A new fixed point algorithm for finding the solution of a delay differential equation

In this paper, we construct a new iterative algorithm and show that the newly introduced iterative algorithm converges faster than a number of existing iterative algorithms. We present a numerical example followed by graphs to validate our claim. We prove strong and weak convergence results for appr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 5; číslo 4; s. 3182 - 3200
Hlavní autoři: Garodia, Chanchal, Uddin, Izhar
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2020
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we construct a new iterative algorithm and show that the newly introduced iterative algorithm converges faster than a number of existing iterative algorithms. We present a numerical example followed by graphs to validate our claim. We prove strong and weak convergence results for approximating fixed points of Suzuki generalized nonexpansive mappings. Again we reconfirm our results by example and table. Further, we utilize our proposed algorithm to solve delay differential equation.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2020205