Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions

In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen’s type inequalities...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 5; no. 6; pp. 6959 - 6971
Main Authors: Feng, Baoli, Ghafoor, Mamoona, Ming Chu, Yu, Imran Qureshi, Muhammad, Feng, Xue, Yao, Chuang, Qiao, Xing
Format: Journal Article
Language:English
Published: AIMS Press 01.01.2020
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen’s type inequalities for this generalization.
AbstractList In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen’s type inequalities for this generalization.
Author Feng, Baoli
Ghafoor, Mamoona
Qiao, Xing
Ming Chu, Yu
Feng, Xue
Yao, Chuang
Imran Qureshi, Muhammad
Author_xml – sequence: 1
  givenname: Baoli
  surname: Feng
  fullname: Feng, Baoli
– sequence: 2
  givenname: Mamoona
  surname: Ghafoor
  fullname: Ghafoor, Mamoona
– sequence: 3
  givenname: Yu
  surname: Ming Chu
  fullname: Ming Chu, Yu
– sequence: 4
  givenname: Muhammad
  surname: Imran Qureshi
  fullname: Imran Qureshi, Muhammad
– sequence: 5
  givenname: Xue
  surname: Feng
  fullname: Feng, Xue
– sequence: 6
  givenname: Chuang
  surname: Yao
  fullname: Yao, Chuang
– sequence: 7
  givenname: Xing
  surname: Qiao
  fullname: Qiao, Xing
BookMark eNptkMFKAzEQhoMoWKs3HyBHBbemSTa7OYqoVQpexGtIk4lNaZOapGJvvoav55O41QoiHoYZfmY-5v8P0G6IARA6HpIBk4yfL3SZDiihhHOxg3qUN6wSsm13f8376CjnGSGEDimnDe-hxxGkhS9QjbTVC50s1sHiOwgZwsfbe8ZlvQTsAzyv9NwXDxm7mPAiWu88WHyyPMPT08rE8AKv2K2CKT6GfIj2nJ5nONr2Pnq4vnq4HFXj-5vby4txZVjTlqpm1JAaaGuEs85pzRxrgEvLdCdNLBsCSCnrmjspGjHhRkjiBK8b2dWE9dHtN9ZGPVPL5DsHaxW1V19CTE9Kp-LNHBS3hhhmZNO6CSeCS2MZ1LLlVrC2w3Us-s0yKeacwCnji964KUn7uRoStclZbXJW25y7o7M_Rz9P_Lv-CXdSgh0
CitedBy_id crossref_primary_10_1186_s13662_020_03093_y
crossref_primary_10_3934_math_2025763
crossref_primary_10_1186_s13662_021_03544_0
crossref_primary_10_54187_jnrs_978216
crossref_primary_10_46939_J_Sci_Arts_23_4_a05
crossref_primary_10_3390_fractalfract7030216
crossref_primary_10_1186_s13660_021_02605_y
crossref_primary_10_1371_journal_pone_0311386
crossref_primary_10_3390_math11081953
Cites_doi 10.30538/oms2019.0082
10.1186/s13660-019-2265-6
10.1186/s13660-016-1272-0
10.1186/s13660-019-1955-4
10.30538/psrp-easl2020.0034
10.1186/s13662-019-2438-0
10.1109/ACCESS.2018.2878266
10.30538/psrp-oma2019.0043
ContentType Journal Article
CorporateAuthor 7 Heilongjiang bayi agricultural reclamation university Daqing City, 158308, China
6 Aviation University Air Force, Changchun City, 1300000, Chinan
2 Department of Mathematics, University of Okara, Okara Pakistan
Changsha University of Science & Technology, Changsha 410114, P. R. China
3 Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China
8 Department of Mathematics, Daqing Normal University, Daqing City, 163712, China
4 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering
1 Mudanjiang Normal University, Mudanjiang City, 157011, China
5 Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari Pakistan
CorporateAuthor_xml – name: 6 Aviation University Air Force, Changchun City, 1300000, Chinan
– name: Changsha University of Science & Technology, Changsha 410114, P. R. China
– name: 7 Heilongjiang bayi agricultural reclamation university Daqing City, 158308, China
– name: 8 Department of Mathematics, Daqing Normal University, Daqing City, 163712, China
– name: 3 Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China
– name: 2 Department of Mathematics, University of Okara, Okara Pakistan
– name: 5 Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari Pakistan
– name: 1 Mudanjiang Normal University, Mudanjiang City, 157011, China
– name: 4 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2020446
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 6971
ExternalDocumentID oai_doaj_org_article_4dc0c3c978fb40649cd3e5984d638794
10_3934_math_2020446
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-532c05e28c6fdffaa3f37e49d3a8c6bd31ee999554f9676b4c690f64579457b3
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576304500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:52:11 EDT 2025
Sat Nov 29 06:04:15 EST 2025
Tue Nov 18 20:29:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-532c05e28c6fdffaa3f37e49d3a8c6bd31ee999554f9676b4c690f64579457b3
OpenAccessLink https://doaj.org/article/4dc0c3c978fb40649cd3e5984d638794
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4dc0c3c978fb40649cd3e5984d638794
crossref_citationtrail_10_3934_math_2020446
crossref_primary_10_3934_math_2020446
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References 11
22
13
15
Y. M. Chu, M. A. Khan, T. Ali (9)
T. Zhao, M. S. Saleem, W. Nazeer (14)
18
Y. C. Kwun, M. S. Saleem, M. Ghafoor (4)
S. Mehmood, G. Farid, K. A. Khan (7)
19
W. Iqbal, K. M. Awan, A. U. Rehman (6)
Y. C. Kwun, G. Farid, W. Nazeer (16)
S. Zhao, S. I. Butt, W. Nazeer (12)
3
I. A. Baloch, S. S. Dragomir (5)
8
20
10
21
References_xml – ident: 6
  article-title: t al. An extension of Petrovic's inequality for (h-) convex ((h-) concave) functions in plane</i
  publication-title: Open J. Math. Sci.
  doi: 10.30538/oms2019.0082
– ident: 22
  article-title: i>The Hermite-Hadamard type inequality of GA-convex functions and its application</i
– ident: 8
  article-title: i>Monotonicity and inequalities involving zero-balanced hypergeometric function</i
– ident: 21
  article-title: t al. Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function</i
– ident: 10
  article-title: t al. Unification of generalized and p-convexity</i
– ident: 14
  article-title: t al. On generalized strongly modified h-convexfunctions</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2265-6
– ident: 15
  article-title: i>Simpson's type inequalities for strongly (s, m)-convex functions in the second sense and applications</i
– ident: 3
  article-title: t al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications</i
– ident: 9
  article-title: t al. Inequalities for a-fractional differentiable functions</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1272-0
– ident: 13
  article-title: i>New type integral inequalities for three times differentiable preinvex and prequasiinvex functions</i
– ident: 18
  article-title: i>p-convex functions and their properties</i
– ident: 19
  article-title: i>An inequality for convex functions</i
– ident: 11
  article-title: i>Fractional integral inequalities on time scales</i
– ident: 4
  article-title: t al. Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-1955-4
– ident: 7
  article-title: t al. New fractional Hadamard and Fejer-Hadamard inequalities associated with exponentially (h, m)-convex functions</i
  publication-title: Eng. Appl. Sci. Lett.
  doi: 10.30538/psrp-easl2020.0034
– ident: 12
  article-title: t al. Some Hermite-Jensen-Mercer type inequalities for k-Caputofractional derivatives and related results</i
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2438-0
– ident: 16
  article-title: t al. Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities</i
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2018.2878266
– ident: 5
  article-title: i>New inequalities based on harmonic log-convex functions</i
  publication-title: Open J. Math. Anal.
  doi: 10.30538/psrp-oma2019.0043
– ident: 20
  article-title: i>On some Hadamard-Type ineualities for h-convex functions</i
SSID ssj0002124274
Score 2.1964452
Snippet In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 6959
SubjectTerms fejér type inequalities
hermite-hadamard inequality
jensen’s type inequalities
modified h-convex function
p-convex function
Title Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions
URI https://doaj.org/article/4dc0c3c978fb40649cd3e5984d638794
Volume 5
WOSCitedRecordID wos000576304500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBfGJ9kYOCoqG7m-xmc1RpKUKLhyK9Lbt5YME-aKt4Ev-Gf89f4sxmLfUgXrzsIRtC-GZ25ptkdoaQU2Cp0mkHH1LkLBMuLJgyoWFhGuRhrhMXB77ZhOx2035f3S-1-sKcMF8e2APXEEYHmmsIdlwBzkcobbiNVSoMaA4oE1rfQKqlYAptMBhkAfGWz3TniosG8D-8e4jwAvOHD1oq1V_6lNYm2ajIIL32m9giK3a0TdY7i0qqsx3y0MZslbllYCLyIYiTQuhP7yweCX--f8wonqFSoIr-70iIeynQUDocm4EDdknPJ1f08YKVyeWvFL1YqWi7pNdq9m7brOqFwDSX6ZzFPNJBbKMU4DPO5Tl3XFqhDM9hqDA8tBa4HpADpxKZFEJD2OsSEQNEsSz4HqmNxiO7T2gU6sgIeBlwLkRgciNBimFqTAoriLhOLr_ByXRVJxzbVTxlEC8glBlCmVVQ1snZYvbE18f4Zd4N4ryYg1WtywGQdVbJOvtL1gf_scghWcM9-WOUI1KbT5_tMVnVL_PBbHpSqhE8O2_NL_pbzvs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hermite-Hadamard+and+Jensen%E2%80%99s+type+inequalities+for+modified+%28p%2C+h%29-convex+functions&rft.jtitle=AIMS+mathematics&rft.au=Baoli+Feng&rft.au=Mamoona+Ghafoor&rft.au=Yu+Ming+Chu&rft.au=Muhammad+Imran+Qureshi&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=6&rft.spage=6959&rft.epage=6971&rft_id=info:doi/10.3934%2Fmath.2020446&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4dc0c3c978fb40649cd3e5984d638794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon