Absorption Spectra of Electrified Hydrogen Molecules

Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment and a set of allowed transitions. Here we use published ab initio calculations of the static electrical response tensors of the H 2 molecule...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal Jg. 932; H. 1; S. 4 - 29
1. Verfasser: Walker, Mark A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia The American Astronomical Society 01.06.2022
IOP Publishing
Schlagworte:
ISSN:0004-637X, 1538-4357
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment and a set of allowed transitions. Here we use published ab initio calculations of the static electrical response tensors of the H 2 molecule to construct the perturbed rovibrational eigensystem and its ground state absorptions. We restrict attention to two simple field configurations that are relevant to condensed hydrogen molecules in the interstellar medium (ISM): a uniform electric field and the field of a pointlike charge. The energy eigenstates are mixtures of vibrational and angular momentum eigenstates so there are many transitions that satisfy the dipole selection rules. We find that mixing is strongest among the states with high vibrational excitation, leading to hundreds of absorption lines across the optical and near-infrared. These spectra are very different from that of the field-free molecule, so if they appeared in astronomical data they would be difficult to assign. Furthermore, in a condensed environment the excited states likely have short lifetimes to internal conversion, giving the absorption lines a diffuse appearance. We therefore suggest electrified H 2 as a possible carrier of the diffuse interstellar bands (DIBs). We further argue that in principle it may be possible to account for all of the DIBs with this one carrier. However, despite electrification, the transitions are not very strong and a large column of condensed H 2 would be required, making it difficult to reconcile this possibility with our current understanding of the ISM.
AbstractList Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment and a set of allowed transitions. Here we use published ab initio calculations of the static electrical response tensors of the H 2 molecule to construct the perturbed rovibrational eigensystem and its ground state absorptions. We restrict attention to two simple field configurations that are relevant to condensed hydrogen molecules in the interstellar medium (ISM): a uniform electric field and the field of a pointlike charge. The energy eigenstates are mixtures of vibrational and angular momentum eigenstates so there are many transitions that satisfy the dipole selection rules. We find that mixing is strongest among the states with high vibrational excitation, leading to hundreds of absorption lines across the optical and near-infrared. These spectra are very different from that of the field-free molecule, so if they appeared in astronomical data they would be difficult to assign. Furthermore, in a condensed environment the excited states likely have short lifetimes to internal conversion, giving the absorption lines a diffuse appearance. We therefore suggest electrified H 2 as a possible carrier of the diffuse interstellar bands (DIBs). We further argue that in principle it may be possible to account for all of the DIBs with this one carrier. However, despite electrification, the transitions are not very strong and a large column of condensed H 2 would be required, making it difficult to reconcile this possibility with our current understanding of the ISM.
Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment and a set of allowed transitions. Here we use published ab initio calculations of the static electrical response tensors of the H2 molecule to construct the perturbed rovibrational eigensystem and its ground state absorptions. We restrict attention to two simple field configurations that are relevant to condensed hydrogen molecules in the interstellar medium (ISM): a uniform electric field and the field of a pointlike charge. The energy eigenstates are mixtures of vibrational and angular momentum eigenstates so there are many transitions that satisfy the dipole selection rules. We find that mixing is strongest among the states with high vibrational excitation, leading to hundreds of absorption lines across the optical and near-infrared. These spectra are very different from that of the field-free molecule, so if they appeared in astronomical data they would be difficult to assign. Furthermore, in a condensed environment the excited states likely have short lifetimes to internal conversion, giving the absorption lines a diffuse appearance. We therefore suggest electrified H2 as a possible carrier of the diffuse interstellar bands (DIBs). We further argue that in principle it may be possible to account for all of the DIBs with this one carrier. However, despite electrification, the transitions are not very strong and a large column of condensed H2 would be required, making it difficult to reconcile this possibility with our current understanding of the ISM.
Author Walker, Mark A.
Author_xml – sequence: 1
  givenname: Mark A.
  orcidid: 0000-0002-5603-3982
  surname: Walker
  fullname: Walker, Mark A.
  organization: Manly Astrophysics , 15/41-42 East Esplanade, Manly, NSW 2095, Australia
BookMark eNp9kM1LwzAYxoNMcJvePRa8Wpcmb5v0OMZ0wsSDCt5CkiaSUZuatIf997ZsKIh6ej94nvfjN0OTxjcGocsM31AObJHllKdAc7aQuuDGnKDpV2uCphhjSAvKXs_QLMbdWJKynCJYquhD2znfJE-t0V2QibfJuh5TZ52pks2-Cv7NNMmDH7p9beI5OrWyjubiGOfo5Xb9vNqk28e7-9Vym2rKeJcSsFhZzRi3mpZSaqJAKa6A2YwwWUibMQs2x9SAsUxWJVaMVrRUPAeAjM7R1WFuG_xHb2Indr4PzbBSkIIBEEx4OajwQaWDjzEYK9rg3mXYiwyLkY0YQYgRhDiwGSzFD4t2nRwhDP-7-j_j8SLn2-9jZLsTJSUiEyDayg6q619Ufw79BCS1hY8
CitedBy_id crossref_primary_10_3847_1538_4357_adb74b
Cites_doi 10.1038/nature14566
10.1103/PhysRevLett.117.273001
10.1038/224251a0
10.1063/1.1360198
10.1063/1.477035
10.1063/1.4902981
10.1063/1.1288381
10.1063/1.3035833
10.1038/346729a0
10.1086/130223
10.1086/587930
10.1063/1.435384
10.1093/mnras/stv691
10.1088/0004-637X/708/2/1628
10.1088/0953-4075/25/1/008
10.1088/0004-637X/736/2/91
10.1093/mnras/283.4.L105
10.1051/0004-6361/201323270
10.1006/jmsp.1997.7520
10.1103/RevModPhys.62.343
10.1086/178202
10.1038/223815a0
10.1103/PhysRevB.32.2478
10.1063/1.4990612
10.1063/1.436171
10.1063/1.1840870
10.1088/0004-637X/705/1/32
10.1063/1.452568
10.1021/jp037382q
10.1088/0004-637X/726/2/81
10.1146/annurev.astro.41.011802.094840
10.1016/0009-2614(95)00099-P
10.1038/369296a0
10.1051/0004-6361/201936249
10.1086/151713
10.1086/421732
10.1086/310326
10.1016/0375-9601(80)90668-4
10.1103/PhysRev.41.759
10.1016/j.jms.2006.03.009
10.1103/PhysRevLett.86.4795
10.3847/2041-8213/ab963f
10.1086/186861
10.3847/2041-8213/ab14e5
10.1146/annurev-astro-082812-140944
10.1090/S0025-5718-1961-0129566-X
10.1103/PhysRevA.100.032519
10.1038/nature10527
10.1063/1.5066308
10.1016/j.cplett.2020.137216
10.1086/178039
10.1146/annurev.nucl.57.090506.123011
10.3847/0004-637X/827/1/45
10.3847/0004-637X/831/1/18
10.1093/mnras/144.4.411
10.1063/1.3158947
10.1146/annurev.aa.33.090195.000315
10.1088/0067-0049/203/1/4
10.1016/0009-2614(95)01023-3
10.1111/j.1365-2966.2012.21599.x
10.1021/ct200438t
10.1103/RevModPhys.92.035003
10.1063/1.5012785
10.3847/1538-4357/abec85
10.1088/0004-637X/727/1/33
10.1103/PhysRevB.2.4239
10.1016/j.newar.2018.02.001
10.1086/190481
10.3847/1538-4357/ab2987
10.1139/p85-014
10.1103/PhysRevA.82.032509
10.1051/0004-6361/201731739
10.1093/mnras/stv1519
10.1021/jp993890h
10.1063/1.1712220
10.1063/1.437103
10.1126/science.1106924
10.1051/0004-6361/201116647
10.1039/B415179H
10.1103/PhysRevA.83.032501
10.1086/163392
10.1146/annurev-matsci-070616-124135
10.1088/0004-637X/768/1/84
10.1016/j.astropartphys.2009.03.004
10.1093/mnras/stt1157
10.1086/304012
10.1093/mnras/277.1.L41
10.1021/jp203913n
ContentType Journal Article
Copyright 2022. The Author(s). Published by the American Astronomical Society.
2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. The Author(s). Published by the American Astronomical Society.
– notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ac68ee
DatabaseName IOP Publishing Free Content
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ac68ee
apjac68ee
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c378t-24f0bfc778fc39aac2b4bb8b47f127a6af17f4f503e4ef7ad90b73d39b8544413
IEDL.DBID O3W
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000807763300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-637X
IngestDate Wed Aug 13 04:28:05 EDT 2025
Sat Nov 29 05:31:15 EST 2025
Tue Nov 18 21:05:55 EST 2025
Wed Aug 21 03:33:55 EDT 2024
Wed Jun 15 11:03:50 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-24f0bfc778fc39aac2b4bb8b47f127a6af17f4f503e4ef7ad90b73d39b8544413
Notes AAS33764
Interstellar Matter and the Local Universe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5603-3982
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ac68ee
PQID 2674420289
PQPubID 4562441
PageCount 26
ParticipantIDs proquest_journals_2674420289
iop_journals_10_3847_1538_4357_ac68ee
crossref_citationtrail_10_3847_1538_4357_ac68ee
crossref_primary_10_3847_1538_4357_ac68ee
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2022
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Lan (apjac68eebib58) 2015; 452
McCall (apjac68eebib62) 2010; 708
Walker (apjac68eebib100) 2019; 881
Cordiner (apjac68eebib23) 2019; 875
Miliordos (apjac68eebib65) 2018; 149
Clampitt (apjac68eebib19) 1969; 223
Ryder (apjac68eebib82) 2004
Field (apjac68eebib30) 1969; 144
Pfenniger (apjac68eebib74) 1994; 285
Allen (apjac68eebib3) 2004
Bohr (apjac68eebib9) 1987; 86
Sarre (apjac68eebib85) 1995; 277
Herzberg (apjac68eebib41) 1950
Ackermann (apjac68eebib1) 2012; 203
Cooley (apjac68eebib22) 1961; 15
Souers (apjac68eebib94) 1980; 77A
Pipin (apjac68eebib76) 1992; 25
Bishop (apjac68eebib8) 1990; 62
Foing (apjac68eebib31) 1994; 369
Joblin (apjac68eebib48) 1990; 346
Libbrecht (apjac68eebib60) 2017; 47
Strong (apjac68eebib95) 2007; 57
van de Hulst (apjac68eebib98) 1981
Johnson (apjac68eebib49) 1977; 67
Kołos (apjac68eebib52) 1967; 46
Lin (apjac68eebib61) 2011; 736
Bolatto (apjac68eebib11) 2013; 51
Delahaye (apjac68eebib25) 2011; 531
Pachucki (apjac68eebib71) 2010; 82
Calvo (apjac68eebib14) 2018; 148
Kumada (apjac68eebib56) 2005; 7
Pachucki (apjac68eebib73) 2014; 141
McLean (apjac68eebib63) 1967; 47
Buckingham (apjac68eebib13) 1967
Hensley (apjac68eebib39) 2016; 827
Hobbs (apjac68eebib43) 2009; 705
Sandford (apjac68eebib83) 1993; 409
Fajardo (apjac68eebib29) 2009; 130
Planck Collaboration (apjac68eebib77) 2014; 566
Gerhard (apjac68eebib36) 1996; 472
Wang (apjac68eebib101) 2004; 108
Grenier (apjac68eebib38) 2005; 307
Campbell (apjac68eebib17) 2015; 523
Geballe (apjac68eebib35) 2011; 479
Seab (apjac68eebib86) 1985; 295
Duley (apjac68eebib28) 1996; 471
Cami (apjac68eebib16) 1997; 326
Snow (apjac68eebib90) 2004
Whittet (apjac68eebib103) 2004
Barbatti (apjac68eebib5) 2000; 113
Cole (apjac68eebib20) 1970; 2
Pachucki (apjac68eebib72) 2011; 83
Momose (apjac68eebib68) 2001; 86
Herbig (apjac68eebib40) 1995; 33
Levine (apjac68eebib59) 2021; 912
Rouef (apjac68eebib81) 2019; 630
Snow (apjac68eebib89) 1995; 245
Jaksch (apjac68eebib46) 2008; 129
Atkins (apjac68eebib4) 2011
Miller (apjac68eebib66) 2020; 92
Poll (apjac68eebib79) 1978; 68
Sarre (apjac68eebib84) 2006; 238
Mohammadi (apjac68eebib67) 2020; 744
Kettwich (apjac68eebib51) 2015; 450
Hunter (apjac68eebib45) 1997; 481
Friedman (apjac68eebib33) 2011; 727
Füglistaler (apjac68eebib34) 2018; 613
Turner (apjac68eebib97) 1977; 35
Mori (apjac68eebib69) 2009; 31
Sorokin (apjac68eebib93) 1996; 473
Cami (apjac68eebib15) 2014
Hobbs (apjac68eebib42) 2008; 680
Condon (apjac68eebib21) 1932; 41
Komasa (apjac68eebib53) 2011; 7
Brooks (apjac68eebib12) 1985; 32
Seligman (apjac68eebib87) 2020; 896
Pfenniger (apjac68eebib75) 1994; 285
Bernstein (apjac68eebib7) 2013; 768
Jenniskens (apjac68eebib47) 1994; 106
White (apjac68eebib102) 1996; 240
Kurosaki (apjac68eebib57) 1998; 109
Dickinson (apjac68eebib26) 2018; 80
Freiman (apjac68eebib32) 2017; 43
Kraushaar (apjac68eebib55) 1972; 177
Sorokin (apjac68eebib92) 1995; 234
Renzler (apjac68eebib80) 2016; 117
Cummings (apjac68eebib24) 2016; 831
Ackermann (apjac68eebib2) 2011; 726
Barbatti (apjac68eebib6) 2001; 114
Chan (apjac68eebib18) 2000; 104
Greenberg (apjac68eebib37) 1969; 224
Walker (apjac68eebib99) 2013; 434
Komasa (apjac68eebib54) 2019; 100
Huang (apjac68eebib44) 2011; 115
Kerr (apjac68eebib50) 1996; 283
Poll (apjac68eebib78) 1985; 63
Bohren (apjac68eebib10) 2004
Silvera (apjac68eebib88) 1978; 69
Snow (apjac68eebib91) 1977; 89
Ohishi (apjac68eebib70) 2004; 610
Mengel (apjac68eebib64) 1998; 188
Swaters (apjac68eebib96) 2012; 425
Draine (apjac68eebib27) 2003; 41
References_xml – volume: 523
  start-page: 322
  year: 2015
  ident: apjac68eebib17
  publication-title: Natur
  doi: 10.1038/nature14566
– volume: 117
  start-page: 273001
  year: 2016
  ident: apjac68eebib80
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.117.273001
– volume: 224
  start-page: 251
  year: 1969
  ident: apjac68eebib37
  publication-title: Natur
  doi: 10.1038/224251a0
– volume: 114
  start-page: 7066
  year: 2001
  ident: apjac68eebib6
  publication-title: JChPh
  doi: 10.1063/1.1360198
– volume: 285
  start-page: 94
  year: 1994
  ident: apjac68eebib74
  publication-title: A&A
– volume: 109
  start-page: 4327
  year: 1998
  ident: apjac68eebib57
  publication-title: JChPh
  doi: 10.1063/1.477035
– volume: 141
  year: 2014
  ident: apjac68eebib73
  publication-title: JChPh
  doi: 10.1063/1.4902981
– volume: 113
  start-page: 4230
  year: 2000
  ident: apjac68eebib5
  publication-title: JChPh
  doi: 10.1063/1.1288381
– volume: 129
  year: 2008
  ident: apjac68eebib46
  publication-title: JChPh
  doi: 10.1063/1.3035833
– volume: 346
  start-page: 729
  year: 1990
  ident: apjac68eebib48
  publication-title: Natur
  doi: 10.1038/346729a0
– volume: 89
  start-page: 758
  year: 1977
  ident: apjac68eebib91
  publication-title: PASP
  doi: 10.1086/130223
– volume: 326
  start-page: 822
  year: 1997
  ident: apjac68eebib16
  publication-title: A&A
– volume: 680
  start-page: 1256
  year: 2008
  ident: apjac68eebib42
  publication-title: ApJ
  doi: 10.1086/587930
– volume: 67
  start-page: 4086
  year: 1977
  ident: apjac68eebib49
  publication-title: JChPh
  doi: 10.1063/1.435384
– volume: 450
  start-page: 1032
  year: 2015
  ident: apjac68eebib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stv691
– volume: 708
  start-page: 1628
  year: 2010
  ident: apjac68eebib62
  publication-title: ApJ
  doi: 10.1088/0004-637X/708/2/1628
– volume: 25
  start-page: 17
  year: 1992
  ident: apjac68eebib76
  publication-title: JPhB
  doi: 10.1088/0953-4075/25/1/008
– volume: 736
  start-page: 91
  year: 2011
  ident: apjac68eebib61
  publication-title: ApJ
  doi: 10.1088/0004-637X/736/2/91
– volume: 283
  start-page: L105
  year: 1996
  ident: apjac68eebib50
  publication-title: MNRAS
  doi: 10.1093/mnras/283.4.L105
– volume: 566
  start-page: A55
  year: 2014
  ident: apjac68eebib77
  publication-title: A&A
  doi: 10.1051/0004-6361/201323270
– start-page: 93
  year: 2004
  ident: apjac68eebib90
– volume: 188
  start-page: 221
  year: 1998
  ident: apjac68eebib64
  publication-title: JMoSp
  doi: 10.1006/jmsp.1997.7520
– volume: 62
  start-page: 343
  year: 1990
  ident: apjac68eebib8
  publication-title: RvMP
  doi: 10.1103/RevModPhys.62.343
– volume: 473
  start-page: 900
  year: 1996
  ident: apjac68eebib93
  publication-title: ApJ
  doi: 10.1086/178202
– volume: 223
  start-page: 815
  year: 1969
  ident: apjac68eebib19
  publication-title: Natur
  doi: 10.1038/223815a0
– start-page: 249
  year: 2004
  ident: apjac68eebib3
– year: 2011
  ident: apjac68eebib4
– volume: 32
  start-page: 2478
  year: 1985
  ident: apjac68eebib12
  publication-title: PhRvB
  doi: 10.1103/PhysRevB.32.2478
– volume: 148
  year: 2018
  ident: apjac68eebib14
  publication-title: JChPh
  doi: 10.1063/1.4990612
– volume: 68
  start-page: 3053
  year: 1978
  ident: apjac68eebib79
  publication-title: JChPh
  doi: 10.1063/1.436171
– volume: 46
  start-page: 1426
  year: 1967
  ident: apjac68eebib52
  publication-title: JChPh
  doi: 10.1063/1.1840870
– volume: 705
  start-page: 32
  year: 2009
  ident: apjac68eebib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/705/1/32
– volume: 86
  start-page: 5441
  year: 1987
  ident: apjac68eebib9
  publication-title: JChPh
  doi: 10.1063/1.452568
– volume: 108
  start-page: 1103
  year: 2004
  ident: apjac68eebib101
  publication-title: JPCA
  doi: 10.1021/jp037382q
– volume: 726
  start-page: 81
  year: 2011
  ident: apjac68eebib2
  publication-title: ApJ
  doi: 10.1088/0004-637X/726/2/81
– volume: 41
  start-page: 241
  year: 2003
  ident: apjac68eebib27
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.41.011802.094840
– volume: 234
  start-page: 1
  year: 1995
  ident: apjac68eebib92
  publication-title: CPL
  doi: 10.1016/0009-2614(95)00099-P
– volume: 369
  start-page: 296
  year: 1994
  ident: apjac68eebib31
  publication-title: Natur
  doi: 10.1038/369296a0
– volume: 630
  start-page: A58
  year: 2019
  ident: apjac68eebib81
  publication-title: A&A
  doi: 10.1051/0004-6361/201936249
– volume: 177
  start-page: 341
  year: 1972
  ident: apjac68eebib55
  publication-title: ApJ
  doi: 10.1086/151713
– volume: 610
  start-page: 868
  year: 2004
  ident: apjac68eebib70
  publication-title: ApJ
  doi: 10.1086/421732
– volume: 471
  start-page: L57
  year: 1996
  ident: apjac68eebib28
  publication-title: ApJL
  doi: 10.1086/310326
– year: 2004
  ident: apjac68eebib10
– volume: 77A
  start-page: 277
  year: 1980
  ident: apjac68eebib94
  publication-title: PhL
  doi: 10.1016/0375-9601(80)90668-4
– volume: 41
  start-page: 759
  year: 1932
  ident: apjac68eebib21
  publication-title: PhRv
  doi: 10.1103/PhysRev.41.759
– volume: 238
  start-page: 1
  year: 2006
  ident: apjac68eebib84
  publication-title: JMoSp
  doi: 10.1016/j.jms.2006.03.009
– volume: 86
  start-page: 4795
  year: 2001
  ident: apjac68eebib68
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.86.4795
– volume: 896
  start-page: L8
  year: 2020
  ident: apjac68eebib87
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab963f
– volume: 409
  start-page: L65
  year: 1993
  ident: apjac68eebib83
  publication-title: ApJL
  doi: 10.1086/186861
– volume: 875
  start-page: L28
  year: 2019
  ident: apjac68eebib23
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab14e5
– volume: 51
  start-page: 207
  year: 2013
  ident: apjac68eebib11
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082812-140944
– volume: 15
  start-page: 363
  year: 1961
  ident: apjac68eebib22
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1961-0129566-X
– volume: 285
  start-page: 79
  year: 1994
  ident: apjac68eebib75
  publication-title: A&A
– volume: 100
  year: 2019
  ident: apjac68eebib54
  publication-title: PhRvA
  doi: 10.1103/PhysRevA.100.032519
– volume: 479
  start-page: 200
  year: 2011
  ident: apjac68eebib35
  publication-title: Natur
  doi: 10.1038/nature10527
– volume: 149
  year: 2018
  ident: apjac68eebib65
  publication-title: JChPh
  doi: 10.1063/1.5066308
– volume: 744
  year: 2020
  ident: apjac68eebib67
  publication-title: CPL
  doi: 10.1016/j.cplett.2020.137216
– volume: 472
  start-page: 34
  year: 1996
  ident: apjac68eebib36
  publication-title: ApJ
  doi: 10.1086/178039
– year: 1950
  ident: apjac68eebib41
– volume: 57
  start-page: 285
  year: 2007
  ident: apjac68eebib95
  publication-title: ARNPS
  doi: 10.1146/annurev.nucl.57.090506.123011
– volume: 827
  start-page: 45
  year: 2016
  ident: apjac68eebib39
  publication-title: ApJ
  doi: 10.3847/0004-637X/827/1/45
– volume: 831
  start-page: 18
  year: 2016
  ident: apjac68eebib24
  publication-title: ApJ
  doi: 10.3847/0004-637X/831/1/18
– volume: 144
  start-page: 411
  year: 1969
  ident: apjac68eebib30
  publication-title: MNRAS
  doi: 10.1093/mnras/144.4.411
– volume: 130
  year: 2009
  ident: apjac68eebib29
  publication-title: JChPh
  doi: 10.1063/1.3158947
– volume: 33
  start-page: 19
  year: 1995
  ident: apjac68eebib40
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.33.090195.000315
– start-page: 65
  year: 2004
  ident: apjac68eebib103
– volume: 203
  start-page: 4
  year: 2012
  ident: apjac68eebib1
  publication-title: ApJS
  doi: 10.1088/0067-0049/203/1/4
– volume: 245
  start-page: 639
  year: 1995
  ident: apjac68eebib89
  publication-title: CPL
  doi: 10.1016/0009-2614(95)01023-3
– year: 1981
  ident: apjac68eebib98
– volume: 425
  start-page: 2299
  year: 2012
  ident: apjac68eebib96
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21599.x
– volume: 7
  start-page: 3105
  year: 2011
  ident: apjac68eebib53
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200438t
– volume: 92
  year: 2020
  ident: apjac68eebib66
  publication-title: RvMP
  doi: 10.1103/RevModPhys.92.035003
– volume: 43
  start-page: 1345
  year: 2017
  ident: apjac68eebib32
  publication-title: LTP
  doi: 10.1063/1.5012785
– volume: 912
  start-page: 3
  year: 2021
  ident: apjac68eebib59
  publication-title: ApJ
  doi: 10.3847/1538-4357/abec85
– volume: 106
  start-page: 39
  year: 1994
  ident: apjac68eebib47
  publication-title: A&AS
– volume: 727
  start-page: 33
  year: 2011
  ident: apjac68eebib33
  publication-title: ApJ
  doi: 10.1088/0004-637X/727/1/33
– volume: 2
  start-page: 4239
  year: 1970
  ident: apjac68eebib20
  publication-title: PhRvB
  doi: 10.1103/PhysRevB.2.4239
– year: 2014
  ident: apjac68eebib15
– volume: 80
  start-page: 1
  year: 2018
  ident: apjac68eebib26
  publication-title: NewAR
  doi: 10.1016/j.newar.2018.02.001
– volume: 35
  start-page: 281
  year: 1977
  ident: apjac68eebib97
  publication-title: ApJS
  doi: 10.1086/190481
– volume: 881
  start-page: 69
  year: 2019
  ident: apjac68eebib100
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab2987
– volume: 63
  start-page: 84
  year: 1985
  ident: apjac68eebib78
  publication-title: CaJPh
  doi: 10.1139/p85-014
– volume: 82
  year: 2010
  ident: apjac68eebib71
  publication-title: PhRvA
  doi: 10.1103/PhysRevA.82.032509
– year: 2004
  ident: apjac68eebib82
– volume: 613
  start-page: A64
  year: 2018
  ident: apjac68eebib34
  publication-title: A&A
  doi: 10.1051/0004-6361/201731739
– volume: 452
  start-page: 3629
  year: 2015
  ident: apjac68eebib58
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1519
– volume: 104
  start-page: 3775
  year: 2000
  ident: apjac68eebib18
  publication-title: JPCA
  doi: 10.1021/jp993890h
– volume: 47
  start-page: 1927
  year: 1967
  ident: apjac68eebib63
  publication-title: JChPh
  doi: 10.1063/1.1712220
– volume: 69
  start-page: 4209
  year: 1978
  ident: apjac68eebib88
  publication-title: JChPh
  doi: 10.1063/1.437103
– volume: 307
  start-page: 1292
  year: 2005
  ident: apjac68eebib38
  publication-title: Sci
  doi: 10.1126/science.1106924
– volume: 531
  start-page: A37
  year: 2011
  ident: apjac68eebib25
  publication-title: A&A
  doi: 10.1051/0004-6361/201116647
– volume: 7
  start-page: 776
  year: 2005
  ident: apjac68eebib56
  publication-title: PCCP
  doi: 10.1039/B415179H
– volume: 83
  year: 2011
  ident: apjac68eebib72
  publication-title: PhRvA
  doi: 10.1103/PhysRevA.83.032501
– volume: 295
  start-page: 485
  year: 1985
  ident: apjac68eebib86
  publication-title: ApJ
  doi: 10.1086/163392
– volume: 47
  start-page: 271
  year: 2017
  ident: apjac68eebib60
  publication-title: AnRMS
  doi: 10.1146/annurev-matsci-070616-124135
– volume: 240
  start-page: 75
  year: 1996
  ident: apjac68eebib102
  publication-title: ApSS
– volume: 768
  start-page: 84
  year: 2013
  ident: apjac68eebib7
  publication-title: ApJ
  doi: 10.1088/0004-637X/768/1/84
– volume: 31
  start-page: 341
  year: 2009
  ident: apjac68eebib69
  publication-title: APh
  doi: 10.1016/j.astropartphys.2009.03.004
– volume: 434
  start-page: 2814
  year: 2013
  ident: apjac68eebib99
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1157
– volume: 481
  start-page: 205
  year: 1997
  ident: apjac68eebib45
  publication-title: ApJ
  doi: 10.1086/304012
– volume: 277
  start-page: L41
  year: 1995
  ident: apjac68eebib85
  publication-title: MNRAS
  doi: 10.1093/mnras/277.1.L41
– start-page: 107
  year: 1967
  ident: apjac68eebib13
– volume: 115
  start-page: 12445
  year: 2011
  ident: apjac68eebib44
  publication-title: JPCA
  doi: 10.1021/jp203913n
SSID ssj0004299
Score 2.4054222
Snippet Molecular hydrogen normally has only weak, quadrupole transitions between its rovibrational states, but in a static electric field it acquires a dipole moment...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4
SubjectTerms Absorption
Absorption spectra
Angular momentum
Astronomical data
Astrophysics
Diffuse interstellar bands
Dipole moments
Eigenvectors
Electric fields
Electrification
Hydrogen
Infrared spectra
Internal conversion
Interstellar chemistry
Interstellar dust
Interstellar dust extinction
Interstellar line absorption
Interstellar matter
Interstellar medium
Molecular physics
Molecular spectroscopy
Near infrared radiation
Quadrupoles
Tensors
Title Absorption Spectra of Electrified Hydrogen Molecules
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac68ee
https://www.proquest.com/docview/2674420289
Volume 932
WOSCitedRecordID wos000807763300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: O3W
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: M~E
  dateStart: 18950101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxQxFH8B1MSLCmhAV9KDmHgYdqcf8zrxtDFLOAhygLC3pu20CUR3NjOrCRf_dvsxQAiGmHiZvMPrtPn1fbZ5fQAf0DIz0dyEHcCQoASXV-jgmIrKCWkY1rXFVCj8FU9O5Hxen67B59tamHY5mP6DQOaHgjOEUb9ZsKXjpKPBy-NY20o6tw5PmBRVFPJv7OKuKJLWQ-zLi4rhPN9R_vUP93zSepj3gWFO3ubw5X-t8xW8GIJMMs2sm7DmFluwM-3jsXf745p8JInOpxr9Fjw7zdQ28Knp2y6ZERJb0686TVpPZqlZzqUP8So5um66NogdOc6ddV3_Gs4PZ2dfjoqhsUJhGcpVQbmfGG8Rpbes1tpSw42RhqMvKepK-xI992LCHHcedVNPDLKG1UYKHuIn9gY2Fu3C7QBh3pcNE85WVc2l1kZwSrUtGyG9EOh3YXwDrbLDq-Ox-cV3FbKPCJOKMKkIk8ow7cKn2xHL_OLGI7z7AX01qF3_CN_oHp9eXqkQuKpScbVswiJHN9t9x0Mr5JzGi9i3_zjLO3hOY3FEOqMZwcaq--new1P7a3XZd3sp2w_f49-zvSSpfwD7BOYH
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RAhUXHoWqL8AHQOKQ7saPjHNcQVdFlGUPIPZm2Y4tFbWbVbIg9d_jR0pVgSokbiNlEkcznofHmvkAXqFlZqy5CRrAcEAJIa_QITAVlRPSMKxri6lR-BRnM7lY1PMB5zT1wrSrwfUfBTIPCs4ijPbNgi8dJRsNUR5H2lbSudGq8RtwVzDBInbDZ_btujGS1kP-y4uK4SLfU_71Kzfi0kZY-w_nnCLO9NF__-tjeDgkm2SS2Z_AHbfcht1JH8vf7cUleUMSnasb_Tbcn2fqKfCJ6dsuuRMSIerXnSatJ8cJNOfMh7yVnFw2XRu2H_mUEXZd_wy-To-_vDspBoCFwjKU64JyPzbeIkpvWa21pYYbIw1HX1LUlfYleu7FmDnuPOqmHhtkDauNFDzkUWwHNpft0u0CYd6XDRPOVlXNpdZGcEq1LRshvRDo92B0JV5lh-njEQTjXIVTSBSViqJSUVQqi2oP3v5-Y5Unb9zC-zpoQA3m19_Cd3iDT6--q5DAqlJxFTQTHl-p_JqHVsg5jRey-_-4ykvYmr-fqtMPs48H8IDGfolUtjmEzXX3wz2He_bn-qzvXqTN-gt6uulA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absorption+Spectra+of+Electrified+Hydrogen+Molecules&rft.jtitle=The+Astrophysical+journal&rft.au=Walker%2C+Mark+A.&rft.date=2022-06-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=932&rft.issue=1&rft.spage=4&rft_id=info:doi/10.3847%2F1538-4357%2Fac68ee&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ac68ee
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon