Parametric Modeling of Biomimetic Cortical Bone Microstructure for Additive Manufacturing
In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include...
Saved in:
| Published in: | Materials Vol. 12; no. 6; p. 913 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI
19.03.2019
|
| Subjects: | |
| ISSN: | 1996-1944, 1996-1944 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37–21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79–16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone. |
|---|---|
| AbstractList | In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37–21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79–16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone. In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone. In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone. |
| Author | Siller, Hector R. Rodríguez, Ciro A. Martínez-López, J. Israel Ramírez-Cedillo, Erick Robles-Linares, José A. |
| AuthorAffiliation | 1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64700, Mexico; a01226825@itesm.mx (J.A.R.-L.); A00806274@itesm.mx (E.R.-C.); ciro.rodriguez@tec.mx (C.A.R.) 3 Department of Engineering Technology, University of North Texas. 3940 N. Elm. St., Denton, TX 76207, USA; hector.siller@unt.edu 2 Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca, N.L. 66629, Mexico |
| AuthorAffiliation_xml | – name: 3 Department of Engineering Technology, University of North Texas. 3940 N. Elm. St., Denton, TX 76207, USA; hector.siller@unt.edu – name: 1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64700, Mexico; a01226825@itesm.mx (J.A.R.-L.); A00806274@itesm.mx (E.R.-C.); ciro.rodriguez@tec.mx (C.A.R.) – name: 2 Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca, N.L. 66629, Mexico |
| Author_xml | – sequence: 1 givenname: José A. orcidid: 0000-0002-9463-6688 surname: Robles-Linares fullname: Robles-Linares, José A. – sequence: 2 givenname: Erick orcidid: 0000-0001-5137-4510 surname: Ramírez-Cedillo fullname: Ramírez-Cedillo, Erick – sequence: 3 givenname: Hector R. orcidid: 0000-0002-0782-1974 surname: Siller fullname: Siller, Hector R. – sequence: 4 givenname: Ciro A. surname: Rodríguez fullname: Rodríguez, Ciro A. – sequence: 5 givenname: J. Israel orcidid: 0000-0001-7475-8138 surname: Martínez-López fullname: Martínez-López, J. Israel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30893894$$D View this record in MEDLINE/PubMed |
| BookMark | eNptUU1LAzEQDVLxo_biD5A9ilDNJNl0cxG0-AUWPejBU0izSY3sbmo2K_jvTWmrVZzLDPPevDfM7KNe4xuD0CHgU0oFPqsVEMyxALqF9kAIPgTBWG-j3kWDtn3DKSiFgogdtEtxIWgh2B56eVRB1SYGp7OJL03lmlnmbXbpfO1SP7XHPqSkquwyOWcTp4NvY-h07ILJrA_ZRVm66D4SpprOqgWQVA7QtlVVawar3EfP11dP49vh_cPN3fjifqjpqIhDqtMmkGMogfEpcGMFyyFhhJUaeM5NbjSYAjSfWsUEtTa3nFqiRkJNuaV9dL7UnXfT2pTaNDGoSs6Dq1X4lF45-Rtp3Kuc-Q_J2QgoJ0ngeCUQ_Htn2ihr12pTVaoxvmslAZGTnBGCE_Vo0-vbZH3PRMBLwuJIbTBWahdVdH5h7SoJWC6-Jn--lkZO_oysVf8hfwFJHZij |
| CitedBy_id | crossref_primary_10_1016_j_ijmachtools_2021_103838 crossref_primary_10_3390_ma15155163 crossref_primary_10_1088_1748_605X_ac96ba crossref_primary_10_3390_app12115530 crossref_primary_10_1016_j_mfglet_2024_09_128 crossref_primary_10_1115_1_4068852 crossref_primary_10_3390_jcs7080341 crossref_primary_10_1002_adem_202200483 crossref_primary_10_1016_j_matdes_2020_109215 crossref_primary_10_1016_j_susmat_2024_e01220 crossref_primary_10_3390_polym14235290 crossref_primary_10_1097_DM_2024_00006 crossref_primary_10_1002_adhm_202203205 crossref_primary_10_1007_s42242_021_00168_x crossref_primary_10_3390_ma16124483 crossref_primary_10_1016_j_heliyon_2024_e26071 crossref_primary_10_3390_mi11110970 crossref_primary_10_3892_etm_2022_11125 crossref_primary_10_3390_ma13071748 crossref_primary_10_3390_biomimetics6040065 crossref_primary_10_1002_cnm_3640 crossref_primary_10_1186_s10033_022_00740_1 crossref_primary_10_1088_1758_5090_ad905f crossref_primary_10_1007_s42242_022_00212_4 crossref_primary_10_3390_met13101666 crossref_primary_10_1016_j_ejps_2019_105167 crossref_primary_10_1002_pat_5888 crossref_primary_10_1016_j_jmatprotec_2022_117697 crossref_primary_10_1088_2057_1976_ac867f crossref_primary_10_3389_fmech_2024_1353108 crossref_primary_10_3390_ma15030942 |
| Cites_doi | 10.1016/j.mser.2014.10.001 10.1007/s13555-016-0162-1 10.1080/10255840903045037 10.1016/j.prostr.2017.11.010 10.1016/j.dental.2015.09.018 10.1016/j.matdes.2008.05.016 10.1038/nmat4089 10.1016/j.jmbbm.2016.03.017 10.1007/s00466-015-1166-x 10.1063/1.1864249 10.1016/B978-0-12-800944-4.00001-9 10.3390/sym10040105 10.1016/j.jmapro.2016.11.006 10.3390/ma11122540 10.1016/j.jbiomech.2017.10.038 10.1186/s13036-017-0074-3 10.1073/pnas.192252799 10.1088/1748-3182/2/4/S02 10.1016/j.jss.2014.02.020 10.5772/intechopen.74339 10.1002/adma.201505555 10.1016/j.jmbbm.2012.10.012 10.1016/j.jbiomech.2014.12.013 10.1016/j.mspro.2014.06.246 10.1007/978-3-319-45444-3 10.1039/c2cs15267c 10.1016/j.compositesb.2016.09.083 10.1080/10255840701695140 10.1016/j.bios.2013.11.027 10.1109/TVCG.2017.2655523 10.3390/mi8050144 10.3390/ma9110909 10.2174/1574888X11308030009 10.1016/j.memsci.2016.10.006 10.1016/j.jmbbm.2018.07.033 10.1016/j.compstruct.2014.05.031 10.1016/j.bone.2016.07.015 10.1016/S8756-3282(97)00173-7 10.1016/j.medengphy.2010.02.001 10.1016/j.bone.2015.11.018 10.3390/s16050705 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.3390/ma12060913 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1944 |
| ExternalDocumentID | PMC6471362 30893894 10_3390_ma12060913 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: British Council grantid: 278278 – fundername: Consejo Nacional de Ciencia y Tecnología grantid: 590430 – fundername: Fondo para la Investigación Científica y Tecnológica grantid: 278278 |
| GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS GROUPED_DOAJ NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c378t-3c9381501d146b16ef9451c3724dc1656e5ec1e81c6bfa493ff5f63f2a79ab6f3 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464364100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1944 |
| IngestDate | Tue Nov 04 01:39:29 EST 2025 Sun Aug 24 03:23:58 EDT 2025 Wed Feb 19 02:31:49 EST 2025 Sat Nov 29 07:18:10 EST 2025 Tue Nov 18 21:05:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | additive manufacturing 3D imaging VPL microstructure visual programming language digital light processing cortical bone parametric design |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c378t-3c9381501d146b16ef9451c3724dc1656e5ec1e81c6bfa493ff5f63f2a79ab6f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0782-1974 0000-0001-5137-4510 0000-0001-7475-8138 0000-0002-9463-6688 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6471362 |
| PMID | 30893894 |
| PQID | 2195254220 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6471362 proquest_miscellaneous_2195254220 pubmed_primary_30893894 crossref_citationtrail_10_3390_ma12060913 crossref_primary_10_3390_ma12060913 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-19 |
| PublicationDateYYYYMMDD | 2019-03-19 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Materials |
| PublicationTitleAlternate | Materials (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI |
| Publisher_xml | – name: MDPI |
| References | Singh (ref_8) 2017; 25 Chen (ref_2) 2013; 19 Autumn (ref_4) 2002; 99 Chen (ref_10) 2015; 87 Conward (ref_17) 2016; 60 Stansbury (ref_42) 2016; 32 Nguyen (ref_28) 2010; 32 ref_14 ref_36 Zhao (ref_3) 2012; 41 Cowin (ref_23) 2015; 48 Stroe (ref_32) 2010; 13 ref_35 Wegst (ref_1) 2015; 14 Demirtas (ref_29) 2016; 91 Low (ref_38) 2017; 523 Zolotovsky (ref_20) 2015; 60 Crolet (ref_22) 2008; 11 ref_15 Wang (ref_27) 2017; 6 Solga (ref_5) 2007; 2 Rankin (ref_12) 2014; 189 Vergani (ref_26) 2014; 3 Santiuste (ref_16) 2014; 116 Hsu (ref_37) 2015; 55 Crowley (ref_21) 2013; 8 Khor (ref_31) 2018; 87 Tran (ref_19) 2017; 108 Zhang (ref_18) 2016; 28 Teo (ref_11) 2017; 7 ref_41 ref_40 Wang (ref_30) 2017; 66 Gregor (ref_34) 2017; 11 Wu (ref_33) 2018; 24 Yeni (ref_24) 1997; 21 ref_9 Mirzaali (ref_25) 2016; 93 Lynn (ref_13) 2014; 54 Takada (ref_39) 2005; 86 Salmoria (ref_43) 2009; 30 ref_7 ref_6 |
| References_xml | – volume: 87 start-page: 1 year: 2015 ident: ref_10 article-title: Metallic implant biomaterials publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2014.10.001 – volume: 7 start-page: 53 year: 2017 ident: ref_11 article-title: Metal hypersensitivity reactions to orthopedic implants publication-title: Dermatol. Ther. (Heidelb.) doi: 10.1007/s13555-016-0162-1 – volume: 13 start-page: 81 year: 2010 ident: ref_32 article-title: Human cortical bone: The SiNuPrOs model. Part II—A multi-scale study of permeability publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840903045037 – volume: 6 start-page: 64 year: 2017 ident: ref_27 article-title: Effect of micro-morphology of cortical bone tissue on fracture toughness and crack propagation publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2017.11.010 – volume: 32 start-page: 54 year: 2016 ident: ref_42 article-title: 3D printing with polymers: Challenges among expanding options and opportunities publication-title: Dental Mater. doi: 10.1016/j.dental.2015.09.018 – volume: 30 start-page: 758 year: 2009 ident: ref_43 article-title: Evaluation of post-curing and laser manufacturing parameters on the properties of SOMOS 7110 photosensitive resin used in stereolithography publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.05.016 – volume: 14 start-page: 23 year: 2015 ident: ref_1 article-title: Bioinspired structural materials publication-title: Nat. Mater. doi: 10.1038/nmat4089 – volume: 60 start-page: 525 year: 2016 ident: ref_17 article-title: Machining characteristics of the haversian and plexiform components of bovine cortical bone publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.03.017 – volume: 55 start-page: 1211 year: 2015 ident: ref_37 article-title: Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models publication-title: Comput. Mech. doi: 10.1007/s00466-015-1166-x – volume: 86 start-page: 071122 year: 2005 ident: ref_39 article-title: Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting publication-title: Appl. Phys. Lett. doi: 10.1063/1.1864249 – ident: ref_40 – ident: ref_35 doi: 10.1016/B978-0-12-800944-4.00001-9 – volume: 60 start-page: 14 year: 2015 ident: ref_20 article-title: MetaMesh: A hierarchical computational model for design and fabrication of biomimetic armored surfaces publication-title: Comput. Des. – ident: ref_36 doi: 10.3390/sym10040105 – volume: 25 start-page: 185 year: 2017 ident: ref_8 article-title: Material issues in additive manufacturing: A review publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2016.11.006 – ident: ref_9 doi: 10.3390/ma11122540 – volume: 66 start-page: 70 year: 2017 ident: ref_30 article-title: Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.10.038 – volume: 11 start-page: 31 year: 2017 ident: ref_34 article-title: Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer publication-title: J. Biol. Eng. doi: 10.1186/s13036-017-0074-3 – volume: 99 start-page: 12252 year: 2002 ident: ref_4 article-title: Evidence for van der Waals adhesion in gecko setae publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.192252799 – volume: 2 start-page: S126 year: 2007 ident: ref_5 article-title: The dream of staying clean: Lotus and biomimetic surfaces publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3182/2/4/S02 – volume: 189 start-page: 193 year: 2014 ident: ref_12 article-title: Three-dimensional printing surgical instruments: Are we there yet? publication-title: J. Surg. Res. doi: 10.1016/j.jss.2014.02.020 – ident: ref_41 doi: 10.5772/intechopen.74339 – volume: 28 start-page: 6292 year: 2016 ident: ref_18 article-title: Nano/Micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures publication-title: Adv. Mater. doi: 10.1002/adma.201505555 – volume: 19 start-page: 3 year: 2013 ident: ref_2 article-title: Bio-mimetic mechanisms of natural hierarchical materials: A review publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.10.012 – volume: 48 start-page: 842 year: 2015 ident: ref_23 article-title: Blood and interstitial flow in the hierarchical pore space architecture of bone tissue publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.12.013 – volume: 3 start-page: 1524 year: 2014 ident: ref_26 article-title: Crack propagation in cortical bone: A numerical study publication-title: Procedia Mater. Sci. doi: 10.1016/j.mspro.2014.06.246 – ident: ref_6 doi: 10.1007/978-3-319-45444-3 – volume: 41 start-page: 3297 year: 2012 ident: ref_3 article-title: Bio-inspired variable structural color materials publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15267c – volume: 108 start-page: 210 year: 2017 ident: ref_19 article-title: Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2016.09.083 – volume: 11 start-page: 169 year: 2008 ident: ref_22 article-title: Human cortical bone: the SiNuPrOs model publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/10255840701695140 – volume: 54 start-page: 506 year: 2014 ident: ref_13 article-title: Biosensing enhancement using passive mixing structures for microarray-based sensors publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.027 – volume: 24 start-page: 1127 year: 2018 ident: ref_33 article-title: Infill optimization for additive manufacturing-approaching bone-like porous structures publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2017.2655523 – ident: ref_15 doi: 10.3390/mi8050144 – ident: ref_7 doi: 10.3390/ma9110909 – volume: 8 start-page: 243 year: 2013 ident: ref_21 article-title: A Systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects publication-title: Curr. Stem Cell Res. Ther. doi: 10.2174/1574888X11308030009 – volume: 523 start-page: 596 year: 2017 ident: ref_38 article-title: Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2016.10.006 – volume: 87 start-page: 213 year: 2018 ident: ref_31 article-title: Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.07.033 – volume: 116 start-page: 423 year: 2014 ident: ref_16 article-title: The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2014.05.031 – volume: 91 start-page: 92 year: 2016 ident: ref_29 article-title: Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling publication-title: Bone doi: 10.1016/j.bone.2016.07.015 – volume: 21 start-page: 453 year: 1997 ident: ref_24 article-title: The influence of bone morphology on fracture toughness of the human femur and tibia publication-title: Bone doi: 10.1016/S8756-3282(97)00173-7 – volume: 32 start-page: 384 year: 2010 ident: ref_28 article-title: Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.02.001 – volume: 93 start-page: 196 year: 2016 ident: ref_25 article-title: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly publication-title: Bone doi: 10.1016/j.bone.2015.11.018 – ident: ref_14 doi: 10.3390/s16050705 |
| SSID | ssj0000331829 |
| Score | 2.385816 |
| Snippet | In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 913 |
| Title | Parametric Modeling of Biomimetic Cortical Bone Microstructure for Additive Manufacturing |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30893894 https://www.proquest.com/docview/2195254220 https://pubmed.ncbi.nlm.nih.gov/PMC6471362 |
| Volume | 12 |
| WOSCitedRecordID | wos000464364100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KB. dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZKi9BwQOyUpTKCCxplprGz-dgNDYJU0WiQOqfKcWyo1CZVl9GIX8DP5jnO1mEOgMQlahPHWb4vz8t77zNC74nyYuVy22JcxDBAob7FAiEtSlnMiXJswVW-2IQ_nQazGYtarZ9lLszV0k_T4Pqarf8r1LAPwNaps38Bd1Up7IDfADpsAXbY_hHwEdfxVlp4P1_obFmENQ8X2Wqx0imLYAM2ZgZ7mEEXM9QheUZGVjsTdNjhIElMSFHI071OfchzGZv92JDvzLPUDpt4KbfWF53eK0vfgvHCHw9Oam_SKt833sgf1gjazcLzM6nE-fVkT5WeeJa7FI7P6_OzxLj2x9_2Zup7tNhk5QWKyQudL0WthokMx1EheW2sr46ItpkRhKzMM2nQ0LvN6gOvdJjkituk72md02YhAGe9yqGmfeibBWZJ5Rsa21E48qCVzhvzDvFdFrRRJ_oURpfVfF2fgvUjzCjc6iue1tc7QvfKyg-7N7-NWW6G3jb6MhcP0YNiEIIHhjyPUEumj9H9hjTlE3RZ0wiXNMKZwjWNcEkjrGmED2mEgUa4pBE-oNFT9PXj5GJ0ZhXLcFiC-sHOogKeDMYNdgKtamx7UjHHteEYcRKhxZukK4UtA1vAZ88dRpVylUcV4T7jsafoM9RO4UZeIOwq11cJialIAsdWMZMed4lPbO44UnGviz6Ub28uCo16vVTKcg5jVf3S5_VL76J3Vdm1UWa5tdTbEoQ5GE7tDeOpzPbbOTTVLnEdQvpd9NyAUtVTotlF_gFcVQEtyn54JF18z8XZCx69_OczX6Gj-kt5jdoAnHyD7oqr3WK76aE7_izooc5wMo3O4d_n4UmvoOovIHy57A |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+Modeling+of+Biomimetic+Cortical+Bone+Microstructure+for+Additive+Manufacturing&rft.jtitle=Materials&rft.au=Robles-Linares%2C+Jos%C3%A9+A.&rft.au=Ram%C3%ADrez-Cedillo%2C+Erick&rft.au=Siller%2C+Hector+R.&rft.au=Rodr%C3%ADguez%2C+Ciro+A.&rft.date=2019-03-19&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=12&rft.issue=6&rft_id=info:doi/10.3390%2Fma12060913&rft_id=info%3Apmid%2F30893894&rft.externalDocID=PMC6471362 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |