Absorption Spectra of Electrified Hydrogen Molecules
Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment and a set of allowed transitions. Here we use published ab initio calculations of the static electrical response tensors of the H 2 molecule...
Gespeichert in:
| Veröffentlicht in: | The Astrophysical journal Jg. 932; H. 1; S. 4 - 29 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
The American Astronomical Society
01.06.2022
IOP Publishing |
| Schlagworte: | |
| ISSN: | 0004-637X, 1538-4357 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment and a set of allowed transitions. Here we use published ab initio calculations of the static electrical response tensors of the H
2
molecule to construct the perturbed rovibrational eigensystem and its ground state absorptions. We restrict attention to two simple field configurations that are relevant to condensed hydrogen molecules in the interstellar medium (ISM): a uniform electric field and the field of a pointlike charge. The energy eigenstates are mixtures of vibrational and angular momentum eigenstates so there are many transitions that satisfy the dipole selection rules. We find that mixing is strongest among the states with high vibrational excitation, leading to hundreds of absorption lines across the optical and near-infrared. These spectra are very different from that of the field-free molecule, so if they appeared in astronomical data they would be difficult to assign. Furthermore, in a condensed environment the excited states likely have short lifetimes to internal conversion, giving the absorption lines a diffuse appearance. We therefore suggest electrified H
2
as a possible carrier of the diffuse interstellar bands (DIBs). We further argue that in principle it may be possible to account for all of the DIBs with this one carrier. However, despite electrification, the transitions are not very strong and a large column of condensed H
2
would be required, making it difficult to reconcile this possibility with our current understanding of the ISM. |
|---|---|
| AbstractList | Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment and a set of allowed transitions. Here we use published ab initio calculations of the static electrical response tensors of the H
2
molecule to construct the perturbed rovibrational eigensystem and its ground state absorptions. We restrict attention to two simple field configurations that are relevant to condensed hydrogen molecules in the interstellar medium (ISM): a uniform electric field and the field of a pointlike charge. The energy eigenstates are mixtures of vibrational and angular momentum eigenstates so there are many transitions that satisfy the dipole selection rules. We find that mixing is strongest among the states with high vibrational excitation, leading to hundreds of absorption lines across the optical and near-infrared. These spectra are very different from that of the field-free molecule, so if they appeared in astronomical data they would be difficult to assign. Furthermore, in a condensed environment the excited states likely have short lifetimes to internal conversion, giving the absorption lines a diffuse appearance. We therefore suggest electrified H
2
as a possible carrier of the diffuse interstellar bands (DIBs). We further argue that in principle it may be possible to account for all of the DIBs with this one carrier. However, despite electrification, the transitions are not very strong and a large column of condensed H
2
would be required, making it difficult to reconcile this possibility with our current understanding of the ISM. Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment and a set of allowed transitions. Here we use published ab initio calculations of the static electrical response tensors of the H2 molecule to construct the perturbed rovibrational eigensystem and its ground state absorptions. We restrict attention to two simple field configurations that are relevant to condensed hydrogen molecules in the interstellar medium (ISM): a uniform electric field and the field of a pointlike charge. The energy eigenstates are mixtures of vibrational and angular momentum eigenstates so there are many transitions that satisfy the dipole selection rules. We find that mixing is strongest among the states with high vibrational excitation, leading to hundreds of absorption lines across the optical and near-infrared. These spectra are very different from that of the field-free molecule, so if they appeared in astronomical data they would be difficult to assign. Furthermore, in a condensed environment the excited states likely have short lifetimes to internal conversion, giving the absorption lines a diffuse appearance. We therefore suggest electrified H2 as a possible carrier of the diffuse interstellar bands (DIBs). We further argue that in principle it may be possible to account for all of the DIBs with this one carrier. However, despite electrification, the transitions are not very strong and a large column of condensed H2 would be required, making it difficult to reconcile this possibility with our current understanding of the ISM. |
| Author | Walker, Mark A. |
| Author_xml | – sequence: 1 givenname: Mark A. orcidid: 0000-0002-5603-3982 surname: Walker fullname: Walker, Mark A. organization: Manly Astrophysics , 15/41-42 East Esplanade, Manly, NSW 2095, Australia |
| BookMark | eNp9kM1LwzAYxoNMcJvePRa8Wpcmb5v0OMZ0wsSDCt5CkiaSUZuatIf997ZsKIh6ej94nvfjN0OTxjcGocsM31AObJHllKdAc7aQuuDGnKDpV2uCphhjSAvKXs_QLMbdWJKynCJYquhD2znfJE-t0V2QibfJuh5TZ52pks2-Cv7NNMmDH7p9beI5OrWyjubiGOfo5Xb9vNqk28e7-9Vym2rKeJcSsFhZzRi3mpZSaqJAKa6A2YwwWUibMQs2x9SAsUxWJVaMVrRUPAeAjM7R1WFuG_xHb2Indr4PzbBSkIIBEEx4OajwQaWDjzEYK9rg3mXYiwyLkY0YQYgRhDiwGSzFD4t2nRwhDP-7-j_j8SLn2-9jZLsTJSUiEyDayg6q619Ufw79BCS1hY8 |
| CitedBy_id | crossref_primary_10_3847_1538_4357_adb74b |
| Cites_doi | 10.1038/nature14566 10.1103/PhysRevLett.117.273001 10.1038/224251a0 10.1063/1.1360198 10.1063/1.477035 10.1063/1.4902981 10.1063/1.1288381 10.1063/1.3035833 10.1038/346729a0 10.1086/130223 10.1086/587930 10.1063/1.435384 10.1093/mnras/stv691 10.1088/0004-637X/708/2/1628 10.1088/0953-4075/25/1/008 10.1088/0004-637X/736/2/91 10.1093/mnras/283.4.L105 10.1051/0004-6361/201323270 10.1006/jmsp.1997.7520 10.1103/RevModPhys.62.343 10.1086/178202 10.1038/223815a0 10.1103/PhysRevB.32.2478 10.1063/1.4990612 10.1063/1.436171 10.1063/1.1840870 10.1088/0004-637X/705/1/32 10.1063/1.452568 10.1021/jp037382q 10.1088/0004-637X/726/2/81 10.1146/annurev.astro.41.011802.094840 10.1016/0009-2614(95)00099-P 10.1038/369296a0 10.1051/0004-6361/201936249 10.1086/151713 10.1086/421732 10.1086/310326 10.1016/0375-9601(80)90668-4 10.1103/PhysRev.41.759 10.1016/j.jms.2006.03.009 10.1103/PhysRevLett.86.4795 10.3847/2041-8213/ab963f 10.1086/186861 10.3847/2041-8213/ab14e5 10.1146/annurev-astro-082812-140944 10.1090/S0025-5718-1961-0129566-X 10.1103/PhysRevA.100.032519 10.1038/nature10527 10.1063/1.5066308 10.1016/j.cplett.2020.137216 10.1086/178039 10.1146/annurev.nucl.57.090506.123011 10.3847/0004-637X/827/1/45 10.3847/0004-637X/831/1/18 10.1093/mnras/144.4.411 10.1063/1.3158947 10.1146/annurev.aa.33.090195.000315 10.1088/0067-0049/203/1/4 10.1016/0009-2614(95)01023-3 10.1111/j.1365-2966.2012.21599.x 10.1021/ct200438t 10.1103/RevModPhys.92.035003 10.1063/1.5012785 10.3847/1538-4357/abec85 10.1088/0004-637X/727/1/33 10.1103/PhysRevB.2.4239 10.1016/j.newar.2018.02.001 10.1086/190481 10.3847/1538-4357/ab2987 10.1139/p85-014 10.1103/PhysRevA.82.032509 10.1051/0004-6361/201731739 10.1093/mnras/stv1519 10.1021/jp993890h 10.1063/1.1712220 10.1063/1.437103 10.1126/science.1106924 10.1051/0004-6361/201116647 10.1039/B415179H 10.1103/PhysRevA.83.032501 10.1086/163392 10.1146/annurev-matsci-070616-124135 10.1088/0004-637X/768/1/84 10.1016/j.astropartphys.2009.03.004 10.1093/mnras/stt1157 10.1086/304012 10.1093/mnras/277.1.L41 10.1021/jp203913n |
| ContentType | Journal Article |
| Copyright | 2022. The Author(s). Published by the American Astronomical Society. 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. The Author(s). Published by the American Astronomical Society. – notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M |
| DOI | 10.3847/1538-4357/ac68ee |
| DatabaseName | IOP Publishing Free Content IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| EISSN | 1538-4357 |
| ExternalDocumentID | 10_3847_1538_4357_ac68ee apjac68ee |
| GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX AEINN CITATION 7TG 8FD H8D KL. L7M |
| ID | FETCH-LOGICAL-c378t-24f0bfc778fc39aac2b4bb8b47f127a6af17f4f503e4ef7ad90b73d39b8544413 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000807763300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0004-637X |
| IngestDate | Wed Aug 13 04:28:05 EDT 2025 Sat Nov 29 05:31:15 EST 2025 Tue Nov 18 21:05:55 EST 2025 Wed Aug 21 03:33:55 EDT 2024 Wed Jun 15 11:03:50 EDT 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-24f0bfc778fc39aac2b4bb8b47f127a6af17f4f503e4ef7ad90b73d39b8544413 |
| Notes | AAS33764 Interstellar Matter and the Local Universe ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5603-3982 |
| OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ac68ee |
| PQID | 2674420289 |
| PQPubID | 4562441 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2674420289 iop_journals_10_3847_1538_4357_ac68ee crossref_citationtrail_10_3847_1538_4357_ac68ee crossref_primary_10_3847_1538_4357_ac68ee |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | The Astrophysical journal |
| PublicationTitleAbbrev | APJ |
| PublicationTitleAlternate | Astrophys. J |
| PublicationYear | 2022 |
| Publisher | The American Astronomical Society IOP Publishing |
| Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
| References | Lan (apjac68eebib58) 2015; 452 McCall (apjac68eebib62) 2010; 708 Walker (apjac68eebib100) 2019; 881 Cordiner (apjac68eebib23) 2019; 875 Miliordos (apjac68eebib65) 2018; 149 Clampitt (apjac68eebib19) 1969; 223 Ryder (apjac68eebib82) 2004 Field (apjac68eebib30) 1969; 144 Pfenniger (apjac68eebib74) 1994; 285 Allen (apjac68eebib3) 2004 Bohr (apjac68eebib9) 1987; 86 Sarre (apjac68eebib85) 1995; 277 Herzberg (apjac68eebib41) 1950 Ackermann (apjac68eebib1) 2012; 203 Cooley (apjac68eebib22) 1961; 15 Souers (apjac68eebib94) 1980; 77A Pipin (apjac68eebib76) 1992; 25 Bishop (apjac68eebib8) 1990; 62 Foing (apjac68eebib31) 1994; 369 Joblin (apjac68eebib48) 1990; 346 Libbrecht (apjac68eebib60) 2017; 47 Strong (apjac68eebib95) 2007; 57 van de Hulst (apjac68eebib98) 1981 Johnson (apjac68eebib49) 1977; 67 Kołos (apjac68eebib52) 1967; 46 Lin (apjac68eebib61) 2011; 736 Bolatto (apjac68eebib11) 2013; 51 Delahaye (apjac68eebib25) 2011; 531 Pachucki (apjac68eebib71) 2010; 82 Calvo (apjac68eebib14) 2018; 148 Kumada (apjac68eebib56) 2005; 7 Pachucki (apjac68eebib73) 2014; 141 McLean (apjac68eebib63) 1967; 47 Buckingham (apjac68eebib13) 1967 Hensley (apjac68eebib39) 2016; 827 Hobbs (apjac68eebib43) 2009; 705 Sandford (apjac68eebib83) 1993; 409 Fajardo (apjac68eebib29) 2009; 130 Planck Collaboration (apjac68eebib77) 2014; 566 Gerhard (apjac68eebib36) 1996; 472 Wang (apjac68eebib101) 2004; 108 Grenier (apjac68eebib38) 2005; 307 Campbell (apjac68eebib17) 2015; 523 Geballe (apjac68eebib35) 2011; 479 Seab (apjac68eebib86) 1985; 295 Duley (apjac68eebib28) 1996; 471 Cami (apjac68eebib16) 1997; 326 Snow (apjac68eebib90) 2004 Whittet (apjac68eebib103) 2004 Barbatti (apjac68eebib5) 2000; 113 Cole (apjac68eebib20) 1970; 2 Pachucki (apjac68eebib72) 2011; 83 Momose (apjac68eebib68) 2001; 86 Herbig (apjac68eebib40) 1995; 33 Levine (apjac68eebib59) 2021; 912 Rouef (apjac68eebib81) 2019; 630 Snow (apjac68eebib89) 1995; 245 Jaksch (apjac68eebib46) 2008; 129 Atkins (apjac68eebib4) 2011 Miller (apjac68eebib66) 2020; 92 Poll (apjac68eebib79) 1978; 68 Sarre (apjac68eebib84) 2006; 238 Mohammadi (apjac68eebib67) 2020; 744 Kettwich (apjac68eebib51) 2015; 450 Hunter (apjac68eebib45) 1997; 481 Friedman (apjac68eebib33) 2011; 727 Füglistaler (apjac68eebib34) 2018; 613 Turner (apjac68eebib97) 1977; 35 Mori (apjac68eebib69) 2009; 31 Sorokin (apjac68eebib93) 1996; 473 Cami (apjac68eebib15) 2014 Hobbs (apjac68eebib42) 2008; 680 Condon (apjac68eebib21) 1932; 41 Komasa (apjac68eebib53) 2011; 7 Brooks (apjac68eebib12) 1985; 32 Seligman (apjac68eebib87) 2020; 896 Pfenniger (apjac68eebib75) 1994; 285 Bernstein (apjac68eebib7) 2013; 768 Jenniskens (apjac68eebib47) 1994; 106 White (apjac68eebib102) 1996; 240 Kurosaki (apjac68eebib57) 1998; 109 Dickinson (apjac68eebib26) 2018; 80 Freiman (apjac68eebib32) 2017; 43 Kraushaar (apjac68eebib55) 1972; 177 Sorokin (apjac68eebib92) 1995; 234 Renzler (apjac68eebib80) 2016; 117 Cummings (apjac68eebib24) 2016; 831 Ackermann (apjac68eebib2) 2011; 726 Barbatti (apjac68eebib6) 2001; 114 Chan (apjac68eebib18) 2000; 104 Greenberg (apjac68eebib37) 1969; 224 Walker (apjac68eebib99) 2013; 434 Komasa (apjac68eebib54) 2019; 100 Huang (apjac68eebib44) 2011; 115 Kerr (apjac68eebib50) 1996; 283 Poll (apjac68eebib78) 1985; 63 Bohren (apjac68eebib10) 2004 Silvera (apjac68eebib88) 1978; 69 Snow (apjac68eebib91) 1977; 89 Ohishi (apjac68eebib70) 2004; 610 Mengel (apjac68eebib64) 1998; 188 Swaters (apjac68eebib96) 2012; 425 Draine (apjac68eebib27) 2003; 41 |
| References_xml | – volume: 523 start-page: 322 year: 2015 ident: apjac68eebib17 publication-title: Natur doi: 10.1038/nature14566 – volume: 117 start-page: 273001 year: 2016 ident: apjac68eebib80 publication-title: PhRvL doi: 10.1103/PhysRevLett.117.273001 – volume: 224 start-page: 251 year: 1969 ident: apjac68eebib37 publication-title: Natur doi: 10.1038/224251a0 – volume: 114 start-page: 7066 year: 2001 ident: apjac68eebib6 publication-title: JChPh doi: 10.1063/1.1360198 – volume: 285 start-page: 94 year: 1994 ident: apjac68eebib74 publication-title: A&A – volume: 109 start-page: 4327 year: 1998 ident: apjac68eebib57 publication-title: JChPh doi: 10.1063/1.477035 – volume: 141 year: 2014 ident: apjac68eebib73 publication-title: JChPh doi: 10.1063/1.4902981 – volume: 113 start-page: 4230 year: 2000 ident: apjac68eebib5 publication-title: JChPh doi: 10.1063/1.1288381 – volume: 129 year: 2008 ident: apjac68eebib46 publication-title: JChPh doi: 10.1063/1.3035833 – volume: 346 start-page: 729 year: 1990 ident: apjac68eebib48 publication-title: Natur doi: 10.1038/346729a0 – volume: 89 start-page: 758 year: 1977 ident: apjac68eebib91 publication-title: PASP doi: 10.1086/130223 – volume: 326 start-page: 822 year: 1997 ident: apjac68eebib16 publication-title: A&A – volume: 680 start-page: 1256 year: 2008 ident: apjac68eebib42 publication-title: ApJ doi: 10.1086/587930 – volume: 67 start-page: 4086 year: 1977 ident: apjac68eebib49 publication-title: JChPh doi: 10.1063/1.435384 – volume: 450 start-page: 1032 year: 2015 ident: apjac68eebib51 publication-title: MNRAS doi: 10.1093/mnras/stv691 – volume: 708 start-page: 1628 year: 2010 ident: apjac68eebib62 publication-title: ApJ doi: 10.1088/0004-637X/708/2/1628 – volume: 25 start-page: 17 year: 1992 ident: apjac68eebib76 publication-title: JPhB doi: 10.1088/0953-4075/25/1/008 – volume: 736 start-page: 91 year: 2011 ident: apjac68eebib61 publication-title: ApJ doi: 10.1088/0004-637X/736/2/91 – volume: 283 start-page: L105 year: 1996 ident: apjac68eebib50 publication-title: MNRAS doi: 10.1093/mnras/283.4.L105 – volume: 566 start-page: A55 year: 2014 ident: apjac68eebib77 publication-title: A&A doi: 10.1051/0004-6361/201323270 – start-page: 93 year: 2004 ident: apjac68eebib90 – volume: 188 start-page: 221 year: 1998 ident: apjac68eebib64 publication-title: JMoSp doi: 10.1006/jmsp.1997.7520 – volume: 62 start-page: 343 year: 1990 ident: apjac68eebib8 publication-title: RvMP doi: 10.1103/RevModPhys.62.343 – volume: 473 start-page: 900 year: 1996 ident: apjac68eebib93 publication-title: ApJ doi: 10.1086/178202 – volume: 223 start-page: 815 year: 1969 ident: apjac68eebib19 publication-title: Natur doi: 10.1038/223815a0 – start-page: 249 year: 2004 ident: apjac68eebib3 – year: 2011 ident: apjac68eebib4 – volume: 32 start-page: 2478 year: 1985 ident: apjac68eebib12 publication-title: PhRvB doi: 10.1103/PhysRevB.32.2478 – volume: 148 year: 2018 ident: apjac68eebib14 publication-title: JChPh doi: 10.1063/1.4990612 – volume: 68 start-page: 3053 year: 1978 ident: apjac68eebib79 publication-title: JChPh doi: 10.1063/1.436171 – volume: 46 start-page: 1426 year: 1967 ident: apjac68eebib52 publication-title: JChPh doi: 10.1063/1.1840870 – volume: 705 start-page: 32 year: 2009 ident: apjac68eebib43 publication-title: ApJ doi: 10.1088/0004-637X/705/1/32 – volume: 86 start-page: 5441 year: 1987 ident: apjac68eebib9 publication-title: JChPh doi: 10.1063/1.452568 – volume: 108 start-page: 1103 year: 2004 ident: apjac68eebib101 publication-title: JPCA doi: 10.1021/jp037382q – volume: 726 start-page: 81 year: 2011 ident: apjac68eebib2 publication-title: ApJ doi: 10.1088/0004-637X/726/2/81 – volume: 41 start-page: 241 year: 2003 ident: apjac68eebib27 publication-title: ARA&A doi: 10.1146/annurev.astro.41.011802.094840 – volume: 234 start-page: 1 year: 1995 ident: apjac68eebib92 publication-title: CPL doi: 10.1016/0009-2614(95)00099-P – volume: 369 start-page: 296 year: 1994 ident: apjac68eebib31 publication-title: Natur doi: 10.1038/369296a0 – volume: 630 start-page: A58 year: 2019 ident: apjac68eebib81 publication-title: A&A doi: 10.1051/0004-6361/201936249 – volume: 177 start-page: 341 year: 1972 ident: apjac68eebib55 publication-title: ApJ doi: 10.1086/151713 – volume: 610 start-page: 868 year: 2004 ident: apjac68eebib70 publication-title: ApJ doi: 10.1086/421732 – volume: 471 start-page: L57 year: 1996 ident: apjac68eebib28 publication-title: ApJL doi: 10.1086/310326 – year: 2004 ident: apjac68eebib10 – volume: 77A start-page: 277 year: 1980 ident: apjac68eebib94 publication-title: PhL doi: 10.1016/0375-9601(80)90668-4 – volume: 41 start-page: 759 year: 1932 ident: apjac68eebib21 publication-title: PhRv doi: 10.1103/PhysRev.41.759 – volume: 238 start-page: 1 year: 2006 ident: apjac68eebib84 publication-title: JMoSp doi: 10.1016/j.jms.2006.03.009 – volume: 86 start-page: 4795 year: 2001 ident: apjac68eebib68 publication-title: PhRvL doi: 10.1103/PhysRevLett.86.4795 – volume: 896 start-page: L8 year: 2020 ident: apjac68eebib87 publication-title: ApJL doi: 10.3847/2041-8213/ab963f – volume: 409 start-page: L65 year: 1993 ident: apjac68eebib83 publication-title: ApJL doi: 10.1086/186861 – volume: 875 start-page: L28 year: 2019 ident: apjac68eebib23 publication-title: ApJL doi: 10.3847/2041-8213/ab14e5 – volume: 51 start-page: 207 year: 2013 ident: apjac68eebib11 publication-title: ARA&A doi: 10.1146/annurev-astro-082812-140944 – volume: 15 start-page: 363 year: 1961 ident: apjac68eebib22 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1961-0129566-X – volume: 285 start-page: 79 year: 1994 ident: apjac68eebib75 publication-title: A&A – volume: 100 year: 2019 ident: apjac68eebib54 publication-title: PhRvA doi: 10.1103/PhysRevA.100.032519 – volume: 479 start-page: 200 year: 2011 ident: apjac68eebib35 publication-title: Natur doi: 10.1038/nature10527 – volume: 149 year: 2018 ident: apjac68eebib65 publication-title: JChPh doi: 10.1063/1.5066308 – volume: 744 year: 2020 ident: apjac68eebib67 publication-title: CPL doi: 10.1016/j.cplett.2020.137216 – volume: 472 start-page: 34 year: 1996 ident: apjac68eebib36 publication-title: ApJ doi: 10.1086/178039 – year: 1950 ident: apjac68eebib41 – volume: 57 start-page: 285 year: 2007 ident: apjac68eebib95 publication-title: ARNPS doi: 10.1146/annurev.nucl.57.090506.123011 – volume: 827 start-page: 45 year: 2016 ident: apjac68eebib39 publication-title: ApJ doi: 10.3847/0004-637X/827/1/45 – volume: 831 start-page: 18 year: 2016 ident: apjac68eebib24 publication-title: ApJ doi: 10.3847/0004-637X/831/1/18 – volume: 144 start-page: 411 year: 1969 ident: apjac68eebib30 publication-title: MNRAS doi: 10.1093/mnras/144.4.411 – volume: 130 year: 2009 ident: apjac68eebib29 publication-title: JChPh doi: 10.1063/1.3158947 – volume: 33 start-page: 19 year: 1995 ident: apjac68eebib40 publication-title: ARA&A doi: 10.1146/annurev.aa.33.090195.000315 – start-page: 65 year: 2004 ident: apjac68eebib103 – volume: 203 start-page: 4 year: 2012 ident: apjac68eebib1 publication-title: ApJS doi: 10.1088/0067-0049/203/1/4 – volume: 245 start-page: 639 year: 1995 ident: apjac68eebib89 publication-title: CPL doi: 10.1016/0009-2614(95)01023-3 – year: 1981 ident: apjac68eebib98 – volume: 425 start-page: 2299 year: 2012 ident: apjac68eebib96 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21599.x – volume: 7 start-page: 3105 year: 2011 ident: apjac68eebib53 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200438t – volume: 92 year: 2020 ident: apjac68eebib66 publication-title: RvMP doi: 10.1103/RevModPhys.92.035003 – volume: 43 start-page: 1345 year: 2017 ident: apjac68eebib32 publication-title: LTP doi: 10.1063/1.5012785 – volume: 912 start-page: 3 year: 2021 ident: apjac68eebib59 publication-title: ApJ doi: 10.3847/1538-4357/abec85 – volume: 106 start-page: 39 year: 1994 ident: apjac68eebib47 publication-title: A&AS – volume: 727 start-page: 33 year: 2011 ident: apjac68eebib33 publication-title: ApJ doi: 10.1088/0004-637X/727/1/33 – volume: 2 start-page: 4239 year: 1970 ident: apjac68eebib20 publication-title: PhRvB doi: 10.1103/PhysRevB.2.4239 – year: 2014 ident: apjac68eebib15 – volume: 80 start-page: 1 year: 2018 ident: apjac68eebib26 publication-title: NewAR doi: 10.1016/j.newar.2018.02.001 – volume: 35 start-page: 281 year: 1977 ident: apjac68eebib97 publication-title: ApJS doi: 10.1086/190481 – volume: 881 start-page: 69 year: 2019 ident: apjac68eebib100 publication-title: ApJ doi: 10.3847/1538-4357/ab2987 – volume: 63 start-page: 84 year: 1985 ident: apjac68eebib78 publication-title: CaJPh doi: 10.1139/p85-014 – volume: 82 year: 2010 ident: apjac68eebib71 publication-title: PhRvA doi: 10.1103/PhysRevA.82.032509 – year: 2004 ident: apjac68eebib82 – volume: 613 start-page: A64 year: 2018 ident: apjac68eebib34 publication-title: A&A doi: 10.1051/0004-6361/201731739 – volume: 452 start-page: 3629 year: 2015 ident: apjac68eebib58 publication-title: MNRAS doi: 10.1093/mnras/stv1519 – volume: 104 start-page: 3775 year: 2000 ident: apjac68eebib18 publication-title: JPCA doi: 10.1021/jp993890h – volume: 47 start-page: 1927 year: 1967 ident: apjac68eebib63 publication-title: JChPh doi: 10.1063/1.1712220 – volume: 69 start-page: 4209 year: 1978 ident: apjac68eebib88 publication-title: JChPh doi: 10.1063/1.437103 – volume: 307 start-page: 1292 year: 2005 ident: apjac68eebib38 publication-title: Sci doi: 10.1126/science.1106924 – volume: 531 start-page: A37 year: 2011 ident: apjac68eebib25 publication-title: A&A doi: 10.1051/0004-6361/201116647 – volume: 7 start-page: 776 year: 2005 ident: apjac68eebib56 publication-title: PCCP doi: 10.1039/B415179H – volume: 83 year: 2011 ident: apjac68eebib72 publication-title: PhRvA doi: 10.1103/PhysRevA.83.032501 – volume: 295 start-page: 485 year: 1985 ident: apjac68eebib86 publication-title: ApJ doi: 10.1086/163392 – volume: 47 start-page: 271 year: 2017 ident: apjac68eebib60 publication-title: AnRMS doi: 10.1146/annurev-matsci-070616-124135 – volume: 240 start-page: 75 year: 1996 ident: apjac68eebib102 publication-title: ApSS – volume: 768 start-page: 84 year: 2013 ident: apjac68eebib7 publication-title: ApJ doi: 10.1088/0004-637X/768/1/84 – volume: 31 start-page: 341 year: 2009 ident: apjac68eebib69 publication-title: APh doi: 10.1016/j.astropartphys.2009.03.004 – volume: 434 start-page: 2814 year: 2013 ident: apjac68eebib99 publication-title: MNRAS doi: 10.1093/mnras/stt1157 – volume: 481 start-page: 205 year: 1997 ident: apjac68eebib45 publication-title: ApJ doi: 10.1086/304012 – volume: 277 start-page: L41 year: 1995 ident: apjac68eebib85 publication-title: MNRAS doi: 10.1093/mnras/277.1.L41 – start-page: 107 year: 1967 ident: apjac68eebib13 – volume: 115 start-page: 12445 year: 2011 ident: apjac68eebib44 publication-title: JPCA doi: 10.1021/jp203913n |
| SSID | ssj0004299 |
| Score | 2.4054222 |
| Snippet | Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4 |
| SubjectTerms | Absorption Absorption spectra Angular momentum Astronomical data Astrophysics Diffuse interstellar bands Dipole moments Eigenvectors Electric fields Electrification Hydrogen Infrared spectra Internal conversion Interstellar chemistry Interstellar dust Interstellar dust extinction Interstellar line absorption Interstellar matter Interstellar medium Molecular physics Molecular spectroscopy Near infrared radiation Quadrupoles Tensors |
| Title | Absorption Spectra of Electrified Hydrogen Molecules |
| URI | https://iopscience.iop.org/article/10.3847/1538-4357/ac68ee https://www.proquest.com/docview/2674420289 |
| Volume | 932 |
| WOSCitedRecordID | wos000807763300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: O3W dateStart: 19950701 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: M~E dateStart: 18950101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxQxFH8B1MSLCmhAV9KDmHgYdqcf8zrxtDFLOAhygLC3pu20CUR3NjOrCRf_dvsxQAiGmHiZvMPrtPn1fbZ5fQAf0DIz0dyEHcCQoASXV-jgmIrKCWkY1rXFVCj8FU9O5Hxen67B59tamHY5mP6DQOaHgjOEUb9ZsKXjpKPBy-NY20o6tw5PmBRVFPJv7OKuKJLWQ-zLi4rhPN9R_vUP93zSepj3gWFO3ubw5X-t8xW8GIJMMs2sm7DmFluwM-3jsXf745p8JInOpxr9Fjw7zdQ28Knp2y6ZERJb0686TVpPZqlZzqUP8So5um66NogdOc6ddV3_Gs4PZ2dfjoqhsUJhGcpVQbmfGG8Rpbes1tpSw42RhqMvKepK-xI992LCHHcedVNPDLKG1UYKHuIn9gY2Fu3C7QBh3pcNE85WVc2l1kZwSrUtGyG9EOh3YXwDrbLDq-Ox-cV3FbKPCJOKMKkIk8ow7cKn2xHL_OLGI7z7AX01qF3_CN_oHp9eXqkQuKpScbVswiJHN9t9x0Mr5JzGi9i3_zjLO3hOY3FEOqMZwcaq--new1P7a3XZd3sp2w_f49-zvSSpfwD7BOYH |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RAhUXHoWqL8AHQOKQ7saPjHNcQVdFlGUPIPZm2Y4tFbWbVbIg9d_jR0pVgSokbiNlEkcznofHmvkAXqFlZqy5CRrAcEAJIa_QITAVlRPSMKxri6lR-BRnM7lY1PMB5zT1wrSrwfUfBTIPCs4ijPbNgi8dJRsNUR5H2lbSudGq8RtwVzDBInbDZ_btujGS1kP-y4uK4SLfU_71Kzfi0kZY-w_nnCLO9NF__-tjeDgkm2SS2Z_AHbfcht1JH8vf7cUleUMSnasb_Tbcn2fqKfCJ6dsuuRMSIerXnSatJ8cJNOfMh7yVnFw2XRu2H_mUEXZd_wy-To-_vDspBoCFwjKU64JyPzbeIkpvWa21pYYbIw1HX1LUlfYleu7FmDnuPOqmHhtkDauNFDzkUWwHNpft0u0CYd6XDRPOVlXNpdZGcEq1LRshvRDo92B0JV5lh-njEQTjXIVTSBSViqJSUVQqi2oP3v5-Y5Unb9zC-zpoQA3m19_Cd3iDT6--q5DAqlJxFTQTHl-p_JqHVsg5jRey-_-4ykvYmr-fqtMPs48H8IDGfolUtjmEzXX3wz2He_bn-qzvXqTN-gt6uulA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absorption+Spectra+of+Electrified+Hydrogen+Molecules&rft.jtitle=The+Astrophysical+journal&rft.au=Walker%2C+Mark+A.&rft.date=2022-06-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=932&rft.issue=1&rft.spage=4&rft_id=info:doi/10.3847%2F1538-4357%2Fac68ee&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ac68ee |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |