Parametric Modeling of Biomimetic Cortical Bone Microstructure for Additive Manufacturing

In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 12; no. 6; p. 913
Main Authors: Robles-Linares, José A., Ramírez-Cedillo, Erick, Siller, Hector R., Rodríguez, Ciro A., Martínez-López, J. Israel
Format: Journal Article
Language:English
Published: Switzerland MDPI 19.03.2019
Subjects:
ISSN:1996-1944, 1996-1944
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37–21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79–16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.
AbstractList In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37–21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79–16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.
In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.
In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.
Author Siller, Hector R.
Rodríguez, Ciro A.
Martínez-López, J. Israel
Ramírez-Cedillo, Erick
Robles-Linares, José A.
AuthorAffiliation 1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64700, Mexico; a01226825@itesm.mx (J.A.R.-L.); A00806274@itesm.mx (E.R.-C.); ciro.rodriguez@tec.mx (C.A.R.)
3 Department of Engineering Technology, University of North Texas. 3940 N. Elm. St., Denton, TX 76207, USA; hector.siller@unt.edu
2 Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca, N.L. 66629, Mexico
AuthorAffiliation_xml – name: 3 Department of Engineering Technology, University of North Texas. 3940 N. Elm. St., Denton, TX 76207, USA; hector.siller@unt.edu
– name: 1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64700, Mexico; a01226825@itesm.mx (J.A.R.-L.); A00806274@itesm.mx (E.R.-C.); ciro.rodriguez@tec.mx (C.A.R.)
– name: 2 Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca, N.L. 66629, Mexico
Author_xml – sequence: 1
  givenname: José A.
  orcidid: 0000-0002-9463-6688
  surname: Robles-Linares
  fullname: Robles-Linares, José A.
– sequence: 2
  givenname: Erick
  orcidid: 0000-0001-5137-4510
  surname: Ramírez-Cedillo
  fullname: Ramírez-Cedillo, Erick
– sequence: 3
  givenname: Hector R.
  orcidid: 0000-0002-0782-1974
  surname: Siller
  fullname: Siller, Hector R.
– sequence: 4
  givenname: Ciro A.
  surname: Rodríguez
  fullname: Rodríguez, Ciro A.
– sequence: 5
  givenname: J. Israel
  orcidid: 0000-0001-7475-8138
  surname: Martínez-López
  fullname: Martínez-López, J. Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30893894$$D View this record in MEDLINE/PubMed
BookMark eNptUU1LAzEQDVLxo_biD5A9ilDNJNl0cxG0-AUWPejBU0izSY3sbmo2K_jvTWmrVZzLDPPevDfM7KNe4xuD0CHgU0oFPqsVEMyxALqF9kAIPgTBWG-j3kWDtn3DKSiFgogdtEtxIWgh2B56eVRB1SYGp7OJL03lmlnmbXbpfO1SP7XHPqSkquwyOWcTp4NvY-h07ILJrA_ZRVm66D4SpprOqgWQVA7QtlVVawar3EfP11dP49vh_cPN3fjifqjpqIhDqtMmkGMogfEpcGMFyyFhhJUaeM5NbjSYAjSfWsUEtTa3nFqiRkJNuaV9dL7UnXfT2pTaNDGoSs6Dq1X4lF45-Rtp3Kuc-Q_J2QgoJ0ngeCUQ_Htn2ihr12pTVaoxvmslAZGTnBGCE_Vo0-vbZH3PRMBLwuJIbTBWahdVdH5h7SoJWC6-Jn--lkZO_oysVf8hfwFJHZij
CitedBy_id crossref_primary_10_1016_j_ijmachtools_2021_103838
crossref_primary_10_3390_ma15155163
crossref_primary_10_1088_1748_605X_ac96ba
crossref_primary_10_3390_app12115530
crossref_primary_10_1016_j_mfglet_2024_09_128
crossref_primary_10_1115_1_4068852
crossref_primary_10_3390_jcs7080341
crossref_primary_10_1002_adem_202200483
crossref_primary_10_1016_j_matdes_2020_109215
crossref_primary_10_1016_j_susmat_2024_e01220
crossref_primary_10_3390_polym14235290
crossref_primary_10_1097_DM_2024_00006
crossref_primary_10_1002_adhm_202203205
crossref_primary_10_1007_s42242_021_00168_x
crossref_primary_10_3390_ma16124483
crossref_primary_10_1016_j_heliyon_2024_e26071
crossref_primary_10_3390_mi11110970
crossref_primary_10_3892_etm_2022_11125
crossref_primary_10_3390_ma13071748
crossref_primary_10_3390_biomimetics6040065
crossref_primary_10_1002_cnm_3640
crossref_primary_10_1186_s10033_022_00740_1
crossref_primary_10_1088_1758_5090_ad905f
crossref_primary_10_1007_s42242_022_00212_4
crossref_primary_10_3390_met13101666
crossref_primary_10_1016_j_ejps_2019_105167
crossref_primary_10_1002_pat_5888
crossref_primary_10_1016_j_jmatprotec_2022_117697
crossref_primary_10_1088_2057_1976_ac867f
crossref_primary_10_3389_fmech_2024_1353108
crossref_primary_10_3390_ma15030942
Cites_doi 10.1016/j.mser.2014.10.001
10.1007/s13555-016-0162-1
10.1080/10255840903045037
10.1016/j.prostr.2017.11.010
10.1016/j.dental.2015.09.018
10.1016/j.matdes.2008.05.016
10.1038/nmat4089
10.1016/j.jmbbm.2016.03.017
10.1007/s00466-015-1166-x
10.1063/1.1864249
10.1016/B978-0-12-800944-4.00001-9
10.3390/sym10040105
10.1016/j.jmapro.2016.11.006
10.3390/ma11122540
10.1016/j.jbiomech.2017.10.038
10.1186/s13036-017-0074-3
10.1073/pnas.192252799
10.1088/1748-3182/2/4/S02
10.1016/j.jss.2014.02.020
10.5772/intechopen.74339
10.1002/adma.201505555
10.1016/j.jmbbm.2012.10.012
10.1016/j.jbiomech.2014.12.013
10.1016/j.mspro.2014.06.246
10.1007/978-3-319-45444-3
10.1039/c2cs15267c
10.1016/j.compositesb.2016.09.083
10.1080/10255840701695140
10.1016/j.bios.2013.11.027
10.1109/TVCG.2017.2655523
10.3390/mi8050144
10.3390/ma9110909
10.2174/1574888X11308030009
10.1016/j.memsci.2016.10.006
10.1016/j.jmbbm.2018.07.033
10.1016/j.compstruct.2014.05.031
10.1016/j.bone.2016.07.015
10.1016/S8756-3282(97)00173-7
10.1016/j.medengphy.2010.02.001
10.1016/j.bone.2015.11.018
10.3390/s16050705
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3390/ma12060913
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC6471362
30893894
10_3390_ma12060913
Genre Journal Article
GrantInformation_xml – fundername: British Council
  grantid: 278278
– fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: 590430
– fundername: Fondo para la Investigación Científica y Tecnológica
  grantid: 278278
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c378t-3c9381501d146b16ef9451c3724dc1656e5ec1e81c6bfa493ff5f63f2a79ab6f3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464364100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1944
IngestDate Tue Nov 04 01:39:29 EST 2025
Sun Aug 24 03:23:58 EDT 2025
Wed Feb 19 02:31:49 EST 2025
Sat Nov 29 07:18:10 EST 2025
Tue Nov 18 21:05:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords additive manufacturing
3D imaging
VPL
microstructure
visual programming language
digital light processing
cortical bone
parametric design
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-3c9381501d146b16ef9451c3724dc1656e5ec1e81c6bfa493ff5f63f2a79ab6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0782-1974
0000-0001-5137-4510
0000-0001-7475-8138
0000-0002-9463-6688
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6471362
PMID 30893894
PQID 2195254220
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6471362
proquest_miscellaneous_2195254220
pubmed_primary_30893894
crossref_citationtrail_10_3390_ma12060913
crossref_primary_10_3390_ma12060913
PublicationCentury 2000
PublicationDate 2019-03-19
PublicationDateYYYYMMDD 2019-03-19
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-19
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2019
Publisher MDPI
Publisher_xml – name: MDPI
References Singh (ref_8) 2017; 25
Chen (ref_2) 2013; 19
Autumn (ref_4) 2002; 99
Chen (ref_10) 2015; 87
Conward (ref_17) 2016; 60
Stansbury (ref_42) 2016; 32
Nguyen (ref_28) 2010; 32
ref_14
ref_36
Zhao (ref_3) 2012; 41
Cowin (ref_23) 2015; 48
Stroe (ref_32) 2010; 13
ref_35
Wegst (ref_1) 2015; 14
Demirtas (ref_29) 2016; 91
Low (ref_38) 2017; 523
Zolotovsky (ref_20) 2015; 60
Crolet (ref_22) 2008; 11
ref_15
Wang (ref_27) 2017; 6
Solga (ref_5) 2007; 2
Rankin (ref_12) 2014; 189
Vergani (ref_26) 2014; 3
Santiuste (ref_16) 2014; 116
Hsu (ref_37) 2015; 55
Crowley (ref_21) 2013; 8
Khor (ref_31) 2018; 87
Tran (ref_19) 2017; 108
Zhang (ref_18) 2016; 28
Teo (ref_11) 2017; 7
ref_41
ref_40
Wang (ref_30) 2017; 66
Gregor (ref_34) 2017; 11
Wu (ref_33) 2018; 24
Yeni (ref_24) 1997; 21
ref_9
Mirzaali (ref_25) 2016; 93
Lynn (ref_13) 2014; 54
Takada (ref_39) 2005; 86
Salmoria (ref_43) 2009; 30
ref_7
ref_6
References_xml – volume: 87
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: Metallic implant biomaterials
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2014.10.001
– volume: 7
  start-page: 53
  year: 2017
  ident: ref_11
  article-title: Metal hypersensitivity reactions to orthopedic implants
  publication-title: Dermatol. Ther. (Heidelb.)
  doi: 10.1007/s13555-016-0162-1
– volume: 13
  start-page: 81
  year: 2010
  ident: ref_32
  article-title: Human cortical bone: The SiNuPrOs model. Part II—A multi-scale study of permeability
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840903045037
– volume: 6
  start-page: 64
  year: 2017
  ident: ref_27
  article-title: Effect of micro-morphology of cortical bone tissue on fracture toughness and crack propagation
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2017.11.010
– volume: 32
  start-page: 54
  year: 2016
  ident: ref_42
  article-title: 3D printing with polymers: Challenges among expanding options and opportunities
  publication-title: Dental Mater.
  doi: 10.1016/j.dental.2015.09.018
– volume: 30
  start-page: 758
  year: 2009
  ident: ref_43
  article-title: Evaluation of post-curing and laser manufacturing parameters on the properties of SOMOS 7110 photosensitive resin used in stereolithography
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.05.016
– volume: 14
  start-page: 23
  year: 2015
  ident: ref_1
  article-title: Bioinspired structural materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4089
– volume: 60
  start-page: 525
  year: 2016
  ident: ref_17
  article-title: Machining characteristics of the haversian and plexiform components of bovine cortical bone
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.03.017
– volume: 55
  start-page: 1211
  year: 2015
  ident: ref_37
  article-title: Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1166-x
– volume: 86
  start-page: 071122
  year: 2005
  ident: ref_39
  article-title: Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1864249
– ident: ref_40
– ident: ref_35
  doi: 10.1016/B978-0-12-800944-4.00001-9
– volume: 60
  start-page: 14
  year: 2015
  ident: ref_20
  article-title: MetaMesh: A hierarchical computational model for design and fabrication of biomimetic armored surfaces
  publication-title: Comput. Des.
– ident: ref_36
  doi: 10.3390/sym10040105
– volume: 25
  start-page: 185
  year: 2017
  ident: ref_8
  article-title: Material issues in additive manufacturing: A review
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2016.11.006
– ident: ref_9
  doi: 10.3390/ma11122540
– volume: 66
  start-page: 70
  year: 2017
  ident: ref_30
  article-title: Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.10.038
– volume: 11
  start-page: 31
  year: 2017
  ident: ref_34
  article-title: Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer
  publication-title: J. Biol. Eng.
  doi: 10.1186/s13036-017-0074-3
– volume: 99
  start-page: 12252
  year: 2002
  ident: ref_4
  article-title: Evidence for van der Waals adhesion in gecko setae
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.192252799
– volume: 2
  start-page: S126
  year: 2007
  ident: ref_5
  article-title: The dream of staying clean: Lotus and biomimetic surfaces
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3182/2/4/S02
– volume: 189
  start-page: 193
  year: 2014
  ident: ref_12
  article-title: Three-dimensional printing surgical instruments: Are we there yet?
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2014.02.020
– ident: ref_41
  doi: 10.5772/intechopen.74339
– volume: 28
  start-page: 6292
  year: 2016
  ident: ref_18
  article-title: Nano/Micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505555
– volume: 19
  start-page: 3
  year: 2013
  ident: ref_2
  article-title: Bio-mimetic mechanisms of natural hierarchical materials: A review
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.10.012
– volume: 48
  start-page: 842
  year: 2015
  ident: ref_23
  article-title: Blood and interstitial flow in the hierarchical pore space architecture of bone tissue
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.12.013
– volume: 3
  start-page: 1524
  year: 2014
  ident: ref_26
  article-title: Crack propagation in cortical bone: A numerical study
  publication-title: Procedia Mater. Sci.
  doi: 10.1016/j.mspro.2014.06.246
– ident: ref_6
  doi: 10.1007/978-3-319-45444-3
– volume: 41
  start-page: 3297
  year: 2012
  ident: ref_3
  article-title: Bio-inspired variable structural color materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15267c
– volume: 108
  start-page: 210
  year: 2017
  ident: ref_19
  article-title: Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2016.09.083
– volume: 11
  start-page: 169
  year: 2008
  ident: ref_22
  article-title: Human cortical bone: the SiNuPrOs model
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255840701695140
– volume: 54
  start-page: 506
  year: 2014
  ident: ref_13
  article-title: Biosensing enhancement using passive mixing structures for microarray-based sensors
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.11.027
– volume: 24
  start-page: 1127
  year: 2018
  ident: ref_33
  article-title: Infill optimization for additive manufacturing-approaching bone-like porous structures
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2017.2655523
– ident: ref_15
  doi: 10.3390/mi8050144
– ident: ref_7
  doi: 10.3390/ma9110909
– volume: 8
  start-page: 243
  year: 2013
  ident: ref_21
  article-title: A Systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects
  publication-title: Curr. Stem Cell Res. Ther.
  doi: 10.2174/1574888X11308030009
– volume: 523
  start-page: 596
  year: 2017
  ident: ref_38
  article-title: Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2016.10.006
– volume: 87
  start-page: 213
  year: 2018
  ident: ref_31
  article-title: Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.07.033
– volume: 116
  start-page: 423
  year: 2014
  ident: ref_16
  article-title: The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2014.05.031
– volume: 91
  start-page: 92
  year: 2016
  ident: ref_29
  article-title: Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling
  publication-title: Bone
  doi: 10.1016/j.bone.2016.07.015
– volume: 21
  start-page: 453
  year: 1997
  ident: ref_24
  article-title: The influence of bone morphology on fracture toughness of the human femur and tibia
  publication-title: Bone
  doi: 10.1016/S8756-3282(97)00173-7
– volume: 32
  start-page: 384
  year: 2010
  ident: ref_28
  article-title: Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.02.001
– volume: 93
  start-page: 196
  year: 2016
  ident: ref_25
  article-title: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly
  publication-title: Bone
  doi: 10.1016/j.bone.2015.11.018
– ident: ref_14
  doi: 10.3390/s16050705
SSID ssj0000331829
Score 2.385816
Snippet In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 913
Title Parametric Modeling of Biomimetic Cortical Bone Microstructure for Additive Manufacturing
URI https://www.ncbi.nlm.nih.gov/pubmed/30893894
https://www.proquest.com/docview/2195254220
https://pubmed.ncbi.nlm.nih.gov/PMC6471362
Volume 12
WOSCitedRecordID wos000464364100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KB.
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZKi9BwQOyUpTKCCxplprGz-dgNDYJU0WiQOqfKcWyo1CZVl9GIX8DP5jnO1mEOgMQlahPHWb4vz8t77zNC74nyYuVy22JcxDBAob7FAiEtSlnMiXJswVW-2IQ_nQazGYtarZ9lLszV0k_T4Pqarf8r1LAPwNaps38Bd1Up7IDfADpsAXbY_hHwEdfxVlp4P1_obFmENQ8X2Wqx0imLYAM2ZgZ7mEEXM9QheUZGVjsTdNjhIElMSFHI071OfchzGZv92JDvzLPUDpt4KbfWF53eK0vfgvHCHw9Oam_SKt833sgf1gjazcLzM6nE-fVkT5WeeJa7FI7P6_OzxLj2x9_2Zup7tNhk5QWKyQudL0WthokMx1EheW2sr46ItpkRhKzMM2nQ0LvN6gOvdJjkituk72md02YhAGe9yqGmfeibBWZJ5Rsa21E48qCVzhvzDvFdFrRRJ_oURpfVfF2fgvUjzCjc6iue1tc7QvfKyg-7N7-NWW6G3jb6MhcP0YNiEIIHhjyPUEumj9H9hjTlE3RZ0wiXNMKZwjWNcEkjrGmED2mEgUa4pBE-oNFT9PXj5GJ0ZhXLcFiC-sHOogKeDMYNdgKtamx7UjHHteEYcRKhxZukK4UtA1vAZ88dRpVylUcV4T7jsafoM9RO4UZeIOwq11cJialIAsdWMZMed4lPbO44UnGviz6Ub28uCo16vVTKcg5jVf3S5_VL76J3Vdm1UWa5tdTbEoQ5GE7tDeOpzPbbOTTVLnEdQvpd9NyAUtVTotlF_gFcVQEtyn54JF18z8XZCx69_OczX6Gj-kt5jdoAnHyD7oqr3WK76aE7_izooc5wMo3O4d_n4UmvoOovIHy57A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+Modeling+of+Biomimetic+Cortical+Bone+Microstructure+for+Additive+Manufacturing&rft.jtitle=Materials&rft.au=Robles-Linares%2C+Jos%C3%A9+A.&rft.au=Ram%C3%ADrez-Cedillo%2C+Erick&rft.au=Siller%2C+Hector+R.&rft.au=Rodr%C3%ADguez%2C+Ciro+A.&rft.date=2019-03-19&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=12&rft.issue=6&rft_id=info:doi/10.3390%2Fma12060913&rft_id=info%3Apmid%2F30893894&rft.externalDocID=PMC6471362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon