Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions
In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen’s type inequalities...
Saved in:
| Published in: | AIMS mathematics Vol. 5; no. 6; pp. 6959 - 6971 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2020
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen’s type inequalities for this generalization. |
|---|---|
| AbstractList | In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen’s type inequalities for this generalization. |
| Author | Feng, Baoli Ghafoor, Mamoona Qiao, Xing Ming Chu, Yu Feng, Xue Yao, Chuang Imran Qureshi, Muhammad |
| Author_xml | – sequence: 1 givenname: Baoli surname: Feng fullname: Feng, Baoli – sequence: 2 givenname: Mamoona surname: Ghafoor fullname: Ghafoor, Mamoona – sequence: 3 givenname: Yu surname: Ming Chu fullname: Ming Chu, Yu – sequence: 4 givenname: Muhammad surname: Imran Qureshi fullname: Imran Qureshi, Muhammad – sequence: 5 givenname: Xue surname: Feng fullname: Feng, Xue – sequence: 6 givenname: Chuang surname: Yao fullname: Yao, Chuang – sequence: 7 givenname: Xing surname: Qiao fullname: Qiao, Xing |
| BookMark | eNptkMFKAzEQhoMoWKs3HyBHBbemSTa7OYqoVQpexGtIk4lNaZOapGJvvoav55O41QoiHoYZfmY-5v8P0G6IARA6HpIBk4yfL3SZDiihhHOxg3qUN6wSsm13f8376CjnGSGEDimnDe-hxxGkhS9QjbTVC50s1sHiOwgZwsfbe8ZlvQTsAzyv9NwXDxm7mPAiWu88WHyyPMPT08rE8AKv2K2CKT6GfIj2nJ5nONr2Pnq4vnq4HFXj-5vby4txZVjTlqpm1JAaaGuEs85pzRxrgEvLdCdNLBsCSCnrmjspGjHhRkjiBK8b2dWE9dHtN9ZGPVPL5DsHaxW1V19CTE9Kp-LNHBS3hhhmZNO6CSeCS2MZ1LLlVrC2w3Us-s0yKeacwCnji964KUn7uRoStclZbXJW25y7o7M_Rz9P_Lv-CXdSgh0 |
| CitedBy_id | crossref_primary_10_1186_s13662_020_03093_y crossref_primary_10_3934_math_2025763 crossref_primary_10_1186_s13662_021_03544_0 crossref_primary_10_54187_jnrs_978216 crossref_primary_10_46939_J_Sci_Arts_23_4_a05 crossref_primary_10_3390_fractalfract7030216 crossref_primary_10_1186_s13660_021_02605_y crossref_primary_10_1371_journal_pone_0311386 crossref_primary_10_3390_math11081953 |
| Cites_doi | 10.30538/oms2019.0082 10.1186/s13660-019-2265-6 10.1186/s13660-016-1272-0 10.1186/s13660-019-1955-4 10.30538/psrp-easl2020.0034 10.1186/s13662-019-2438-0 10.1109/ACCESS.2018.2878266 10.30538/psrp-oma2019.0043 |
| ContentType | Journal Article |
| CorporateAuthor | 7 Heilongjiang bayi agricultural reclamation university Daqing City, 158308, China 6 Aviation University Air Force, Changchun City, 1300000, Chinan 2 Department of Mathematics, University of Okara, Okara Pakistan Changsha University of Science & Technology, Changsha 410114, P. R. China 3 Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China 8 Department of Mathematics, Daqing Normal University, Daqing City, 163712, China 4 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering 1 Mudanjiang Normal University, Mudanjiang City, 157011, China 5 Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari Pakistan |
| CorporateAuthor_xml | – name: 6 Aviation University Air Force, Changchun City, 1300000, Chinan – name: Changsha University of Science & Technology, Changsha 410114, P. R. China – name: 7 Heilongjiang bayi agricultural reclamation university Daqing City, 158308, China – name: 8 Department of Mathematics, Daqing Normal University, Daqing City, 163712, China – name: 3 Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China – name: 2 Department of Mathematics, University of Okara, Okara Pakistan – name: 5 Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari Pakistan – name: 1 Mudanjiang Normal University, Mudanjiang City, 157011, China – name: 4 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2020446 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 6971 |
| ExternalDocumentID | oai_doaj_org_article_4dc0c3c978fb40649cd3e5984d638794 10_3934_math_2020446 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-c378t-532c05e28c6fdffaa3f37e49d3a8c6bd31ee999554f9676b4c690f64579457b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576304500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:52:11 EDT 2025 Sat Nov 29 06:04:15 EST 2025 Tue Nov 18 20:29:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-532c05e28c6fdffaa3f37e49d3a8c6bd31ee999554f9676b4c690f64579457b3 |
| OpenAccessLink | https://doaj.org/article/4dc0c3c978fb40649cd3e5984d638794 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4dc0c3c978fb40649cd3e5984d638794 crossref_citationtrail_10_3934_math_2020446 crossref_primary_10_3934_math_2020446 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2020 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | 11 22 13 15 Y. M. Chu, M. A. Khan, T. Ali (9) T. Zhao, M. S. Saleem, W. Nazeer (14) 18 Y. C. Kwun, M. S. Saleem, M. Ghafoor (4) S. Mehmood, G. Farid, K. A. Khan (7) 19 W. Iqbal, K. M. Awan, A. U. Rehman (6) Y. C. Kwun, G. Farid, W. Nazeer (16) S. Zhao, S. I. Butt, W. Nazeer (12) 3 I. A. Baloch, S. S. Dragomir (5) 8 20 10 21 |
| References_xml | – ident: 6 article-title: t al. An extension of Petrovic's inequality for (h-) convex ((h-) concave) functions in plane</i publication-title: Open J. Math. Sci. doi: 10.30538/oms2019.0082 – ident: 22 article-title: i>The Hermite-Hadamard type inequality of GA-convex functions and its application</i – ident: 8 article-title: i>Monotonicity and inequalities involving zero-balanced hypergeometric function</i – ident: 21 article-title: t al. Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function</i – ident: 10 article-title: t al. Unification of generalized and p-convexity</i – ident: 14 article-title: t al. On generalized strongly modified h-convexfunctions</i publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-2265-6 – ident: 15 article-title: i>Simpson's type inequalities for strongly (s, m)-convex functions in the second sense and applications</i – ident: 3 article-title: t al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications</i – ident: 9 article-title: t al. Inequalities for a-fractional differentiable functions</i publication-title: J. Inequal. Appl. doi: 10.1186/s13660-016-1272-0 – ident: 13 article-title: i>New type integral inequalities for three times differentiable preinvex and prequasiinvex functions</i – ident: 18 article-title: i>p-convex functions and their properties</i – ident: 19 article-title: i>An inequality for convex functions</i – ident: 11 article-title: i>Fractional integral inequalities on time scales</i – ident: 4 article-title: t al. Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals</i publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-1955-4 – ident: 7 article-title: t al. New fractional Hadamard and Fejer-Hadamard inequalities associated with exponentially (h, m)-convex functions</i publication-title: Eng. Appl. Sci. Lett. doi: 10.30538/psrp-easl2020.0034 – ident: 12 article-title: t al. Some Hermite-Jensen-Mercer type inequalities for k-Caputofractional derivatives and related results</i publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2438-0 – ident: 16 article-title: t al. Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities</i publication-title: IEEE access doi: 10.1109/ACCESS.2018.2878266 – ident: 5 article-title: i>New inequalities based on harmonic log-convex functions</i publication-title: Open J. Math. Anal. doi: 10.30538/psrp-oma2019.0043 – ident: 20 article-title: i>On some Hadamard-Type ineualities for h-convex functions</i |
| SSID | ssj0002124274 |
| Score | 2.1964452 |
| Snippet | In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 6959 |
| SubjectTerms | fejér type inequalities hermite-hadamard inequality jensen’s type inequalities modified h-convex function p-convex function |
| Title | Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions |
| URI | https://doaj.org/article/4dc0c3c978fb40649cd3e5984d638794 |
| Volume | 5 |
| WOSCitedRecordID | wos000576304500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBfGJ9kYOCoqG7m-xmc1RpKUKLhyK9Lbt5YME-aKt4Ev-Gf89f4sxmLfUgXrzsIRtC-GZ25ptkdoaQU2Cp0mkHH1LkLBMuLJgyoWFhGuRhrhMXB77ZhOx2035f3S-1-sKcMF8e2APXEEYHmmsIdlwBzkcobbiNVSoMaA4oE1rfQKqlYAptMBhkAfGWz3TniosG8D-8e4jwAvOHD1oq1V_6lNYm2ajIIL32m9giK3a0TdY7i0qqsx3y0MZslbllYCLyIYiTQuhP7yweCX--f8wonqFSoIr-70iIeynQUDocm4EDdknPJ1f08YKVyeWvFL1YqWi7pNdq9m7brOqFwDSX6ZzFPNJBbKMU4DPO5Tl3XFqhDM9hqDA8tBa4HpADpxKZFEJD2OsSEQNEsSz4HqmNxiO7T2gU6sgIeBlwLkRgciNBimFqTAoriLhOLr_ByXRVJxzbVTxlEC8glBlCmVVQ1snZYvbE18f4Zd4N4ryYg1WtywGQdVbJOvtL1gf_scghWcM9-WOUI1KbT5_tMVnVL_PBbHpSqhE8O2_NL_pbzvs |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hermite-Hadamard+and+Jensen%E2%80%99s+type+inequalities+for+modified+%28p%2C+h%29-convex+functions&rft.jtitle=AIMS+mathematics&rft.au=Baoli+Feng&rft.au=Mamoona+Ghafoor&rft.au=Yu+Ming+Chu&rft.au=Muhammad+Imran+Qureshi&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=6&rft.spage=6959&rft.epage=6971&rft_id=info:doi/10.3934%2Fmath.2020446&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4dc0c3c978fb40649cd3e5984d638794 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |