High-level prior-based loss functions for medical image segmentation: A survey

Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks. Despite early success, segmentation networks may still generate anatomically aberrant segmentations, with holes or i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer vision and image understanding Ročník 210; s. 103248
Hlavní autoři: El Jurdi, Rosana, Petitjean, Caroline, Honeine, Paul, Cheplygina, Veronika, Abdallah, Fahed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.2021
Elsevier
Témata:
ISSN:1077-3142, 1090-235X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks. Despite early success, segmentation networks may still generate anatomically aberrant segmentations, with holes or inaccuracies near the object boundaries. To mitigate this effect, recent research works have focused on incorporating spatial information or prior knowledge to enforce anatomically plausible segmentation. If the integration of prior knowledge in image segmentation is not a new topic in classical optimization approaches, it is today an increasing trend in CNN based image segmentation, as shown by the growing literature on the topic. In this survey, we focus on high level prior, embedded at the loss function level. We categorize the articles according to the nature of the prior: the object shape, size, topology, and the inter-regions constraints. We highlight strengths and limitations of current approaches, discuss the challenge related to the design and the integration of prior-based losses, and the optimization strategies, and draw future research directions. •Review of methods that incorporate prior knowledge in deep learning loss function for medical image segmentation•Understanding the mechanisms behind the design and implementation of prior based losses.•Categorization of prior-based losses according to the nature of the prior constraints.•Overview on:•The types of priors existing in the literature and how they are modeled.•The major challenges linked to the design of such prior-based losses.•Their common training and optimization strategies.
AbstractList Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks. Despite early success, segmentation networks may still generate anatomically aberrant segmentations, with holes or inaccuracies near the object boundaries. To mitigate this effect, recent research works have focused on incorporating spatial information or prior knowledge to enforce anatomically plausible segmentation. If the integration of prior knowledge in image segmentation is not a new topic in classical optimization approaches, it is today an increasing trend in CNN based image segmentation, as shown by the growing literature on the topic. In this survey, we focus on high level prior, embedded at the loss function level. We categorize the articles according to the nature of the prior: the object shape, size, topology, and the inter-regions constraints. We highlight strengths and limitations of current approaches, discuss the challenge related to the design and the integration of prior-based losses, and the optimization strategies, and draw future research directions.
Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks. Despite early success, segmentation networks may still generate anatomically aberrant segmentations, with holes or inaccuracies near the object boundaries. To mitigate this effect, recent research works have focused on incorporating spatial information or prior knowledge to enforce anatomically plausible segmentation. If the integration of prior knowledge in image segmentation is not a new topic in classical optimization approaches, it is today an increasing trend in CNN based image segmentation, as shown by the growing literature on the topic. In this survey, we focus on high level prior, embedded at the loss function level. We categorize the articles according to the nature of the prior: the object shape, size, topology, and the inter-regions constraints. We highlight strengths and limitations of current approaches, discuss the challenge related to the design and the integration of prior-based losses, and the optimization strategies, and draw future research directions. •Review of methods that incorporate prior knowledge in deep learning loss function for medical image segmentation•Understanding the mechanisms behind the design and implementation of prior based losses.•Categorization of prior-based losses according to the nature of the prior constraints.•Overview on:•The types of priors existing in the literature and how they are modeled.•The major challenges linked to the design of such prior-based losses.•Their common training and optimization strategies.
ArticleNumber 103248
Author El Jurdi, Rosana
Abdallah, Fahed
Honeine, Paul
Cheplygina, Veronika
Petitjean, Caroline
Author_xml – sequence: 1
  givenname: Rosana
  orcidid: 0000-0003-0509-9620
  surname: El Jurdi
  fullname: El Jurdi, Rosana
  email: rosana.el-jurdi@univ-rouen.fr
  organization: Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, Rouen, France
– sequence: 2
  givenname: Caroline
  surname: Petitjean
  fullname: Petitjean, Caroline
  email: caroline.petitjean@univ-rouen.fr
  organization: Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, Rouen, France
– sequence: 3
  givenname: Paul
  orcidid: 0000-0002-3042-183X
  surname: Honeine
  fullname: Honeine, Paul
  email: paul.honeine@univ-rouen.fr
  organization: Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, Rouen, France
– sequence: 4
  givenname: Veronika
  orcidid: 0000-0003-0176-9324
  surname: Cheplygina
  fullname: Cheplygina, Veronika
  email: v.cheplygina@tue.nl
  organization: Computer Science Department, IT University of Copenhagen, Denmark
– sequence: 5
  givenname: Fahed
  surname: Abdallah
  fullname: Abdallah, Fahed
  email: fahed.abdallah76@gmail.com
  organization: Université Libanaise, Hadath, Beyrouth, Lebanon
BackLink https://normandie-univ.hal.science/hal-03410506$$DView record in HAL
BookMark eNp9kD1PwzAQhi1UJNrCH2DyypDi80eSIpaqAopUwQISm-U659ZVmiA7jdR_T6LAwtDJp_P7-M7PhIyqukJCboHNgEF6v5_Z1h9nnHHoGoLL_IKMgc1ZwoX6GvV1liUCJL8ikxj3jAHIOYzJ28pvd0mJLZb0O_g6JBsTsaBlHSN1x8o2vq66qg70gIW3pqT-YLZII24PWDWmv3-gCxqPocXTNbl0pox483tOyefz08dylazfX16Xi3ViRZY3iUBpBBRQSGY3mROpcanlyjrLmNugc8gzzFgqHRjFZTFXfSIHtEqZTKGYkrvh3Z0pdbf3wYSTro3Xq8Va9z0mJDDF0ha6bD5kbeg-FdBp64e9m2B8qYHp3qHe696h7h3qwWGH8n_o36yz0OMAYSeg9Rh0tB4r2-kLaBtd1P4c_gPDsI2B
CitedBy_id crossref_primary_10_1002_mp_18053
crossref_primary_10_1007_s10489_024_05378_1
crossref_primary_10_1038_s41598_025_00116_0
crossref_primary_10_1016_j_cviu_2023_103774
crossref_primary_10_1007_s11042_023_16416_4
crossref_primary_10_1186_s12880_025_01737_7
crossref_primary_10_1109_TMI_2023_3251368
crossref_primary_10_1016_j_neucom_2025_131346
crossref_primary_10_1007_s11042_023_16490_8
crossref_primary_10_1117_1_JMI_11_4_044002
crossref_primary_10_1016_j_media_2024_103189
crossref_primary_10_1002_eqe_3966
crossref_primary_10_1109_ACCESS_2022_3163711
crossref_primary_10_3390_rs13183562
crossref_primary_10_1016_j_cviu_2023_103765
crossref_primary_10_1117_1_JRS_17_038501
crossref_primary_10_1007_s12021_024_09683_5
crossref_primary_10_1016_j_mri_2025_110505
crossref_primary_10_3389_fnins_2023_1220172
crossref_primary_10_1109_JBHI_2023_3305377
crossref_primary_10_3389_fcomp_2022_805166
crossref_primary_10_1109_TIM_2025_3547079
crossref_primary_10_1016_j_engappai_2024_108389
crossref_primary_10_1016_j_compmedimag_2023_102246
crossref_primary_10_1016_j_cviu_2023_103918
crossref_primary_10_1016_j_media_2023_102863
crossref_primary_10_3390_math13152417
crossref_primary_10_1002_hbm_25899
crossref_primary_10_1109_TMI_2024_3469214
crossref_primary_10_1109_JBHI_2025_3528432
crossref_primary_10_1007_s10851_022_01102_1
crossref_primary_10_3390_s22020523
crossref_primary_10_3390_s22062084
crossref_primary_10_1109_TPAMI_2023_3289667
crossref_primary_10_1016_j_compmedimag_2025_102531
crossref_primary_10_1016_j_eswa_2024_123518
crossref_primary_10_1109_TNNLS_2022_3190836
crossref_primary_10_1007_s10851_024_01172_3
crossref_primary_10_1016_j_intonc_2025_06_007
crossref_primary_10_1016_j_optlastec_2024_111298
crossref_primary_10_1016_j_compbiomed_2023_107069
crossref_primary_10_3390_cancers15174389
crossref_primary_10_1016_j_patcog_2023_109925
crossref_primary_10_1016_j_cviu_2023_103744
crossref_primary_10_3390_biomedicines11102687
crossref_primary_10_1002_hcs2_119
crossref_primary_10_1016_j_compbiomed_2024_108137
crossref_primary_10_1016_j_compbiomed_2024_108613
crossref_primary_10_1109_TMI_2022_3224660
crossref_primary_10_1007_s11517_024_03018_x
crossref_primary_10_1016_j_cviu_2025_104421
crossref_primary_10_7717_peerj_cs_1122
Cites_doi 10.1007/s11042-020-08898-3
10.1007/978-3-319-65981-7_12
10.3390/jimaging7020019
10.1109/ISBI48211.2021.9434088
10.1016/j.media.2017.07.005
10.1186/s12880-015-0068-x
10.1109/ICIP.2005.1530282
10.1006/cviu.1995.1004
10.1007/s12530-019-09297-2
10.1109/CVPR42600.2020.01243
10.1109/TMI.2018.2837502
10.1109/TIP.2019.2941265
10.1016/j.compbiomed.2018.05.018
10.1109/34.868688
10.1038/s41598-020-69920-0
10.1016/j.media.2019.101551
10.1109/BIBM47256.2019.8983121
10.1007/s11263-008-0163-3
10.1007/3-540-47967-8_6
10.1109/72.286888
10.1007/978-3-319-67558-9_3
10.1007/s10278-019-00227-x
10.1016/j.media.2009.05.004
10.1109/TMI.2017.2743464
10.1016/j.media.2019.02.009
10.1007/s11263-006-8711-1
10.1109/JSTSP.2020.3001502
10.1007/s11263-006-7934-5
10.3389/fcvm.2020.00025
10.1007/s00521-017-3158-6
10.1109/WACV.2018.00163
ContentType Journal Article
Copyright 2021 Elsevier Inc.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.cviu.2021.103248
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
Mathematics
Statistics
EISSN 1090-235X
ExternalDocumentID oai:HAL:hal-03410506v1
10_1016_j_cviu_2021_103248
S1077314221000928
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SST
~HD
1XC
VOOES
ID FETCH-LOGICAL-c378t-3e4a31d1d40cb7f36af6c25cfc00fbeffe27e7064f1a524d956af681ec55a75e3
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691812700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-3142
IngestDate Wed Nov 19 06:36:45 EST 2025
Sat Nov 29 07:05:59 EST 2025
Tue Nov 18 22:27:07 EST 2025
Fri Feb 23 02:42:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Anatomical constraint losses
Convolutional neural networks
Medical image segmentation
Prior-based loss functions
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-3e4a31d1d40cb7f36af6c25cfc00fbeffe27e7064f1a524d956af681ec55a75e3
ORCID 0000-0002-3042-183X
0000-0003-0509-9620
0000-0003-0176-9324
0000-0003-0013-5370
OpenAccessLink https://normandie-univ.hal.science/hal-03410506
ParticipantIDs hal_primary_oai_HAL_hal_03410506v1
crossref_citationtrail_10_1016_j_cviu_2021_103248
crossref_primary_10_1016_j_cviu_2021_103248
elsevier_sciencedirect_doi_10_1016_j_cviu_2021_103248
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
2021-09
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Zotti, Luo, Humbert, Lalande, Jodoin (b91) 2017; 10663
Milnor (b56) 2016
Heimann, Meinzer (b28) 2009; 13
Mirikharaji, Hamarneh (b57) 2018
Zhou, Ruan, Canu (b90) 2019; 3–4
Trullo, R., Petitjean, C., Ruan, S., Dubray, B., Nie, D., Shen, D., 2017. Joint segmentation of multiple thoracic organs in CT Images with two collaborative deep architectures. In: MICCAI’17 Workshop Deep Learning in Medical Image Analysis.
Ségonne, Fischl (b73) 2015
Baumgartner, Koch, Pollefeys, Konukoglu (b3) 2017
Hu, H., Zheng, Y., Zhou, Q., Xiao, J., Chen, S., Guan, Q., 2019. MC-Unet: Multi-scale Convolution Unet for Bladder Cancer Cell Segmentation in Phase-Contrast Microscopy Images. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1197-1199.
Taha, Hanbury (b79) 2015; 15
El Jurdi, Petitjean, Honeine, Abdallah (b21) 2020; 14
Lei, Wang, Wan, Zhang, Meng, Nandi (b45) 2020
Ganaye, Sdika, Triggs, Benoit-Cattin (b24) 2019; 58
Peng, Kervadec, Dolz, Ayed, Pedersoli, Desrosiers (b64) 2020; 130
Xu, Pham, Prince (b84) 2000; 2
Kervadec, Dolz, Tang, Granger, Boykov, Ayed (b38) 2019; 54
Renard, Guedria, De Palma, Vuillerme (b69) 2020; 10
Boyd, Vandenberghe (b6) 2004
Ganaye (b23) 2019
Haque, Neubert (b26) 2020; 18
Chen, Qin, Qiu, Tarroni, Duan, Bai, Rueckert (b13) 2020; 7
Isensee, Jaeger, Full, Wolf, Engelhardt, Maier-Hein (b33) 2018
Kervadec, Dolz, Yuan, Desrosiers, Granger, Ayed (b40) 2019
Shit, S., Paetzold, J.C., Sekuboyina, A., Zhylka, A., Ezhov, I., Unger, A., Pluim, J.P.W., Tetteh, G., Menze, B.H., 2019. clDice - a Topology-preserving loss function for tubular structure segmentation. In: Medical Imaging Meets NeurIPS 2019 Workshop.
Yu, C., Wang, J., Gao, C., Yu, G., Shen, C., Sang, N., 2020. Context prior for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Lillo, Loh, Hui, Zak (b46) 1993; 4
Taghanaki, Abhishek, Cohen, Cohen-Adad, Hamarneh (b78) 2019
.
Charoenphakdee, Lee, Sugiyama (b12) 2019
Rousson, M., Paragios, N., 2002. Shape priors for level set representations. in: European Conf. on Computer Vision, Vol. 2,, pp. 78–92.
Dolz, Ben Ayed, Desrosiers (b19) 2017
Petit, Thome, Soler (b65) 2019
BenTaieb, Hamarneh (b4) 2016
Nosrati, Hamarneh (b60) 2016
Foulonneau, Charbonnier, Heitz (b22) 2009; 81
Grady (b25) 2012
Veksler (b81) 2008
Liu, Veksler, Samarabandu (b49) 2008
Slabaugh, G., Unal, G., 2005. Graph cuts segmentation using an elliptical shape prior. In: International Conference on Image Processing (ICIP), Vol. 2, pp. 1222–1225.
Ravishankar, Venkataramani, Thiruvenkadam, Sudhakar, Vaidya (b66) 2017
Milletari, Navab, Ahmadi (b55) 2016
Meyer, Noblet, Mazzara, Lallement (b54) 2018; 98
Marquez-Neila, P., Salzmann, M., Fua, P., 2017. Imposing Hard Constraints on Deep Networks: Promises and Limitations. In: CVPR Workshop on Negative Results in Computer Vision.
Hu, Li, Samaras, Chen (b30) 2019; 32
Hesamian, Jia, He, Kennedy (b29) 2019; 32
Cootes, Cooper, Taylor, Graham (b16) 1995; 61
Isensee, Petersen, Klein, Zimmerer, Jaeger, Kohl, Wasserthal, Koehler, Norajitra, Wirkert (b34) 2019
Jang, Hong, Ha, Kim, Chang (b35) 2018
Yue, Luo, Ye, Xu, Zhuang (b88) 2019
Vicente, Kolmogorov, Rother (b82) 2008
Kim, Ye (b41) 2020; 29
Chouzenoux, Corbineau, Pesquet (b14) 2019
El Jurdi, R., Petitjean, C., Honeine, P., Abdallah, F., 2019. Organ Segmentation in CT Images With Weak Annotations: A Preliminary Study. In: 27th GRETSI Symposium on Signal and Image Processing, Lille, France.
Bernard, Lalande, Zotti, Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Gonzalez Ballester, Sanroma, Napel, Petersen, Tziritas, Grinias, Khened, Kollerathu, Krishnamurthi, Rohé, Pennec, Sermesant, Isensee, Jäger, Maier-Hein, Full, Wolf, Engelhardt, Baumgartner, Koch, Wolterink, Išgum, Jang, Hong, Patravali, Jain, Humbert, Jodoin (b5) 2018; 37
Ronneberger, Fischer, Brox (b71) 2015
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (b48) 2017; 42
Oda, Roth, Chiba, Sokolić, Kitasaka, Oda, Hinoki, Uchida, Schnabel, Mori (b61) 2018
Byrne, Clough, Montana, King (b8) 2021
Magadza, Viriri (b52) 2021; 7
Pathak, Krähenbühl, Darrell (b63) 2015
Lorenzo-Valdes, Sanchez-Ortiz, Mohiaddin, Rueckert (b51) 2002
Shi, Malik (b74) 2000; 22
Krithiga, Geetha (b42) 2020
Ayed, Li, Islam, Garvin, Chhem (b2) 2008
Hu, Wang, Fuxin, Samaras, Chen (b31) 2021
Lambert, Z., Petitjean, C., Guyader, C.L., 2021. A geometrically-constrained deep network for CT image segmentation. In: IEEE International Symposium on Biomedical Imaging (ISBI).
(b59) 1999
Kuo, Angelova, Malik, Lin (b43) 2019
Clough, Byrne, Oksuz, Zimmer, Schnabel, King (b15) 2020
Arif, Rahman, Knapp, Slabaugh (b1) 2018
Lin, Goyal, Girshick, He, Dollár (b47) 2017
Oktay, Ferrante, Kamnitsas, Heinrich, Bai, Caballero, Cook, de Marvao, Dawes, O‘Regan, Kainz, Glocker, Rueckert (b62) 2018; 37
Jiang, Grigorev, Rho, Tian, Fu, Sori, Khan, Liu (b36) 2017; 29
Kervadec, Dolz, Wang, Granger, ben Ayed (b39) 2020
Yang, S., Kweon, J., Kim, Y.-H., 2019. Major vessel segmentation on X-ray coronary angiography using deep networks with a novel penalty loss function. In: International Conference on Medical Imaging with Deep Learning – Extended Abstract Track, London, UK
Boykov, Funka-Lea (b7) 2006; 70
Long, Shelhamer, Darrell (b50) 2015
Cremers, Rousson, Deriche (b17) 2007; 72
Kervadec, Bouchtiba, Desrosiers, Granger, Dolz, Ben Ayed (b37) 2019; 102
Reddy, C., Gopinath, K., Lombaert, H., 2019. Brain tumor segmentation using topological loss in convolutional networks. In: MIDL, London, UK
Yang, Bian, Yu, Ni, Heng (b85) 2018
Mosinska, Márquez-Neila, Kozinski, Fua (b58) 2018
Zhang, Petitjean, Ainouz (b89) 2020
Sudre, Li, Vercauteren, Ourselin, Cardoso (b77) 2017
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (b10) 2016; 9901
Debelee, Schwenker, Ibenthal, Yohannes (b18) 2020; 11
Havaei, Guizard, Larochelle, Jodoin (b27) 2016
Chahal, Pandey, Goel (b11) 2020; 79
Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., Cottrell, G., 2018. Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1451–1460.
Caliva, F., Iriondo, C., Martinez, A.M., Majumdar, S., Pedoia, V., 2019. Distance Map Loss Penalty Term for Semantic Segmentation. In: International Conference on Medical Imaging with Deep Learning – Extended Abstract Track,London, UK
Rohlfing, Brandt, Menzel, Russakoff, Maurer (b70) 2005
Razzak, Naz, Zaib (b67) 2018
Baumgartner (10.1016/j.cviu.2021.103248_b3) 2017
10.1016/j.cviu.2021.103248_b87
10.1016/j.cviu.2021.103248_b44
Rohlfing (10.1016/j.cviu.2021.103248_b70) 2005
Lei (10.1016/j.cviu.2021.103248_b45) 2020
Meyer (10.1016/j.cviu.2021.103248_b54) 2018; 98
10.1016/j.cviu.2021.103248_b86
10.1016/j.cviu.2021.103248_b83
Mosinska (10.1016/j.cviu.2021.103248_b58) 2018
Veksler (10.1016/j.cviu.2021.103248_b81) 2008
(10.1016/j.cviu.2021.103248_b59) 1999
Petit (10.1016/j.cviu.2021.103248_b65) 2019
10.1016/j.cviu.2021.103248_b9
Ravishankar (10.1016/j.cviu.2021.103248_b66) 2017
Kervadec (10.1016/j.cviu.2021.103248_b40) 2019
Charoenphakdee (10.1016/j.cviu.2021.103248_b12) 2019
Heimann (10.1016/j.cviu.2021.103248_b28) 2009; 13
Taghanaki (10.1016/j.cviu.2021.103248_b78) 2019
Ganaye (10.1016/j.cviu.2021.103248_b24) 2019; 58
Zhang (10.1016/j.cviu.2021.103248_b89) 2020
Hu (10.1016/j.cviu.2021.103248_b30) 2019; 32
Dolz (10.1016/j.cviu.2021.103248_b19) 2017
Hu (10.1016/j.cviu.2021.103248_b31) 2021
Chouzenoux (10.1016/j.cviu.2021.103248_b14) 2019
Jiang (10.1016/j.cviu.2021.103248_b36) 2017; 29
Krithiga (10.1016/j.cviu.2021.103248_b42) 2020
10.1016/j.cviu.2021.103248_b53
Oda (10.1016/j.cviu.2021.103248_b61) 2018
Boykov (10.1016/j.cviu.2021.103248_b7) 2006; 70
Pathak (10.1016/j.cviu.2021.103248_b63) 2015
Milletari (10.1016/j.cviu.2021.103248_b55) 2016
Chahal (10.1016/j.cviu.2021.103248_b11) 2020; 79
Isensee (10.1016/j.cviu.2021.103248_b33) 2018
Nosrati (10.1016/j.cviu.2021.103248_b60) 2016
Peng (10.1016/j.cviu.2021.103248_b64) 2020; 130
Kervadec (10.1016/j.cviu.2021.103248_b38) 2019; 54
BenTaieb (10.1016/j.cviu.2021.103248_b4) 2016
Chen (10.1016/j.cviu.2021.103248_b13) 2020; 7
Oktay (10.1016/j.cviu.2021.103248_b62) 2018; 37
Debelee (10.1016/j.cviu.2021.103248_b18) 2020; 11
Sudre (10.1016/j.cviu.2021.103248_b77) 2017
Bernard (10.1016/j.cviu.2021.103248_b5) 2018; 37
10.1016/j.cviu.2021.103248_b20
Kervadec (10.1016/j.cviu.2021.103248_b39) 2020
Liu (10.1016/j.cviu.2021.103248_b49) 2008
Kervadec (10.1016/j.cviu.2021.103248_b37) 2019; 102
Taha (10.1016/j.cviu.2021.103248_b79) 2015; 15
Cremers (10.1016/j.cviu.2021.103248_b17) 2007; 72
Grady (10.1016/j.cviu.2021.103248_b25) 2012
Ronneberger (10.1016/j.cviu.2021.103248_b71) 2015
Byrne (10.1016/j.cviu.2021.103248_b8) 2021
Lillo (10.1016/j.cviu.2021.103248_b46) 1993; 4
Long (10.1016/j.cviu.2021.103248_b50) 2015
10.1016/j.cviu.2021.103248_b68
Cootes (10.1016/j.cviu.2021.103248_b16) 1995; 61
Hesamian (10.1016/j.cviu.2021.103248_b29) 2019; 32
Mirikharaji (10.1016/j.cviu.2021.103248_b57) 2018
Çiçek (10.1016/j.cviu.2021.103248_b10) 2016; 9901
Lorenzo-Valdes (10.1016/j.cviu.2021.103248_b51) 2002
Ganaye (10.1016/j.cviu.2021.103248_b23) 2019
Renard (10.1016/j.cviu.2021.103248_b69) 2020; 10
Kim (10.1016/j.cviu.2021.103248_b41) 2020; 29
El Jurdi (10.1016/j.cviu.2021.103248_b21) 2020; 14
Foulonneau (10.1016/j.cviu.2021.103248_b22) 2009; 81
Havaei (10.1016/j.cviu.2021.103248_b27) 2016
Ségonne (10.1016/j.cviu.2021.103248_b73) 2015
Jang (10.1016/j.cviu.2021.103248_b35) 2018
Yang (10.1016/j.cviu.2021.103248_b85) 2018
Zhou (10.1016/j.cviu.2021.103248_b90) 2019; 3–4
10.1016/j.cviu.2021.103248_b32
10.1016/j.cviu.2021.103248_b76
10.1016/j.cviu.2021.103248_b75
Lin (10.1016/j.cviu.2021.103248_b47) 2017
10.1016/j.cviu.2021.103248_b72
Isensee (10.1016/j.cviu.2021.103248_b34) 2019
Vicente (10.1016/j.cviu.2021.103248_b82) 2008
Zotti (10.1016/j.cviu.2021.103248_b91) 2017; 10663
Magadza (10.1016/j.cviu.2021.103248_b52) 2021; 7
Xu (10.1016/j.cviu.2021.103248_b84) 2000; 2
Yue (10.1016/j.cviu.2021.103248_b88) 2019
Litjens (10.1016/j.cviu.2021.103248_b48) 2017; 42
Razzak (10.1016/j.cviu.2021.103248_b67) 2018
Shi (10.1016/j.cviu.2021.103248_b74) 2000; 22
Arif (10.1016/j.cviu.2021.103248_b1) 2018
Kuo (10.1016/j.cviu.2021.103248_b43) 2019
10.1016/j.cviu.2021.103248_b80
Ayed (10.1016/j.cviu.2021.103248_b2) 2008
Clough (10.1016/j.cviu.2021.103248_b15) 2020
Milnor (10.1016/j.cviu.2021.103248_b56) 2016
Boyd (10.1016/j.cviu.2021.103248_b6) 2004
Haque (10.1016/j.cviu.2021.103248_b26) 2020; 18
References_xml – volume: 32
  start-page: 5657
  year: 2019
  end-page: 5668
  ident: b30
  article-title: Topology-preserving deep image segmentation
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: b42
  article-title: Breast cancer detection, segmentation and classification on histopathology images analysis: A systematic review
  publication-title: Arch. Comput. Methods Eng.
– start-page: 152
  year: 2018
  end-page: 160
  ident: b85
  article-title: Class-balanced deep neural network for automatic ventricular structure segmentation
  publication-title: STACOM@MICCAI
– reference: Shit, S., Paetzold, J.C., Sekuboyina, A., Zhylka, A., Ezhov, I., Unger, A., Pluim, J.P.W., Tetteh, G., Menze, B.H., 2019. clDice - a Topology-preserving loss function for tubular structure segmentation. In: Medical Imaging Meets NeurIPS 2019 Workshop.
– start-page: 12
  year: 2018
  end-page: 24
  ident: b1
  article-title: Shape-aware deep convolutional neural network for vertebrae segmentation
  publication-title: Computational Methods and Clinical Applications in Musculoskeletal Imaging
– start-page: 642
  year: 2002
  end-page: 650
  ident: b51
  article-title: Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration
  publication-title: Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– reference: Yu, C., Wang, J., Gao, C., Yu, G., Shen, C., Sang, N., 2020. Context prior for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
– start-page: 460
  year: 2016
  end-page: 468
  ident: b4
  article-title: Topology aware fully convolutional networks for histology gland segmentation
  publication-title: MICCAI, Vol. 9901
– reference: Yang, S., Kweon, J., Kim, Y.-H., 2019. Major vessel segmentation on X-ray coronary angiography using deep networks with a novel penalty loss function. In: International Conference on Medical Imaging with Deep Learning – Extended Abstract Track, London, UK,
– volume: 4
  start-page: 931
  year: 1993
  end-page: 940
  ident: b46
  article-title: On solving constrained optimization problems with neural networks: a penalty method approach
  publication-title: IEEE Trans. Neural Netw.
– start-page: 1796
  year: 2015
  end-page: 1804
  ident: b63
  article-title: Constrained convolutional neural networks for weakly supervised segmentation
  publication-title: ICCV
– start-page: 3
  year: 2021
  end-page: 13
  ident: b8
  article-title: A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
– reference: Rousson, M., Paragios, N., 2002. Shape priors for level set representations. in: European Conf. on Computer Vision, Vol. 2,, pp. 78–92.
– reference: Slabaugh, G., Unal, G., 2005. Graph cuts segmentation using an elliptical shape prior. In: International Conference on Image Processing (ICIP), Vol. 2, pp. 1222–1225.
– volume: 37
  start-page: 2514
  year: 2018
  end-page: 2525
  ident: b5
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
– volume: 70
  start-page: 109
  year: 2006
  end-page: 131
  ident: b7
  article-title: Graph cuts and efficient ND image segmentation
  publication-title: Int. J. Comput. Vis.
– reference: Caliva, F., Iriondo, C., Martinez, A.M., Majumdar, S., Pedoia, V., 2019. Distance Map Loss Penalty Term for Semantic Segmentation. In: International Conference on Medical Imaging with Deep Learning – Extended Abstract Track,London, UK,
– volume: 13
  start-page: 543
  year: 2009
  end-page: 563
  ident: b28
  article-title: Statistical shape models for 3D medical image segmentation: A review
  publication-title: Med. Image Anal.
– year: 2019
  ident: b40
  article-title: Constrained deep networks: Lagrangian optimization via log-barrier extensions
– start-page: 9207
  year: 2019
  end-page: 9216
  ident: b43
  article-title: Shapemask: Learning to segment novel objects by refining shape priors
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 10663
  start-page: 73
  year: 2017
  end-page: 81
  ident: b91
  article-title: Gridnet with automatic shape prior registration for automatic MRI cardiac segmentation
  publication-title: Statistical Atlases and Computational Models of the Heart STACOM, Held in Conjunction with MICCAI, Quebec City, Canada
– volume: 102
  start-page: 285
  year: 2019
  end-page: 296
  ident: b37
  article-title: Boundary loss for highly unbalanced segmentation
  publication-title: Medical Imaging with Deep Learning
– year: 2008
  ident: b2
  article-title: Area prior constrained level set evolution for medical image segmentation
  publication-title: Medical Imaging 2008: Image Processing, Vol. 6914
– volume: 79
  start-page: 21771
  year: 2020
  end-page: 21814
  ident: b11
  article-title: A survey on brain tumor detection techniques for MR images
  publication-title: Multimedia Tools Appl.
– year: 2017
  ident: b3
  article-title: An exploration of 2D and 3D deep learning techniques for Cardiac MR image segmentation
  publication-title: STACOM@MICCAI
– reference: Lambert, Z., Petitjean, C., Guyader, C.L., 2021. A geometrically-constrained deep network for CT image segmentation. In: IEEE International Symposium on Biomedical Imaging (ISBI).
– start-page: 228
  year: 2018
  end-page: 236
  ident: b61
  article-title: BESNet: Boundary-enhanced segmentation of cells in histopathological images
  publication-title: MICCAI
– start-page: 737
  year: 2018
  end-page: 745
  ident: b57
  article-title: Star shape prior in fully convolutional networks for skin lesion segmentation
  publication-title: MICCAI, Vol. 11073
– start-page: 2999
  year: 2017
  end-page: 3007
  ident: b47
  article-title: Focal loss for dense object detection
  publication-title: ICCV
– start-page: 961
  year: 2019
  end-page: 970
  ident: b12
  article-title: On symmetric losses for learning from corrupted labels
  publication-title: ICML, PMLR
– start-page: 111
  year: 2012
  end-page: 135
  ident: b25
  article-title: Targeted image segmentation using graph methods
  publication-title: Image Processing and Analysis with Graphs
– volume: 7
  year: 2021
  ident: b52
  article-title: Deep learning for brain tumor segmentation: A survey of state-of-the-art
  publication-title: J. Imaging
– volume: 11
  start-page: 143
  year: 2020
  end-page: 163
  ident: b18
  article-title: Survey of deep learning in breast cancer image analysis
  publication-title: Evol. Syst.
– volume: 58
  year: 2019
  ident: b24
  article-title: Removing segmentation inconsistencies with semi-supervised non-adjacency constraint
  publication-title: Med. Image. Anal
– reference: El Jurdi, R., Petitjean, C., Honeine, P., Abdallah, F., 2019. Organ Segmentation in CT Images With Weak Annotations: A Preliminary Study. In: 27th GRETSI Symposium on Signal and Image Processing, Lille, France.
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: b74
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 22
  year: 2019
  ident: b34
  article-title: NnU-Net: Self-adapting framework for U-net-based medical image segmentation
  publication-title: Bildverarbeitung FÜR Die Medizin 2019
– volume: 54
  start-page: 88
  year: 2019
  end-page: 99
  ident: b38
  article-title: Constrained-CNN losses for weakly supervised segmentation
  publication-title: Med. Image Anal.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b48
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 61
  start-page: 38
  year: 1995
  end-page: 59
  ident: b16
  article-title: Active shape models - their training and application
  publication-title: Comput. Vis. Image Underst.
– year: 2019
  ident: b65
  article-title: Biasing deep convnets for semantic segmentation of medical images with a prior-driven prediction function
  publication-title: Medical Imaging with Deep Learning
– reference: Trullo, R., Petitjean, C., Ruan, S., Dubray, B., Nie, D., Shen, D., 2017. Joint segmentation of multiple thoracic organs in CT Images with two collaborative deep architectures. In: MICCAI’17 Workshop Deep Learning in Medical Image Analysis.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: b50
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: CVPR
– start-page: 125
  year: 2016
  end-page: 148
  ident: b27
  article-title: Deep learning trends for focal brain pathology segmentation in MRI
  publication-title: Machine Learning for Health Informatics: State-of-the-Art and Future Challenges
– start-page: 234
  year: 2015
  end-page: 241
  ident: b71
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: MICCAI
– start-page: 488
  year: 1999
  end-page: 525
  ident: b59
  article-title: Penalty, barrier, and augmented Lagrangian methods
  publication-title: Numerical Optimization
– start-page: 323
  year: 2018
  end-page: 350
  ident: b67
  article-title: Deep learning for medical image processing: Overview, challenges and the future
  publication-title: Lecture Notes in Computational Vision and Biomechanics
– volume: 2
  start-page: 129
  year: 2000
  end-page: 174
  ident: b84
  article-title: Image segmentation using deformable models
  publication-title: Handbook of Medical Imaging
– volume: 10
  start-page: 1
  year: 2020
  end-page: 16
  ident: b69
  article-title: Variability and reproducibility in deep learning for medical image segmentation
  publication-title: Sci. Rep.
– start-page: 1
  year: 2008
  end-page: 8
  ident: b82
  article-title: Graph cut based image segmentation with connectivity priors
  publication-title: IEEE Computer Vision and Pattern Recognition (CVPR)
– year: 2005
  ident: b70
  article-title: Quo vadis, atlas-based segmentation ?
  publication-title: The Handbook of Medical Image Analysis: Segmentation and Registration Models
– volume: 130
  start-page: 297
  year: 2020
  end-page: 308
  ident: b64
  article-title: Discretely-constrained deep network for weakly supervised segmentation
  publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc.
– year: 2004
  ident: b6
  article-title: Convex Optimization
– volume: 7
  start-page: 25
  year: 2020
  ident: b13
  article-title: Deep learning for cardiac image segmentation: A review
  publication-title: Front. Cardiovasc. Med.
– start-page: 1
  year: 2008
  end-page: 8
  ident: b49
  article-title: Graph cut with ordering constraints on labels and its applications
  publication-title: IEEE CVPR
– start-page: 203
  year: 2017
  end-page: 211
  ident: b66
  article-title: Learning and incorporating shape models for semantic segmentation
  publication-title: MICCAI
– year: 2021
  ident: b31
  article-title: Topology-aware segmentation using discrete Morse theory
– year: 2017
  ident: b77
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations
  publication-title: DLMIA/ML-CDS@MICCAI
– volume: 15
  start-page: 29
  year: 2015
  ident: b79
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
– reference: Reddy, C., Gopinath, K., Lombaert, H., 2019. Brain tumor segmentation using topological loss in convolutional networks. In: MIDL, London, UK,
– volume: 3–4
  year: 2019
  ident: b90
  article-title: A review: Deep learning for medical image segmentation using multi-modality fusion
  publication-title: Array
– start-page: 120
  year: 2018
  end-page: 129
  ident: b33
  article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features
  publication-title: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges
– start-page: 454
  year: 2008
  end-page: 467
  ident: b81
  article-title: Star shape prior for graph-cut image segmentation
  publication-title: ECCV
– volume: 29
  start-page: 1257
  year: 2017
  end-page: 1265
  ident: b36
  article-title: Medical image semantic segmentation based on deep learning
  publication-title: Neural Comput. Appl.
– volume: 18
  year: 2020
  ident: b26
  article-title: Deep learning approaches to biomedical image segmentation
  publication-title: Inform. Med. Unlocked
– year: 2019
  ident: b14
  article-title: A proximal interior point algorithm with applications to image processing
  publication-title: J. Math. Imaging Vis.
– year: 2020
  ident: b39
  article-title: Bounding boxes for weakly supervised segmentation: Global constraints get close to full supervision
  publication-title: Medical Imaging with Deep Learning
– start-page: 3136
  year: 2018
  end-page: 3145
  ident: b58
  article-title: Beyond the pixel-wise loss for topology-aware delineation
  publication-title: CVPR
– volume: 72
  start-page: 195
  year: 2007
  end-page: 215
  ident: b17
  article-title: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape
  publication-title: Int. J. Comput. Vis.
– volume: 81
  start-page: 68
  year: 2009
  ident: b22
  article-title: Multi-reference shape priors for active contours
  publication-title: Int. J. Comput. Vis.
– volume: 37
  start-page: 384
  year: 2018
  end-page: 395
  ident: b62
  article-title: Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation
  publication-title: IEEE Trans. Med. Imaging
– year: 2016
  ident: b60
  article-title: Incorporating prior knowledge in medical image segmentation: a survey
– volume: 32
  year: 2019
  ident: b29
  article-title: Deep learning techniques for medical image segmentation: Achievements and challenges
  publication-title: J. Digit Imaging
– start-page: 559
  year: 2019
  end-page: 567
  ident: b88
  article-title: Cardiac segmentation from LGE mri using deep neural network incorporating shape and spatial priors
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
– volume: 29
  start-page: 1856
  year: 2020
  end-page: 1866
  ident: b41
  article-title: Mumford-Shah Loss functional for image segmentation with deep learning
  publication-title: IEEE Trans. Image Process.
– start-page: 2001
  year: 2020
  end-page: 2004
  ident: b89
  article-title: Kappa loss for skin lesion segmentation in fully convolutional network
  publication-title: IEEE ISBI
– start-page: 161
  year: 2018
  end-page: 169
  ident: b35
  article-title: Automatic segmentation of LV and RV in cardiac MRI
  publication-title: MICCAI Workshop on Statistical Atlases and Computational Models of the Heart
– start-page: 245
  year: 2015
  end-page: 262
  ident: b73
  article-title: Integration of topological constraints in medical image segmentation
  publication-title: Handbook of Biomedical Imaging: Methodologies and Clinical Research
– reference: .
– volume: 14
  start-page: 1189
  year: 2020
  end-page: 1198
  ident: b21
  article-title: BB-UNet: U-net with bounding box prior
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– reference: Hu, H., Zheng, Y., Zhou, Q., Xiao, J., Chen, S., Guan, Q., 2019. MC-Unet: Multi-scale Convolution Unet for Bladder Cancer Cell Segmentation in Phase-Contrast Microscopy Images. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1197-1199.
– year: 2020
  ident: b45
  article-title: Medical image segmentation using deep learning: A survey
– start-page: 565
  year: 2016
  end-page: 571
  ident: b55
  article-title: V-NEt: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– reference: Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., Cottrell, G., 2018. Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1451–1460.
– volume: 98
  year: 2018
  ident: b54
  article-title: Survey on deep learning for radiotherapy
  publication-title: Comput. Biol. Med.
– volume: 9901
  start-page: 424
  year: 2016
  end-page: 432
  ident: b10
  article-title: 3D U-net: Learning dense volumetric segmentation from sparse annotation
  publication-title: MICCAI
– year: 2019
  ident: b23
  article-title: A Priori Et Apprentissage Profond Pour La Segmentation En Imagerie Cérébrale
– year: 2016
  ident: b56
  article-title: Morse Theory. (AM-51)
– start-page: 755
  year: 2017
  end-page: 763
  ident: b19
  article-title: Unbiased shape compactness for segmentation
  publication-title: MICCAI
– reference: Marquez-Neila, P., Salzmann, M., Fua, P., 2017. Imposing Hard Constraints on Deep Networks: Promises and Limitations. In: CVPR Workshop on Negative Results in Computer Vision.
– year: 2019
  ident: b78
  article-title: Deep semantic segmentation of natural and medical images: A review
– start-page: 1
  year: 2020
  ident: b15
  article-title: A topological loss function for deep-learning based image segmentation using persistent homology
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 130
  start-page: 297
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b64
  article-title: Discretely-constrained deep network for weakly supervised segmentation
  publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc.
– start-page: 1
  year: 2008
  ident: 10.1016/j.cviu.2021.103248_b82
  article-title: Graph cut based image segmentation with connectivity priors
– volume: 79
  start-page: 21771
  issue: 29
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b11
  article-title: A survey on brain tumor detection techniques for MR images
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-08898-3
– start-page: 323
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b67
  article-title: Deep learning for medical image processing: Overview, challenges and the future
  doi: 10.1007/978-3-319-65981-7_12
– start-page: 3136
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b58
  article-title: Beyond the pixel-wise loss for topology-aware delineation
– start-page: 755
  year: 2017
  ident: 10.1016/j.cviu.2021.103248_b19
  article-title: Unbiased shape compactness for segmentation
– year: 2019
  ident: 10.1016/j.cviu.2021.103248_b14
  article-title: A proximal interior point algorithm with applications to image processing
  publication-title: J. Math. Imaging Vis.
– volume: 7
  issue: 2
  year: 2021
  ident: 10.1016/j.cviu.2021.103248_b52
  article-title: Deep learning for brain tumor segmentation: A survey of state-of-the-art
  publication-title: J. Imaging
  doi: 10.3390/jimaging7020019
– volume: 2
  start-page: 129
  year: 2000
  ident: 10.1016/j.cviu.2021.103248_b84
  article-title: Image segmentation using deformable models
– ident: 10.1016/j.cviu.2021.103248_b44
  doi: 10.1109/ISBI48211.2021.9434088
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.cviu.2021.103248_b48
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 10663
  start-page: 73
  year: 2017
  ident: 10.1016/j.cviu.2021.103248_b91
  article-title: Gridnet with automatic shape prior registration for automatic MRI cardiac segmentation
– start-page: 488
  year: 1999
  ident: 10.1016/j.cviu.2021.103248_b59
  article-title: Penalty, barrier, and augmented Lagrangian methods
– start-page: 2001
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b89
  article-title: Kappa loss for skin lesion segmentation in fully convolutional network
– volume: 102
  start-page: 285
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b37
  article-title: Boundary loss for highly unbalanced segmentation
– year: 2005
  ident: 10.1016/j.cviu.2021.103248_b70
  article-title: Quo vadis, atlas-based segmentation ?
– volume: 18
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b26
  article-title: Deep learning approaches to biomedical image segmentation
  publication-title: Inform. Med. Unlocked
– volume: 15
  start-page: 29
  year: 2015
  ident: 10.1016/j.cviu.2021.103248_b79
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-015-0068-x
– year: 2017
  ident: 10.1016/j.cviu.2021.103248_b3
  article-title: An exploration of 2D and 3D deep learning techniques for Cardiac MR image segmentation
– start-page: 125
  year: 2016
  ident: 10.1016/j.cviu.2021.103248_b27
  article-title: Deep learning trends for focal brain pathology segmentation in MRI
– start-page: 9207
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b43
  article-title: Shapemask: Learning to segment novel objects by refining shape priors
– start-page: 1
  year: 2008
  ident: 10.1016/j.cviu.2021.103248_b49
  article-title: Graph cut with ordering constraints on labels and its applications
– ident: 10.1016/j.cviu.2021.103248_b76
  doi: 10.1109/ICIP.2005.1530282
– volume: 61
  start-page: 38
  issue: 1
  year: 1995
  ident: 10.1016/j.cviu.2021.103248_b16
  article-title: Active shape models - their training and application
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1995.1004
– start-page: 460
  year: 2016
  ident: 10.1016/j.cviu.2021.103248_b4
  article-title: Topology aware fully convolutional networks for histology gland segmentation
– volume: 11
  start-page: 143
  issue: 1
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b18
  article-title: Survey of deep learning in breast cancer image analysis
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-019-09297-2
– year: 2021
  ident: 10.1016/j.cviu.2021.103248_b31
– ident: 10.1016/j.cviu.2021.103248_b87
  doi: 10.1109/CVPR42600.2020.01243
– volume: 37
  start-page: 2514
  issue: 11
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b5
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837502
– year: 2020
  ident: 10.1016/j.cviu.2021.103248_b42
  article-title: Breast cancer detection, segmentation and classification on histopathology images analysis: A systematic review
  publication-title: Arch. Comput. Methods Eng.
– year: 2019
  ident: 10.1016/j.cviu.2021.103248_b23
– volume: 29
  start-page: 1856
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b41
  article-title: Mumford-Shah Loss functional for image segmentation with deep learning
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2941265
– year: 2004
  ident: 10.1016/j.cviu.2021.103248_b6
– start-page: 161
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b35
  article-title: Automatic segmentation of LV and RV in cardiac MRI
– start-page: 642
  year: 2002
  ident: 10.1016/j.cviu.2021.103248_b51
  article-title: Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration
– volume: 98
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b54
  article-title: Survey on deep learning for radiotherapy
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.018
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.cviu.2021.103248_b74
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– start-page: 3431
  year: 2015
  ident: 10.1016/j.cviu.2021.103248_b50
  article-title: Fully convolutional networks for semantic segmentation
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b69
  article-title: Variability and reproducibility in deep learning for medical image segmentation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69920-0
– volume: 58
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b24
  article-title: Removing segmentation inconsistencies with semi-supervised non-adjacency constraint
  publication-title: Med. Image. Anal
  doi: 10.1016/j.media.2019.101551
– start-page: 1796
  year: 2015
  ident: 10.1016/j.cviu.2021.103248_b63
  article-title: Constrained convolutional neural networks for weakly supervised segmentation
– start-page: 737
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b57
  article-title: Star shape prior in fully convolutional networks for skin lesion segmentation
– ident: 10.1016/j.cviu.2021.103248_b32
  doi: 10.1109/BIBM47256.2019.8983121
– start-page: 22
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b34
  article-title: NnU-Net: Self-adapting framework for U-net-based medical image segmentation
– year: 2019
  ident: 10.1016/j.cviu.2021.103248_b40
– year: 2016
  ident: 10.1016/j.cviu.2021.103248_b60
– start-page: 12
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b1
  article-title: Shape-aware deep convolutional neural network for vertebrae segmentation
– volume: 81
  start-page: 68
  issue: 1
  year: 2009
  ident: 10.1016/j.cviu.2021.103248_b22
  article-title: Multi-reference shape priors for active contours
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0163-3
– year: 2017
  ident: 10.1016/j.cviu.2021.103248_b77
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations
– start-page: 120
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b33
  article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features
– ident: 10.1016/j.cviu.2021.103248_b53
– start-page: 1
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b15
  article-title: A topological loss function for deep-learning based image segmentation using persistent homology
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3
  year: 2021
  ident: 10.1016/j.cviu.2021.103248_b8
  article-title: A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI
– start-page: 234
  year: 2015
  ident: 10.1016/j.cviu.2021.103248_b71
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– ident: 10.1016/j.cviu.2021.103248_b20
– ident: 10.1016/j.cviu.2021.103248_b72
  doi: 10.1007/3-540-47967-8_6
– year: 2020
  ident: 10.1016/j.cviu.2021.103248_b45
– volume: 4
  start-page: 931
  issue: 6
  year: 1993
  ident: 10.1016/j.cviu.2021.103248_b46
  article-title: On solving constrained optimization problems with neural networks: a penalty method approach
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.286888
– start-page: 245
  year: 2015
  ident: 10.1016/j.cviu.2021.103248_b73
  article-title: Integration of topological constraints in medical image segmentation
– ident: 10.1016/j.cviu.2021.103248_b9
– volume: 9901
  start-page: 424
  year: 2016
  ident: 10.1016/j.cviu.2021.103248_b10
  article-title: 3D U-net: Learning dense volumetric segmentation from sparse annotation
– ident: 10.1016/j.cviu.2021.103248_b86
– start-page: 203
  year: 2017
  ident: 10.1016/j.cviu.2021.103248_b66
  article-title: Learning and incorporating shape models for semantic segmentation
– start-page: 152
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b85
  article-title: Class-balanced deep neural network for automatic ventricular structure segmentation
– start-page: 228
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b61
  article-title: BESNet: Boundary-enhanced segmentation of cells in histopathological images
– ident: 10.1016/j.cviu.2021.103248_b80
  doi: 10.1007/978-3-319-67558-9_3
– volume: 32
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b29
  article-title: Deep learning techniques for medical image segmentation: Achievements and challenges
  publication-title: J. Digit Imaging
  doi: 10.1007/s10278-019-00227-x
– start-page: 565
  year: 2016
  ident: 10.1016/j.cviu.2021.103248_b55
  article-title: V-NEt: Fully convolutional neural networks for volumetric medical image segmentation
– volume: 13
  start-page: 543
  issue: 4
  year: 2009
  ident: 10.1016/j.cviu.2021.103248_b28
  article-title: Statistical shape models for 3D medical image segmentation: A review
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.05.004
– year: 2019
  ident: 10.1016/j.cviu.2021.103248_b65
  article-title: Biasing deep convnets for semantic segmentation of medical images with a prior-driven prediction function
– volume: 37
  start-page: 384
  issue: 2
  year: 2018
  ident: 10.1016/j.cviu.2021.103248_b62
  article-title: Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2743464
– ident: 10.1016/j.cviu.2021.103248_b75
– start-page: 111
  year: 2012
  ident: 10.1016/j.cviu.2021.103248_b25
  article-title: Targeted image segmentation using graph methods
– volume: 54
  start-page: 88
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b38
  article-title: Constrained-CNN losses for weakly supervised segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.02.009
– start-page: 2999
  year: 2017
  ident: 10.1016/j.cviu.2021.103248_b47
  article-title: Focal loss for dense object detection
– year: 2020
  ident: 10.1016/j.cviu.2021.103248_b39
  article-title: Bounding boxes for weakly supervised segmentation: Global constraints get close to full supervision
– volume: 72
  start-page: 195
  issue: 2
  year: 2007
  ident: 10.1016/j.cviu.2021.103248_b17
  article-title: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-8711-1
– start-page: 454
  year: 2008
  ident: 10.1016/j.cviu.2021.103248_b81
  article-title: Star shape prior for graph-cut image segmentation
– volume: 14
  start-page: 1189
  issue: 6
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b21
  article-title: BB-UNet: U-net with bounding box prior
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2020.3001502
– year: 2019
  ident: 10.1016/j.cviu.2021.103248_b78
– start-page: 961
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b12
  article-title: On symmetric losses for learning from corrupted labels
– volume: 70
  start-page: 109
  issue: 2
  year: 2006
  ident: 10.1016/j.cviu.2021.103248_b7
  article-title: Graph cuts and efficient ND image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-7934-5
– volume: 32
  start-page: 5657
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b30
  article-title: Topology-preserving deep image segmentation
– ident: 10.1016/j.cviu.2021.103248_b68
– volume: 3–4
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b90
  article-title: A review: Deep learning for medical image segmentation using multi-modality fusion
  publication-title: Array
– year: 2016
  ident: 10.1016/j.cviu.2021.103248_b56
– start-page: 559
  year: 2019
  ident: 10.1016/j.cviu.2021.103248_b88
  article-title: Cardiac segmentation from LGE mri using deep neural network incorporating shape and spatial priors
– volume: 7
  start-page: 25
  year: 2020
  ident: 10.1016/j.cviu.2021.103248_b13
  article-title: Deep learning for cardiac image segmentation: A review
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.00025
– year: 2008
  ident: 10.1016/j.cviu.2021.103248_b2
  article-title: Area prior constrained level set evolution for medical image segmentation
– volume: 29
  start-page: 1257
  year: 2017
  ident: 10.1016/j.cviu.2021.103248_b36
  article-title: Medical image semantic segmentation based on deep learning
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3158-6
– ident: 10.1016/j.cviu.2021.103248_b83
  doi: 10.1109/WACV.2018.00163
SSID ssj0011491
Score 2.5990243
Snippet Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103248
SubjectTerms Anatomical constraint losses
Artificial Intelligence
Computer Science
Computer Vision and Pattern Recognition
Computers and Society
Convolutional neural networks
Deep learning
Engineering Sciences
Machine Learning
Mathematics
Medical image segmentation
Neural and Evolutionary Computing
Prior-based loss functions
Signal and Image processing
Statistics
Title High-level prior-based loss functions for medical image segmentation: A survey
URI https://dx.doi.org/10.1016/j.cviu.2021.103248
https://normandie-univ.hal.science/hal-03410506
Volume 210
WOSCitedRecordID wos000691812700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxsN44DJAjJssxFuUKncnvFVlUzdKmcRAfYscx6EtaVa1SzV-EX-Tc2LnUhDTeODFal07SXu--tjH3_lMyFs_CLOEJRx1KgPTS2AcTFgWmkkoLe5ldhpUO6Zfx2wyCafT6LzX-1nnwmxzVhTh9XW0-q-mhjowNqbO_oO5m4tCBbwGo0MJZofyVoZH5oaZIxfIWK3nl2sTHVVq5OANDfRiivqG7MKl3qSZL5G4s5HfljoRqTBUDvSmXG93933rQyAMlZOuth6q7mU3S6ZlhBhnJUBQcbg3vODtUAwXXEgVfh2qs4NajF0Wcq5CrV3m4nAmV_kPPEiiYudKlPX9zrtxC8duiFk6mKY9f2fstRiGTJXYVl_qusgyHdefdgdsRxFh_xj8VRxi0RfbednHW6KigKOEPHeVtkeDz_H5-5N4fDr5sPtph544GoyhnPHctFwkw1rBFpbZ-w7zI_AA-4PT4-lZs2EFC01b0VvVd9D5WYpK-PsD_W0OdGdWR_Or2c3FQ3JfL0voQMHpEenJ4pA80EsUqh3ABqpqANR1h-ReR9IS3n1sdICh-QGuZZQU-GPyqUUm7SCTIjJpg0wKyKQambSCFu0ik76jnCpcPiFfTo4vhiNTn-dhCpeFV6YrPe7aqZ16loABwQ14FgjHF5mwrCxB_pLDJIM5cmZz3_FSWLpDi9CWwvc586X7lOwVAMBnhArfFp7rZVbCUZMviRIeZWkaptKzM5amR8Suf-FYaLF7PHMlj2tW4yJGq8RolVhZ5YgYTZ-Vknq5sbVfGy7Wk1U1CY0Bjjf2ewNWbm6A6u4AtBjrWpg9v02jF-Sg_V-9JHtX61K-InfFFuy6fq0B-gvU8sEY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-level+prior-based+loss+functions+for+medical+image+segmentation+%3A+a+survey&rft.jtitle=Computer+vision+and+image+understanding&rft.au=El+Jurdi%2C+Rosana&rft.au=Petitjean%2C+Caroline&rft.au=Honeine%2C+Paul&rft.au=Cheplygina%2C+Veronika&rft.date=2021-09-01&rft.pub=Elsevier&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=210&rft_id=info:doi/10.1016%2Fj.cviu.2021.103248&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03410506v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon