Human activity recognition using skeleton data and support vector machine
In this paper, we propose a method for recognizing human activities using skeleton data by RGB-D camera, namely Kinect device. The human activity recognition is a learning in the field of computer vision. In its application, the recognition of human activity can be used for a sign language learning,...
Gespeichert in:
| Veröffentlicht in: | Journal of physics. Conference series Jg. 1192; H. 1; S. 12044 - 12051 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bristol
IOP Publishing
01.03.2019
|
| Schlagworte: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a method for recognizing human activities using skeleton data by RGB-D camera, namely Kinect device. The human activity recognition is a learning in the field of computer vision. In its application, the recognition of human activity can be used for a sign language learning, human-computer interaction, surveillance of the elderly, image processing and etc. Our approach is based on skeleton data with coordinate value of each joints in human body, that will be classified using support vector machine algorithm when performing a movement to predict the activities name. Experiments were performed with a new training data that we've create manual from capturing movement while human target are doing activities. Experiments result show that the system best average accuracy is 93.75% of all activities prediction with the optimal distance of object to the devices is 2 meters. |
|---|---|
| AbstractList | In this paper, we propose a method for recognizing human activities using skeleton data by RGB-D camera, namely Kinect device. The human activity recognition is a learning in the field of computer vision. In its application, the recognition of human activity can be used for a sign language learning, human-computer interaction, surveillance of the elderly, image processing and etc. Our approach is based on skeleton data with coordinate value of each joints in human body, that will be classified using support vector machine algorithm when performing a movement to predict the activities name. Experiments were performed with a new training data that we've create manual from capturing movement while human target are doing activities. Experiments result show that the system best average accuracy is 93.75% of all activities prediction with the optimal distance of object to the devices is 2 meters. |
| Author | Komang, Mandira G A Surya, Michrandi N Ratna, Astuti N |
| Author_xml | – sequence: 1 givenname: Mandira G A surname: Komang fullname: Komang, Mandira G A email: mandiragiri@student.telkomuniversity.ac.id organization: School of Electrical Engineering, Telkom University , Indonesia – sequence: 2 givenname: Michrandi N surname: Surya fullname: Surya, Michrandi N email: michrandi@telkomuniversity.ac.id organization: School of Electrical Engineering, Telkom University , Indonesia – sequence: 3 givenname: Astuti N surname: Ratna fullname: Ratna, Astuti N email: ratnaan@telkomuniversity.ac.id organization: School of Electrical Engineering, Telkom University , Indonesia |
| BookMark | eNqNkFFLwzAQgINMcJv-BgM-1ya9Nk0ffJChbjDwRZ9DlqYzc0tqkg72722pKPii93J33H3J8c3QxDqrEbqm5JYSzlNa5lnCioqllFZZSlNCM5LnZ2j6PZl815xfoFkIO0Kgj3KKVsvuIC2WKpqjiSfstXJba6JxFnfB2C0O73qvY9_WMkosbY1D17bOR3zUKjqPD1K9Gasv0Xkj90FffeU5en18eFksk_Xz02pxv04UlDwmUDPQ0HBONwxYyStCtCJZzQugVMsK8g0hTZPJHLJCcwYNaQoJstrkdclBwhzdjO-23n10OkSxc523_ZciKxgjJQWg_VY5binvQvC6Ea03B-lPghIxeBODETHYEYM3QcXorSfvfpHKRDkIiV6a_T94GHnj2p_T_qI-AcvQg7U |
| CitedBy_id | crossref_primary_10_1111_exsy_12706 crossref_primary_10_1007_s11063_022_10744_6 crossref_primary_10_2478_ijcss_2024_0007 |
| Cites_doi | 10.1109/ICACCI.2013.6637484 10.1109/THMS.2014.2377111 10.1109/NICS.2015.7302191 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/1192/1/012044 |
| DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: IOPscience url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | Human activity recognition using skeleton data and support vector machine |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_1192_1_012044 JPCS_1192_1_012044 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EJD EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 02O 1WK AALHV AAYXX ACARI AEINN AERVB AFFHD AGQPQ AHSEE ARNYC BBWZM C1A CITATION FEDTE H13 HVGLF JCGBZ M48 OVT PHGZM PHGZT PQGLB Q02 S3P 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c378t-3d63e3f881b63678900ec02d85311ea934b00ff2a4325e863f0f5a3a9b4d783a3 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478637500044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1742-6588 |
| IngestDate | Fri Jul 25 07:47:37 EDT 2025 Tue Nov 18 21:46:31 EST 2025 Sat Nov 29 06:22:18 EST 2025 Wed Aug 21 03:40:18 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. http://iopscience.iop.org/info/page/text-and-data-mining http://creativecommons.org/licenses/by/3.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-3d63e3f881b63678900ec02d85311ea934b00ff2a4325e863f0f5a3a9b4d783a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/1192/1/012044 |
| PQID | 2566071331 |
| PQPubID | 4998668 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1088_1742_6596_1192_1_012044 proquest_journals_2566071331 crossref_citationtrail_10_1088_1742_6596_1192_1_012044 iop_journals_10_1088_1742_6596_1192_1_012044 |
| PublicationCentury | 2000 |
| PublicationDate | 20190301 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 20190301 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2019 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 1 2 Vapnik V (7) 1995; 20 3 Wu Haitao (5) 2014 Jana A (6) 2012 Nugroho Anto Satriyo (9) 2003 Octoviani Pusphita Anna (8) 2014; 3 Patsadu Orasa (4) 2012 Zhihua Ye (10) 2012 Catuhe David (11) 2012 |
| References_xml | – year: 2012 ident: 6 publication-title: Kinect for windows SDK programming guide – year: 2012 ident: 11 publication-title: Programming with the Kinect for Windows software development kit – start-page: 1584 year: 2012 ident: 10 publication-title: 5th International Congress on Image and Signal Processing (CISP) – volume: 20 start-page: 273 year: 1995 ident: 7 publication-title: Support Vector Networks Machine Learning – volume: 3 start-page: 811 year: 2014 ident: 8 publication-title: Jurnal Gaussian – year: 2003 ident: 9 – ident: 1 doi: 10.1109/ICACCI.2013.6637484 – ident: 3 doi: 10.1109/THMS.2014.2377111 – ident: 2 doi: 10.1109/NICS.2015.7302191 – start-page: 219 year: 2014 ident: 5 publication-title: International Conference on Information and Automation – start-page: 28 year: 2012 ident: 4 publication-title: Ninth International Joint Conference on Computer Sience and Software Engineering (JCSSE) |
| SSID | ssj0033337 |
| Score | 2.2945583 |
| Snippet | In this paper, we propose a method for recognizing human activities using skeleton data by RGB-D camera, namely Kinect device. The human activity recognition... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12044 |
| SubjectTerms | Algorithms Computer vision Human activity recognition Image processing Learning Moving object recognition Support vector machines |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Fbz4LU6n5ODR0I-0aXISEYeCjB1UhpeQ5UOG2s51299vkrYbIriDPaYNlP6S93t9-b33ALhMRTaMBBNICLvJE6YoEjpWSIqQCCkMI75Owctj1uvRwYD164BbWcsqG5voDbUqpIuRB5aaif-jiq7HX8h1jXKnq3ULjXWw4aokuNYN_fS1scTYXlmVEBkjy7S00XfZn756jJEgsj5OEAUuiTRJfrDT-qgY_zLRnne6u_994z2wU3uc8KZaIvtgTecHYMsrP2V5CB58GB-6_AbXRgIuFEVFDp0o_g2W75aarIsInZoUilzBcjZ2bjuc-5A__PSCTH0Enrt3T7f3qO6vgCTO6BRhRbDGhlrPlWDiMmJDLcNYWQaPIi0YTuyeNCYWCY5TTQk2oUkFFmyYqIxigY9BKy9yfQKgHSSRkGrINEuYYSyzjKio9YYUCZlRbUCa78plXXzc9cD44P4QnFLuAOEOEO4A4RGvAGmDcDFxXNXfWD3lygLH671Yrn6808C3nLPE7vTv22dg27pQrFKldUBrOpnpc7Ap59NRObnwy_Ebe0DgRQ priority: 102 providerName: ProQuest |
| Title | Human activity recognition using skeleton data and support vector machine |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/1192/1/012044 https://www.proquest.com/docview/2566071331 |
| Volume | 1192 |
| WOSCitedRecordID | wos000478637500044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOPscience customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA9uU_DFb3E6Rx58tK5t2jR5VNlwoLOIH9OXkjWpiNqNddvf7yVtJ0NkCPahlNAL4ZK7-zX93QWhE18EA0dwYQkBRu5xySyhXGnFwqYiFgmnpk7B43XQ67F-ny_kwgxHhes_g8e8UHCuwoIQx1qAoV2L-py2HIAnLael8z89r4JqhEE0hzV9S55Kb0zgCvKkSC3EWMnx-r2jhQhVgVH8cNMm9nQ2_2PUW2ijQJ74PJfYRisq3UFrhgEaZ7uoa7bzsc5z0MdJ4DmzaJhiTY5_xdk7hCiAilizSrFIJc6mIw3f8cxs_eNPQ8xUe-ih076_vLKKcxasmARsYhFJiSIJAwRLCdWZsbaKbVdCJHccJTjxwDaTxBUecX3FKEnsxBdE8IEnA0YE2UfVdJiqA4ShkToilgOuuMcTzgOIjJIBKpLU5omsI1rqNoqLIuT6LIyPyPwMZyzSeoq0niKtp8iJcj3VkT0XHOV1OJaLnMJkRIVNZstfb5Sz_C0DgJCa73jn8G-9HaF1gFY8Z6s1UHUynqpjtBrPJm_ZuIlqF-1eeNc0SxXuof8CbWH3Jnz-AmWl4bo |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB5BAbGX5bUr3vgAN6ImcerYhxVa8RAVpeoBEJyMazsrtJB2SQHxp_iNO3YSEEKCEwdydOJIST7PN5P5xgOw2VJpP1JCBUrhIk-E4YGysQm0CpnSKhPM71Nw1km7XX5-Lnpj8FTXwjhZZW0TvaE2A-3-kTeRmpmPqKKd4b_AdY1y2dW6hUYJiyP7-IAhW_GrvYffdyuOD_ZPdg-DqqtAoGnKRwE1jFqacfTXGGWuDjS0OowN8lYUWSVogkjMslglNG5ZzmgWZi1FlegnJuVUUbzvOEwkDuwNmOi1j3sXte2neKRlCWYcILfzWlGGYWY1JlgzQq-qGTVd2WqSvOLD8avB8A0peKY7mPlq72gWvlc-NfldLoI5GLP5PEx5basuFqDtExXEVXC4RhnkWTM1yImT_f8hxV8kX3SCidPLEpUbUtwNXWBC7n1Sg9x4yan9Aaef8hw_oZEPcrsIBAdZpLTpCysSkQmRIucbjv6eYaHIzBKw-jtKXW2v7rp8XEuf5udcOgBIBwDpACAjWQJgCcLnicNyh5GPp2wjUGRlbYqPL1-t4fIy5wUry--f3oDpw5Pjjuy0u0cr8A0dRlFq8FahMbq9s2swqe9HV8XterUYCFx-Nrb-A0CiPK4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbGeIgLb8R45sCR0ke6NDkiYAKBBgdetyhrEoSAbqJjvx8n7YYQQgiJnqqqjiIntr82n22A_bbKerESKlAKjTwVmgfKJDrIVcRUrqxgvk7B3WXW7fKHB3HdgM4kF6Y_qF3_Id5WhYIrFdaEOB4ihk4C1hYsjBGehHHo8j_TNBxoOwXTrlyJ291X9H7skSleWZUY6QQ5H_O8fh7sS5Sawpl8c9U-_nQW_2vmS7BQI1ByVEktQ8MUKzDrmaB5uQrn_rc-cfkOrq0EmTCM-gVxJPlHUj5jqELISBy7lKhCk_J94GA8GfkjAPLqCZpmDW47pzfHZ0HdbyHIacaHAdWMGmo5IllGmcuQjUweJRojehwbJWiKNmptolKatA1n1Ea2ragSvVRnnCq6Ds2iX5gNIPiQxSrXPWFEKqwQGUZIzREdaRYJq1vAxvqVeV2M3PXEeJH-UJxz6XQlna6k05WMZaWrFkQTwUFVj-N3kQNcEFnbZvn769vjlf6UQWDI_Pd8vPm30fZg7vqkIy_PuxdbMI9oS1QEtm1oDt_ezQ7M5KPhU_m263fsB0kM4tY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+activity+recognition+using+skeleton+data+and+support+vector+machine&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Komang%2C+Mandira+G+A&rft.au=Surya%2C+Michrandi+N&rft.au=Ratna%2C+Astuti+N&rft.date=2019-03-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1192&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1192%2F1%2F012044&rft.externalDocID=JPCS_1192_1_012044 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |