) 1996; 58
Hastie (10.1016/j.asoc.2023.110061_b71) 2015
Deb (10.1016/j.asoc.2023.110061_b12) 2001
Goodfellow (10.1016/j.asoc.2023.110061_b18) 2016
Dushatskiy (10.1016/j.asoc.2023.110061_b58) 2019
Bethke (10.1016/j.asoc.2023.110061_b70) 1980
Zitzler (10.1016/j.asoc.2023.110061_b27) 2004
Paquete (10.1016/j.asoc.2023.110061_b73) 2006; 169
Deb (10.1016/j.asoc.2023.110061_b23) 2002; 6
Knowles (10.1016/j.asoc.2023.110061_b28) 2006; 10
Gu (10.1016/j.asoc.2023.110061_b44) 2021; 8
Breiman (10.1016/j.asoc.2023.110061_b19) 1984
Zapotecas Martinez (10.1016/j.asoc.2023.110061_b30) 2013
Breiman (10.1016/j.asoc.2023.110061_b20) 2001; 45
Verel (10.1016/j.asoc.2023.110061_b75) 2013; 227
Moraglio (10.1016/j.asoc.2023.110061_b39) 2011
Deb (10.1016/j.asoc.2023.110061_b24) 2014; 18
Walsh (10.1016/j.asoc.2023.110061_b67) 1923; 45
Ehrgott (10.1016/j.asoc.2023.110061_b11) 2005
Ponweiser (10.1016/j.asoc.2023.110061_b33) 2008
Beume (10.1016/j.asoc.2023.110061_b26) 2007; 181
Baptista (10.1016/j.asoc.2023.110061_b41) 2018
Zhang (10.1016/j.asoc.2023.110061_b22) 2007; 11
Regis (10.1016/j.asoc.2023.110061_b49) 2020
Krige (10.1016/j.asoc.2023.110061_b14) 1951; 52
References_xml – year: 1984
  ident: b19
  article-title: Classification and Regression Trees
– volume: 1
  start-page: 61
  year: 2011
  end-page: 70
  ident: b5
  article-title: Surrogate-assisted evolutionary computation: Recent advances and future challenges
  publication-title: Swarm Evol. Comput.
– volume: 28
  start-page: 58
  year: 2014
  end-page: 81
  ident: b77
  article-title: The unconstrained binary quadratic programming problem: A survey
  publication-title: J. Comb. Optim.
– start-page: 42
  year: 2020
  end-page: 52
  ident: b52
  article-title: Combinatorial surrogate-assisted optimization for bus stops spacing problem
  publication-title: International Conference on Artificial Evolution (Evolution Artificielle)
– volume: 50
  start-page: 536
  year: 2020
  end-page: 549
  ident: b50
  article-title: A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b22
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1405
  year: 2013
  end-page: 1412
  ident: b30
  article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems
  publication-title: The Genetic and Evolutionary Computation Conference
– start-page: 542
  year: 2020
  end-page: 550
  ident: b68
  article-title: Surrogate-assisted multi-objective combinatorial optimization based on decomposition and Walsh basis
  publication-title: The Genetic and Evolutionary Computation Conference
– volume: vol. 12
  year: 1998
  ident: b10
  publication-title: Nonlinear Multiobjective Optimization
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b23
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 129
  year: 2018
  end-page: 142
  ident: b31
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 832
  year: 2004
  end-page: 842
  ident: b27
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel Problem Solving from Nature - PPSN VIII
– volume: 28
  start-page: 317
  year: 2020
  end-page: 338
  ident: b60
  article-title: Learning and searching pseudo-boolean surrogate functions from small samples
  publication-title: Evol. Comput.
– volume: 169
  start-page: 943
  year: 2006
  end-page: 959
  ident: b73
  article-title: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices
  publication-title: European J. Oper. Res.
– volume: 23
  start-page: 442
  year: 2019
  end-page: 458
  ident: b6
  article-title: Data-driven evolutionary optimization: An overview and case studies
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 42
  year: 2019
  end-page: 52
  ident: b62
  article-title: Combinatorial surrogate-assisted optimization for bus stops spacing problem
  publication-title: International Conference on Artificial Evolution (Evolution Artificielle)
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b24
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– year: 1993
  ident: b78
  article-title: The Origins of Order
– start-page: 155
  year: 1996
  end-page: 161
  ident: b16
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 23
  start-page: 104
  year: 2019
  end-page: 116
  ident: b7
  article-title: A taxonomy for metamodeling frameworks for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 16
  start-page: 10
  year: 2014
  end-page: 19
  ident: b76
  article-title: A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming
  publication-title: Appl. Soft Comput.
– volume: 55
  start-page: 154
  year: 2017
  end-page: 167
  ident: b3
  article-title: Model-based methods for continuous and discrete global optimization
  publication-title: Appl. Soft Comput.
– year: 2016
  ident: b18
  publication-title: Deep Learning
– volume: 23
  start-page: 346
  year: 2011
  end-page: 363
  ident: b55
  article-title: The knowledge-gradient algorithm for sequencing experiments in drug discovery
  publication-title: INFORMS J. Comput.
– volume: 45
  start-page: 5
  year: 1923
  ident: b67
  article-title: A closed set of normal orthogonal functions
  publication-title: Amer. J. Math.
– volume: 148
  year: 2022
  ident: b45
  article-title: A multi-objective adaptive surrogate modelling-based optimization algorithm for constrained hybrid problems
  publication-title: Environ. Model. Softw.
– start-page: 2632
  year: 2021
  end-page: 2643
  ident: b59
  article-title: Bayesian optimization over hybrid spaces
  publication-title: International Conference on Machine Learning
– year: 1980
  ident: b70
  article-title: Genetic Algorithms as Function Optimizers
– volume: 24
  start-page: 5
  year: 2017
  end-page: 24
  ident: b9
  article-title: Surrogate-assisted multicriteria optimization: Complexities, prospective solutions, and business case
  publication-title: J. Multi-Criteria Decis. Anal.
– start-page: 64
  year: 2015
  end-page: 78
  ident: b8
  article-title: Model-based multi-objective optimization: Taxonomy, multi-point proposal, toolbox and benchmark
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: vol. 11102
  start-page: 181
  year: 2018
  end-page: 193
  ident: b56
  article-title: A surrogate model based on walsh decomposition for Pseudo-Boolean functions
  publication-title: Parallel Problem Solving from Nature – PPSN XV
– start-page: 203
  year: 2020
  end-page: 214
  ident: b49
  article-title: High-dimensional constrained discrete multi-objective optimization using surrogates
  publication-title: International Conference on Machine Learning, Optimization, and Data Science
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: b79
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 753
  year: 2019
  end-page: 761
  ident: b58
  article-title: Convolutional neural network surrogate-assisted GOMEA
  publication-title: The Genetic and Evolutionary Computation Conference
– volume: 227
  start-page: 331
  year: 2013
  end-page: 342
  ident: b75
  article-title: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives
  publication-title: European J. Oper. Res.
– start-page: 871
  year: 2014
  end-page: 878
  ident: b40
  article-title: Efficient global optimization for combinatorial problems
  publication-title: The Genetic and Evolutionary Computation Conference
– volume: 94
  year: 2020
  ident: b42
  article-title: Kriging-assisted discrete global optimization (KDGO) for black-box problems with costly objective and constraints
  publication-title: Appl. Soft Comput.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b72
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 142
  year: 2011
  end-page: 154
  ident: b39
  article-title: Geometric generalisation of surrogate model based optimisation to combinatorial spaces
  publication-title: Evolutionary Computation in Combinatorial Optimization
– start-page: 303
  year: 2019
  end-page: 311
  ident: b57
  article-title: Walsh functions as surrogate model for Pseudo-Boolean optimization problems
  publication-title: The Genetic and Evolutionary Computation Conference
– year: 2007
  ident: b13
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– volume: 23
  start-page: 74
  year: 2019
  end-page: 88
  ident: b35
  article-title: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 391
  year: 2021
  end-page: 398
  ident: b64
  article-title: A general framework based on Walsh decomposition for combinatorial optimization problems
  publication-title: Congress on Evolutionary Computation
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b26
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European J. Oper. Res.
– volume: 220
  year: 2021
  ident: b36
  article-title: Surrogate-guided multi-objective optimization (SGMOO) using an efficient online sampling strategy
  publication-title: Knowl.-Based Syst.
– volume: 8
  start-page: 2699
  year: 2021
  end-page: 2718
  ident: b44
  article-title: Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
  publication-title: Complex Intell. Syst.
– reference: T. Bartz-Beielstein, A survey of model-based methods for global optimization, in: International Conference on Bioinspired Optimization Methods and their Applications, BIOMA, 2016, pp. 1–18.
– start-page: 1870
  year: 2021
  end-page: 1878
  ident: b46
  article-title: A two-phase surrogate approach for high-dimensional constrained discrete multi-objective optimization
  publication-title: The Genetic and Evolutionary Computation Conference, GECCO Companion Volume
– volume: 14
  start-page: 456
  year: 2010
  end-page: 474
  ident: b29
  article-title: Expensive multiobjective optimization by MOEA/D with Gaussian process model
  publication-title: IEEE Trans. Evol. Comput.
– volume: vol. 833
  start-page: 225
  year: 2020
  end-page: 244
  ident: b1
  article-title: Open issues in surrogate-assisted optimization
  publication-title: High-Performance Simulation-Based Optimization
– year: 2010
  ident: b53
  article-title: Adding Transit to an Agent-Based Transportation Simulation: Concepts and Implementation
– volume: 21
  start-page: 440
  year: 2017
  end-page: 462
  ident: b21
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 784
  year: 2008
  end-page: 794
  ident: b33
  article-title: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection
  publication-title: Parallel Problem Solving from Nature – PPSN X
– start-page: 3773
  year: 2020
  end-page: 3780
  ident: b65
  article-title: Optimizing discrete spaces via expensive evaluations: A learning to search framework
  publication-title: The AAAI Conference on Artificial Intelligence
– volume: 223
  year: 2021
  ident: b43
  article-title: A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
  publication-title: Knowl.-Based Syst.
– start-page: 507
  year: 2011
  end-page: 523
  ident: b66
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Learning and Intelligent Optimization
– volume: 54
  start-page: 646
  year: 2012
  end-page: 655
  ident: b54
  article-title: A simulation-optimization approach to design efficient systems of bike-sharing
  publication-title: Procedia Soc. Behav. Sci.
– start-page: 507
  year: 2019
  end-page: -515
  ident: b37
  article-title: Surrogate-assisted multiobjective optimization based on decomposition: A comprehensive comparative analysis
  publication-title: The Genetic and Evolutionary Computation Conference
– start-page: 104
  year: 2018
  end-page: 115
  ident: b48
  article-title: Data-driven interactive multiobjective optimization using a cluster-based surrogate in a discrete decision space
  publication-title: International Conference on Machine Learning, Optimization, and Data Science
– volume: 3
  start-page: 106
  year: 2019
  end-page: 116
  ident: b51
  article-title: A surrogate-assisted multiobjective evolutionary algorithm for large-scale task-oriented pattern mining
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b20
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 1073
  year: 2020
  end-page: 1081
  ident: b47
  article-title: Surrogate-assisted asynchronous multiobjective algorithm for nuclear power plant operations
  publication-title: The Genetic and Evolutionary Computation Conference
– year: 2005
  ident: b11
  article-title: Multicriteria Optimization
– volume: 52
  start-page: 119
  year: 1951
  end-page: 139
  ident: b14
  article-title: A statistical approach to some basic mine valuation problems on the Witwatersrand
  publication-title: J. South. Afr. Inst. Min. Metall.
– year: 2009
  ident: b80
  article-title: Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup
– year: 2015
  ident: b71
  article-title: Statistical Learning with Sparsity: The Lasso and Generalizations
– year: 2018
  ident: b41
  article-title: Bayesian optimization of combinatorial structures
  publication-title: ICML
– volume: 13
  start-page: 19
  year: 2021
  end-page: 30
  ident: b61
  article-title: A random forest assisted evolutionary algorithm using competitive neighborhood search for expensive constrained combinatorial optimization
  publication-title: Memetic Comput.
– volume: 23
  start-page: 3137
  year: 2019
  end-page: 3166
  ident: b2
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Comput.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b69
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: b25
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 50
  year: 2006
  end-page: 66
  ident: b28
  article-title: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 1
  year: 2021
  end-page: 23
  ident: b63
  article-title: A novel approach to designing surrogate-assisted genetic algorithms by combining efficient learning of Walsh coefficients and dependencies
  publication-title: ACM Trans. Evol. Learn. Optim.
– volume: 242
  year: 2022
  ident: b34
  article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
  publication-title: Knowl.-Based Syst.
– volume: vol. 12
  year: 2009
  ident: b17
  publication-title: Radial Basis Functions - Theory and Implementations
– year: 2018
  ident: b38
  article-title: Surrogate Models for Discrete Optimization Problems
– volume: 181
  start-page: 1670
  year: 2007
  end-page: 1690
  ident: b74
  article-title: Working principles, behavior, and performance of MOEAs on MNK-landscapes
  publication-title: European J. Oper. Res.
– volume: vol. 3176
  start-page: 63
  year: 2003
  end-page: 71
  ident: b15
  article-title: Gaussian processes in machine learning
  publication-title: Advanced Lectures on Machine Learning, ML Summer Schools, Canberra, Australia, February 2–14, Tübingen, Germany, August 4–16, Revised Lectures
– start-page: 573
  year: 2016
  end-page: 580
  ident: b32
  article-title: A generative kriging surrogate model for constrained and unconstrained multi-objective optimization
  publication-title: The Genetic and Evolutionary Computation Conference
– year: 2001
  ident: b12
  article-title: Multi-Objective Optimization using Evolutionary Algorithms
– start-page: 64
  year: 2015
  ident: 10.1016/j.asoc.2023.110061_b8
  article-title: Model-based multi-objective optimization: Taxonomy, multi-point proposal, toolbox and benchmark
– start-page: 542
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b68
  article-title: Surrogate-assisted multi-objective combinatorial optimization based on decomposition and Walsh basis
– start-page: 1870
  year: 2021
  ident: 10.1016/j.asoc.2023.110061_b46
  article-title: A two-phase surrogate approach for high-dimensional constrained discrete multi-objective optimization
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2023.110061_b26
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.008
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2023.110061_b28
  article-title: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– start-page: 753
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b58
  article-title: Convolutional neural network surrogate-assisted GOMEA
– volume: 223
  year: 2021
  ident: 10.1016/j.asoc.2023.110061_b43
  article-title: A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107049
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2023.110061_b69
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 14
  start-page: 456
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2023.110061_b29
  article-title: Expensive multiobjective optimization by MOEA/D with Gaussian process model
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033671
– volume: vol. 3176
  start-page: 63
  year: 2003
  ident: 10.1016/j.asoc.2023.110061_b15
  article-title: Gaussian processes in machine learning
– volume: 3
  start-page: 106
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b51
  article-title: A surrogate-assisted multiobjective evolutionary algorithm for large-scale task-oriented pattern mining
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2018.2872055
– volume: 54
  start-page: 646
  year: 2012
  ident: 10.1016/j.asoc.2023.110061_b54
  article-title: A simulation-optimization approach to design efficient systems of bike-sharing
  publication-title: Procedia Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.09.782
– start-page: 507
  year: 2011
  ident: 10.1016/j.asoc.2023.110061_b66
  article-title: Sequential model-based optimization for general algorithm configuration
– start-page: 1405
  year: 2013
  ident: 10.1016/j.asoc.2023.110061_b30
  article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems
– start-page: 155
  year: 1996
  ident: 10.1016/j.asoc.2023.110061_b16
  article-title: Support vector regression machines
– start-page: 2632
  year: 2021
  ident: 10.1016/j.asoc.2023.110061_b59
  article-title: Bayesian optimization over hybrid spaces
– year: 2009
  ident: 10.1016/j.asoc.2023.110061_b80
– volume: 220
  year: 2021
  ident: 10.1016/j.asoc.2023.110061_b36
  article-title: Surrogate-guided multi-objective optimization (SGMOO) using an efficient online sampling strategy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106919
– year: 2001
  ident: 10.1016/j.asoc.2023.110061_b12
– volume: 55
  start-page: 154
  year: 2017
  ident: 10.1016/j.asoc.2023.110061_b3
  article-title: Model-based methods for continuous and discrete global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.039
– volume: vol. 12
  year: 2009
  ident: 10.1016/j.asoc.2023.110061_b17
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2023.110061_b23
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 1980
  ident: 10.1016/j.asoc.2023.110061_b70
– year: 2010
  ident: 10.1016/j.asoc.2023.110061_b53
– volume: 23
  start-page: 3137
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b2
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2965-0
– volume: 148
  year: 2022
  ident: 10.1016/j.asoc.2023.110061_b45
  article-title: A multi-objective adaptive surrogate modelling-based optimization algorithm for constrained hybrid problems
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.105272
– start-page: 203
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b49
  article-title: High-dimensional constrained discrete multi-objective optimization using surrogates
– volume: 1
  start-page: 61
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2023.110061_b5
  article-title: Surrogate-assisted evolutionary computation: Recent advances and future challenges
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.05.001
– volume: 94
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b42
  article-title: Kriging-assisted discrete global optimization (KDGO) for black-box problems with costly objective and constraints
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106429
– volume: 28
  start-page: 317
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b60
  article-title: Learning and searching pseudo-boolean surrogate functions from small samples
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00257
– volume: 23
  start-page: 74
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b35
  article-title: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2802784
– volume: vol. 11102
  start-page: 181
  year: 2018
  ident: 10.1016/j.asoc.2023.110061_b56
  article-title: A surrogate model based on walsh decomposition for Pseudo-Boolean functions
– year: 2005
  ident: 10.1016/j.asoc.2023.110061_b11
– volume: 52
  start-page: 119
  issue: 6
  year: 1951
  ident: 10.1016/j.asoc.2023.110061_b14
  article-title: A statistical approach to some basic mine valuation problems on the Witwatersrand
  publication-title: J. South. Afr. Inst. Min. Metall.
– start-page: 104
  year: 2018
  ident: 10.1016/j.asoc.2023.110061_b48
  article-title: Data-driven interactive multiobjective optimization using a cluster-based surrogate in a discrete decision space
– start-page: 871
  year: 2014
  ident: 10.1016/j.asoc.2023.110061_b40
  article-title: Efficient global optimization for combinatorial problems
– start-page: 832
  year: 2004
  ident: 10.1016/j.asoc.2023.110061_b27
  article-title: Indicator-based selection in multiobjective search
– volume: 23
  start-page: 346
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2023.110061_b55
  article-title: The knowledge-gradient algorithm for sequencing experiments in drug discovery
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1100.0417
– year: 2016
  ident: 10.1016/j.asoc.2023.110061_b18
– year: 1993
  ident: 10.1016/j.asoc.2023.110061_b78
– start-page: 1073
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b47
  article-title: Surrogate-assisted asynchronous multiobjective algorithm for nuclear power plant operations
– year: 1984
  ident: 10.1016/j.asoc.2023.110061_b19
– volume: 23
  start-page: 104
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b7
  article-title: A taxonomy for metamodeling frameworks for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2828091
– start-page: 391
  year: 2021
  ident: 10.1016/j.asoc.2023.110061_b64
  article-title: A general framework based on Walsh decomposition for combinatorial optimization problems
– year: 2015
  ident: 10.1016/j.asoc.2023.110061_b71
– start-page: 142
  year: 2011
  ident: 10.1016/j.asoc.2023.110061_b39
  article-title: Geometric generalisation of surrogate model based optimisation to combinatorial spaces
– year: 2007
  ident: 10.1016/j.asoc.2023.110061_b13
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2023.110061_b25
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– ident: 10.1016/j.asoc.2023.110061_b4
– volume: 13
  start-page: 19
  year: 2021
  ident: 10.1016/j.asoc.2023.110061_b61
  article-title: A random forest assisted evolutionary algorithm using competitive neighborhood search for expensive constrained combinatorial optimization
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-021-00326-9
– volume: vol. 833
  start-page: 225
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b1
  article-title: Open issues in surrogate-assisted optimization
– start-page: 42
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b52
  article-title: Combinatorial surrogate-assisted optimization for bus stops spacing problem
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.asoc.2023.110061_b79
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– start-page: 507
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b37
  article-title: Surrogate-assisted multiobjective optimization based on decomposition: A comprehensive comparative analysis
– volume: 22
  start-page: 129
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110061_b31
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2622301
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.asoc.2023.110061_b72
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 169
  start-page: 943
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2023.110061_b73
  article-title: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2004.08.024
– volume: 16
  start-page: 10
  year: 2014
  ident: 10.1016/j.asoc.2023.110061_b76
  article-title: A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.11.008
– year: 2018
  ident: 10.1016/j.asoc.2023.110061_b41
  article-title: Bayesian optimization of combinatorial structures
– volume: 23
  start-page: 442
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b6
  article-title: Data-driven evolutionary optimization: An overview and case studies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869001
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2023.110061_b24
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– start-page: 784
  year: 2008
  ident: 10.1016/j.asoc.2023.110061_b33
  article-title: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection
– volume: 45
  start-page: 5
  issue: 1
  year: 1923
  ident: 10.1016/j.asoc.2023.110061_b67
  article-title: A closed set of normal orthogonal functions
  publication-title: Amer. J. Math.
  doi: 10.2307/2387224
– start-page: 42
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b62
  article-title: Combinatorial surrogate-assisted optimization for bus stops spacing problem
– volume: 28
  start-page: 58
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2023.110061_b77
  article-title: The unconstrained binary quadratic programming problem: A survey
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-014-9734-0
– start-page: 573
  year: 2016
  ident: 10.1016/j.asoc.2023.110061_b32
  article-title: A generative kriging surrogate model for constrained and unconstrained multi-objective optimization
– volume: 50
  start-page: 536
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b50
  article-title: A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2869674
– volume: 242
  year: 2022
  ident: 10.1016/j.asoc.2023.110061_b34
  article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108416
– volume: 227
  start-page: 331
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2023.110061_b75
  article-title: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2012.12.019
– volume: 1
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2023.110061_b63
  article-title: A novel approach to designing surrogate-assisted genetic algorithms by combining efficient learning of Walsh coefficients and dependencies
  publication-title: ACM Trans. Evol. Learn. Optim.
  doi: 10.1145/3453141
– year: 2018
  ident: 10.1016/j.asoc.2023.110061_b38
– start-page: 3773
  year: 2020
  ident: 10.1016/j.asoc.2023.110061_b65
  article-title: Optimizing discrete spaces via expensive evaluations: A learning to search framework
– start-page: 303
  year: 2019
  ident: 10.1016/j.asoc.2023.110061_b57
  article-title: Walsh functions as surrogate model for Pseudo-Boolean optimization problems
– volume: 24
  start-page: 5
  issue: 1–2
  year: 2017
  ident: 10.1016/j.asoc.2023.110061_b9
  article-title: Surrogate-assisted multicriteria optimization: Complexities, prospective solutions, and business case
  publication-title: J. Multi-Criteria Decis. Anal.
  doi: 10.1002/mcda.1605
– volume: vol. 12
  year: 1998
  ident: 10.1016/j.asoc.2023.110061_b10
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2023.110061_b22
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2023.110061_b20
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 181
  start-page: 1670
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2023.110061_b74
  article-title: Working principles, behavior, and performance of MOEAs on MNK-landscapes
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.004
– volume: 8
  start-page: 2699
  year: 2021
  ident: 10.1016/j.asoc.2023.110061_b44
  article-title: Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00249-x
– volume: 21
  start-page: 440
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2023.110061_b21
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
SSID ssj0016928
Score 2.4002335
Snippet The aim of this paper is to study surrogate-assisted algorithms for expensive multiobjective combinatorial optimization problems. Targeting pseudo-boolean...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 110061
SubjectTerms Artificial Intelligence
Computer Science
Decomposition
Discrete surrogates
Multi-objective optimization
Operations Research
Title Walsh-based surrogate-assisted multi-objective combinatorial optimization: A fine-grained analysis for pseudo-boolean functions
URI https://dx.doi.org/10.1016/j.asoc.2023.110061
https://hal.science/hal-04073811
Volume 136
WOSCitedRecordID wos000967176800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6jgdeGJ_aGCAL8TZ5SuImdngraDDQNE3agL5Fju2sq0pTpU21N34Mf5R7ayfrWjEBEi9R5TZxlHN6fXxzPwh5I0PFrYw4kybQrJfrlClrI8YToUMjuAiLJdIn4vRUDgbpWafzs8mFWYzFZCKvr9Ppf4UaxgBsTJ39C7jbi8IAfAbQ4Qiww_GPgP8GMwwZrk7mYFZXVYmOMgYaGQE1LoKQlfnIWTqMKYfNMW690XdeggX57lMzXdJ6ATKUXWIjCYtVXX0JEwxOnM5sbUoGMn2M7nxcIW-8f01hWy9yZ2Dtl-Hr9bxZK1E9A6YuSuAdGKc21uOsqhc-F-WjLZeZZm3c0JUtyvJy6Nyw8DBq03z11VbuWufu5T88ASwZu-rWALK0cV3O17aRb-PMcyJZL_VOS-vGpIhYmrjGL61Nd1VVNtYH56oYHSqg_iFOi2kQgSsHv1Z3-xwnw7lgkwZCKg22yHYk4lR2yXb_09Hgc_uyKkmXLXzbm_O5WS6McH2m3-mfrWHjyV8qm4uH5IHfktC-o9Ij0rGTx2SnafdBvfV_Qn6sMItuMouuMYveYhZdZdZb2qervKINryjwit7mFW159ZR8-XB08f6Y-f4dTHMh5yzmRaKkMEEO5sqYlNtYY_-5QKoi14kwJldJlFtjsO-QlhbEvzLcKqWTgOecPyPdSTmxu4RGibQy7ukY86pNrFQK6iuG3bcFBVzIZI-EzVPNtC9ujz1WxlkTxTjKEIkMkcgcEnvkoD1n6kq73PnruAEr8-LUic4MuHXnea8B2XYCrOZ-3D_JcAzWTwGCOVyEz__x4vvk_s1_5wXpzqvaviT39GJ-NateeZ7-AluJxjo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Walsh-based+surrogate-assisted+multi-objective+combinatorial+optimization%3A+A+fine-grained+analysis+for+pseudo-boolean+functions&rft.jtitle=Applied+soft+computing&rft.au=Derbel%2C+Bilel&rft.au=Pruvost%2C+Geoffrey&rft.au=Liefooghe%2C+Arnaud&rft.au=Verel%2C+S%C3%A9bastien&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=136&rft_id=info:doi/10.1016%2Fj.asoc.2023.110061&rft.externalDocID=S1568494623000790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon