Demand allocation with latency cost functions

We address the exact resolution of a Mixed Integer Non Linear Programming model where resources can be activated in order to satisfy a demand (a covering constraint) while minimizing total cost. For each resource, there is a fixed activation cost and a variable cost, expressed by means of latency fu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 132; číslo 1-2; s. 277 - 294
Hlavní autoři: Agnetis, Alessandro, Grande, Enrico, Pacifici, Andrea
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.04.2012
Springer
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We address the exact resolution of a Mixed Integer Non Linear Programming model where resources can be activated in order to satisfy a demand (a covering constraint) while minimizing total cost. For each resource, there is a fixed activation cost and a variable cost, expressed by means of latency functions. We prove that this problem is -hard even for linear latency functions. A branch and bound algorithm is devised, having two important features. First, a dual bound (equal to that obtained by continuous relaxation) can be computed very efficiently at each node of the enumeration tree. Second, to break symmetries resulting in improved efficiency, the branching scheme is n -ary (instead of binary). These features lead to a successful comparison against two popular commercial and open-source solvers, CPLEX and Bonmin.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-010-0398-y