CA-SegNet: A channel-attention encoder–decoder network for histopathological image segmentation

Histopathological image segmentation based on encoder–decoder architectures has emerged as a pivotal research area in medical image analysis. However, due to the irrelevant information within multi-channel representations from the encoder, the coarse reuse of shallow features in skip connections may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical signal processing and control Jg. 96; S. 106590
Hauptverfasser: He, Feng, Wang, Weibo, Ren, Lijuan, Zhao, Yixuan, Liu, Zhengjun, Zhu, Yuemin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.10.2024
Elsevier
Schlagworte:
ISSN:1746-8094
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Histopathological image segmentation based on encoder–decoder architectures has emerged as a pivotal research area in medical image analysis. However, due to the irrelevant information within multi-channel representations from the encoder, the coarse reuse of shallow features in skip connections may burden the learning and even adversely affect the decoder. While various variants have been developed to cope with this issue, the performance remains unsatisfactory. In this work, we propose a novel encoder–decoder architecture named CA-SegNet to address the above issue more effectively and achieve advanced histopathological image segmentation. Our novelty is twofold: firstly, a bottleneck-structured decoder is developed to improve the integration of multi-channel feature representations, and secondly, a sequence of channel-attention feature fusion modules (CAFFMs) are developed to adaptively guide the reuse of fine-grained shallow features in skip connections while learning the channel-wise dependencies. Experimental results on different publicly available histopathological image datasets demonstrate that our CA-SegNet outperforms existing state-of-the-art methods on both large and small-scale datasets. •A novel deep learning-based CA-SegNet model for histopathological image segmentation.•A channel-attention feature fusion module to greatly improve shallow feature reuse.•A bottleneck-structured decoder for better feature integration.•Outstanding segmentation performance on both large and small-scale datasets.
AbstractList Histopathological image segmentation based on encoder–decoder architectures has emerged as a pivotal research area in medical image analysis. However, due to the irrelevant information within multi-channel representations from the encoder, the coarse reuse of shallow features in skip connections may burden the learning and even adversely affect the decoder. While various variants have been developed to cope with this issue, the performance remains unsatisfactory. In this work, we propose a novel encoder–decoder architecture named CA-SegNet to address the above issue more effectively and achieve advanced histopathological image segmentation. Our novelty is twofold: firstly, a bottleneck-structured decoder is developed to improve the integration of multi-channel feature representations, and secondly, a sequence of channel-attention feature fusion modules (CAFFMs) are developed to adaptively guide the reuse of fine-grained shallow features in skip connections while learning the channel-wise dependencies. Experimental results on different publicly available histopathological image datasets demonstrate that our CA-SegNet outperforms existing state-of-the-art methods on both large and small-scale datasets. •A novel deep learning-based CA-SegNet model for histopathological image segmentation.•A channel-attention feature fusion module to greatly improve shallow feature reuse.•A bottleneck-structured decoder for better feature integration.•Outstanding segmentation performance on both large and small-scale datasets.
A novel deep learning-based CA-SegNet model for histopathological image segmentation.• A channel-attention feature fusion module (CAFFM) that significantly improves shallow feature reuse.• A bottleneck-structured decoder developed for better feature integration.• Outstanding segmentation performance on both large and small-scale datasets.
ArticleNumber 106590
Author Liu, Zhengjun
He, Feng
Zhu, Yuemin
Ren, Lijuan
Wang, Weibo
Zhao, Yixuan
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0003-1013-0661
  surname: He
  fullname: He, Feng
  email: fenghe@hit.edu.cn
  organization: Institute of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 2
  givenname: Weibo
  surname: Wang
  fullname: Wang, Weibo
  email: wwbhit@hit.edu.cn
  organization: Institute of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 3
  givenname: Lijuan
  surname: Ren
  fullname: Ren, Lijuan
  email: renlijuan@cuit.edu.cn
  organization: School of Software Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
– sequence: 4
  givenname: Yixuan
  surname: Zhao
  fullname: Zhao, Yixuan
  email: zhaoyixuan@hit.edu.cn
  organization: Research Center of Advanced Microscopy and Instrumentation, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 5
  givenname: Zhengjun
  surname: Liu
  fullname: Liu, Zhengjun
  email: zjliu@hit.edu.cn
  organization: School of Physics, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 6
  givenname: Yuemin
  orcidid: 0000-0001-6814-1449
  surname: Zhu
  fullname: Zhu, Yuemin
  email: yue-min.zhu@creatis.insa-lyon.fr
  organization: CREATIS, INSA Lyon, CNRS UMR 5220, INSERM U1294, Universit de Lyon, Villeurbanne, 69621, France
BackLink https://hal.science/hal-04852251$$DView record in HAL
BookMark eNp9kLFOwzAQhj0UibbwAkxZGVLsxIkTxFJVQJEqGIDZci6XxCWNK9sqYuMdeEOehITAwsB01um-_87fjEw60yEhZ4wuGGXpxXZRuD0sIhrxvpEmOZ2QKRM8DTOa82Myc25LKc8E41OiVsvwEet79JfBMoBGdR22ofIeO69NF2AHpkT7-f5R4vcr6NC_GvsSVMYGjXbe7JVvTGtqDaoN9E7VGDisd32AGiJOyFGlWoenP3VOnm-un1brcPNwe7dabkKIReZDpqqcAqTAII-BM0hYnMUQx4VIVEEzgVxwgaIExtICRYpCiSjhFWaUFjSO5-R8zG1UK_e2P8S-SaO0XC83cuj1X06iKGEH1s9m4yxY45zFSoIer_VW6VYyKgeVcisHlXJQKUeVPRr9QX93_QtdjRD2Ag4arXSge7VYaovgZWn0f_gXFqCSxw
CitedBy_id crossref_primary_10_1061_JCCEE5_CPENG_6829
crossref_primary_10_1080_09540091_2025_2508357
crossref_primary_10_1109_JSTARS_2025_3585184
crossref_primary_10_3390_rs17122048
Cites_doi 10.1016/j.neunet.2019.08.025
10.1155/2021/6625688
10.1038/s41597-023-02125-y
10.1109/TIM.2023.3322499
10.3390/cancers14061370
10.1109/TCSI.2023.3303936
10.1016/j.media.2021.101996
10.1016/j.bspc.2023.105250
10.1016/j.bspc.2021.102828
10.1109/JBHI.2020.3039741
10.1109/TMI.2018.2870343
10.1016/j.ymeth.2019.06.014
10.1001/jama.2017.14585
10.1002/ima.22639
10.1109/JBHI.2022.3153671
10.1109/TMI.2021.3097319
10.1016/j.media.2021.102313
10.1109/TMI.2021.3116087
10.1609/aaai.v36i3.20144
10.1016/j.media.2019.01.012
10.1117/1.JMI.6.1.014006
10.1109/JBHI.2020.3024188
10.1109/JBHI.2018.2852635
10.1016/j.compbiomed.2022.106365
10.1049/el.2020.2380
10.1109/WACV51458.2022.00181
10.1109/TMI.2015.2433900
10.1109/TMI.2019.2962013
10.1109/TBME.2022.3216269
10.1109/CVPR.2015.7298965
10.1109/TMI.2021.3130469
10.1109/JBHI.2021.3089201
10.1109/TPAMI.2016.2644615
10.1109/TIP.2019.2919937
10.1109/CVPR.2019.01288
10.1109/LRA.2020.3039744
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.bspc.2024.106590
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
ExternalDocumentID oai:HAL:hal-04852251v1
10_1016_j_bspc_2024_106590
S1746809424006487
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
VOOES
ID FETCH-LOGICAL-c378t-1af90cc6c1c93c41c51383c33b75ab087e4747e7dc116be76e7a7254fe800b033
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001265932700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Oct 14 20:23:25 EDT 2025
Tue Nov 18 20:50:51 EST 2025
Sat Nov 29 02:51:27 EST 2025
Sat Aug 17 15:43:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Encoder–decoder
Channel attention
Histopathological images
Medical image segmentation
Deep learning Channel attention Encoder-decoder Medical image segmentation Histopathological images
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-1af90cc6c1c93c41c51383c33b75ab087e4747e7dc116be76e7a7254fe800b033
ORCID 0000-0003-1013-0661
0000-0001-6814-1449
0000-0002-5217-493X
OpenAccessLink https://hal.science/hal-04852251
ParticipantIDs hal_primary_oai_HAL_hal_04852251v1
crossref_citationtrail_10_1016_j_bspc_2024_106590
crossref_primary_10_1016_j_bspc_2024_106590
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106590
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-10
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
Lin, Chen, Xu, Zhang, Lu, Zhang (b5) 2022; 71
Hu, Perazzi, Heilbron, Wang, Lin, Saenko, Sclaroff (b24) 2020; 6
Yuan, Zhang, Wang, Huang (b40) 2021; 26
Schlemper, Oktay, Schaap, Heinrich, Kainz, Glocker, Rueckert (b37) 2019; 53
Badrinarayanan, Kendall, Cipolla (b22) 2017; 39
Ferianc, Manocha, Fan, Rodrigues (b42) 2021
Zhou, Nie, Adeli, Yin, Lian, Shen (b28) 2019; 29
Li, Pang, Zhang, Zhu, Fu, Tian, Gao (b6) 2023; 152
Das, Nayak, Pachori (b19) 2023
Samala, Chan, Hadjiiski, Helvie, Richter, Cha (b47) 2018; 38
Ibtehaz, Rahman (b33) 2020; 121
Fang, Huang, Yang, Xu, Jiang, Lai (b26) 2022; 32
Chiu, Chao, Chen (b9) 2022; 14
Rony, Belharbi, Dolz, Ayed, McCaffrey, Granger (b45) 2019
Cheng, Tian, Yu, Gao, Kang, Ma, Wu, Liu, Lu (b25) 2022; 76
Sirinukunwattana, Snead, Rajpoot (b46) 2015; 34
Schmitz, Madesta, Nielsen, Krause, Steurer, Werner, Rösch (b11) 2021; 70
A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H.R. Roth, D. Xu, Unetr: Transformers for 3d medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574–584.
Sharma, Gautam, Maji, Pachori, Balabantaray (b13) 2022; 70
Jha, Riegler, Johansen, Halvorsen, Johansen (b34) 2020
Nguyen, Asad, Deng, Huo (b12) 2022; vol. 12032
Gao, Lu, Wang, Ying, Shi (b17) 2022; 26
Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b31) 2018
Yan, Ren, Wang, Wang, Zhang, Liu, Rao, Zheng, Zhang (b2) 2020; 173
Ning, Zhong, Feng, Chen, Zhang (b35) 2021; 41
Thomas, Pawan, Kumar, Horo, Niyas, Vinayagamani, Kesavadas, Rajan (b38) 2020; 25
Xu, Liu, Hou, Liu, Garibaldi, Ellis, Green, Shen, Qiu (b1) 2019; 39
Zuo, Chen, Wang (b39) 2021; 2021
Byra (b16) 2021; 69
Khare, Nishad, Upadhyay, Bajaj (b15) 2020; 56
Chakravarty, Sivaswamy (b27) 2018; 23
H. Wang, P. Cao, J. Wang, O.R. Zaiane, Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, No. 3, 2022, pp. 2441–2449.
Li, Zhang, Tan, Teng, Sun, Zhao, Liu, Xiao, Lee, Li (b7) 2020; 25
H. Tokunaga, Y. Teramoto, A. Yoshizawa, R. Bise, Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12597–12606.
Phukan, Manikandan, Pachori (b18) 2023
Ding, Zhou, Wang, Gevaert, Metaxas, Zhang (b3) 2023; 10
Simonyan, Zisserman (b20) 2014
Bejnordi, Veta, Van Diest, Van Ginneken, Karssemeijer, Litjens, Van Der Laak, Hermsen, Manson, Balkenhol (b44) 2017; 318
Ronneberger, Fischer, Brox (b23) 2015
Valanarasu, Patel (b29) 2022
Yin, Shao (b41) 2023
Valanarasu, Sindagi, Hacihaliloglu, Patel (b36) 2021; 41
Shao, Wang, Huang, Han, Zhang, Huang (b8) 2021; 40
Alom, Yakopcic, Hasan, Taha, Asari (b32) 2019; 6
Hamida, Devanne, Weber, Truntzer, Derangère, Ghiringhelli, Forestier, Wemmert (b4) 2021; 136
Rasal, Veerakumar, Subudhi, Esakkirajan (b14) 2023; 86
Simonyan (10.1016/j.bspc.2024.106590_b20) 2014
Khare (10.1016/j.bspc.2024.106590_b15) 2020; 56
Phukan (10.1016/j.bspc.2024.106590_b18) 2023
Thomas (10.1016/j.bspc.2024.106590_b38) 2020; 25
Sirinukunwattana (10.1016/j.bspc.2024.106590_b46) 2015; 34
Li (10.1016/j.bspc.2024.106590_b7) 2020; 25
Hu (10.1016/j.bspc.2024.106590_b24) 2020; 6
Schmitz (10.1016/j.bspc.2024.106590_b11) 2021; 70
Ibtehaz (10.1016/j.bspc.2024.106590_b33) 2020; 121
10.1016/j.bspc.2024.106590_b21
10.1016/j.bspc.2024.106590_b43
Valanarasu (10.1016/j.bspc.2024.106590_b29) 2022
Ding (10.1016/j.bspc.2024.106590_b3) 2023; 10
Xu (10.1016/j.bspc.2024.106590_b1) 2019; 39
Samala (10.1016/j.bspc.2024.106590_b47) 2018; 38
Gao (10.1016/j.bspc.2024.106590_b17) 2022; 26
Jha (10.1016/j.bspc.2024.106590_b34) 2020
Ronneberger (10.1016/j.bspc.2024.106590_b23) 2015
Cheng (10.1016/j.bspc.2024.106590_b25) 2022; 76
Bejnordi (10.1016/j.bspc.2024.106590_b44) 2017; 318
Alom (10.1016/j.bspc.2024.106590_b32) 2019; 6
Das (10.1016/j.bspc.2024.106590_b19) 2023
Valanarasu (10.1016/j.bspc.2024.106590_b36) 2021; 41
Zhou (10.1016/j.bspc.2024.106590_b28) 2019; 29
Chiu (10.1016/j.bspc.2024.106590_b9) 2022; 14
Yuan (10.1016/j.bspc.2024.106590_b40) 2021; 26
Chakravarty (10.1016/j.bspc.2024.106590_b27) 2018; 23
Ning (10.1016/j.bspc.2024.106590_b35) 2021; 41
Fang (10.1016/j.bspc.2024.106590_b26) 2022; 32
Hamida (10.1016/j.bspc.2024.106590_b4) 2021; 136
Zhou (10.1016/j.bspc.2024.106590_b31) 2018
Rony (10.1016/j.bspc.2024.106590_b45) 2019
10.1016/j.bspc.2024.106590_b10
Lin (10.1016/j.bspc.2024.106590_b5) 2022; 71
Sharma (10.1016/j.bspc.2024.106590_b13) 2022; 70
10.1016/j.bspc.2024.106590_b30
Schlemper (10.1016/j.bspc.2024.106590_b37) 2019; 53
Ferianc (10.1016/j.bspc.2024.106590_b42) 2021
Yin (10.1016/j.bspc.2024.106590_b41) 2023
Zuo (10.1016/j.bspc.2024.106590_b39) 2021; 2021
Li (10.1016/j.bspc.2024.106590_b6) 2023; 152
Shao (10.1016/j.bspc.2024.106590_b8) 2021; 40
Badrinarayanan (10.1016/j.bspc.2024.106590_b22) 2017; 39
Rasal (10.1016/j.bspc.2024.106590_b14) 2023; 86
Byra (10.1016/j.bspc.2024.106590_b16) 2021; 69
Yan (10.1016/j.bspc.2024.106590_b2) 2020; 173
Nguyen (10.1016/j.bspc.2024.106590_b12) 2022; vol. 12032
References_xml – volume: 39
  start-page: 1930
  year: 2019
  end-page: 1941
  ident: b1
  article-title: Attention by selection: A deep selective attention approach to breast cancer classification
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 3163
  year: 2022
  end-page: 3173
  ident: b17
  article-title: A convolutional neural network and graph convolutional network based framework for classification of breast histopathological images
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 23
  start-page: 1151
  year: 2018
  end-page: 1162
  ident: b27
  article-title: RACE-net: a recurrent neural network for biomedical image segmentation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 25
  start-page: 429
  year: 2020
  end-page: 440
  ident: b7
  article-title: Deep learning methods for lung cancer segmentation in whole-slide histopathology images—the acdc@ lunghp challenge 2019
  publication-title: IEEE J. Biomed. Health Inf.
– reference: A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H.R. Roth, D. Xu, Unetr: Transformers for 3d medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574–584.
– year: 2019
  ident: b45
  article-title: Deep weakly-supervised learning methods for classification and localization in histology images: a survey
– reference: H. Wang, P. Cao, J. Wang, O.R. Zaiane, Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, No. 3, 2022, pp. 2441–2449.
– volume: 152
  year: 2023
  ident: b6
  article-title: ATTransUNet: An enhanced hybrid transformer architecture for ultrasound and histopathology image segmentation
  publication-title: Comput. Biol. Med.
– year: 2023
  ident: b19
  article-title: CA-Net: A novel cascaded attention-based network for multi-stage glaucoma classification using fundus images
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 14
  start-page: 1370
  year: 2022
  ident: b9
  article-title: Application of artificial intelligence in lung cancer
  publication-title: Cancers
– volume: vol. 12032
  start-page: 942
  year: 2022
  end-page: 947
  ident: b12
  article-title: Evaluating transformer-based semantic segmentation networks for pathological image segmentation
  publication-title: Medical Imaging 2022: Image Processing
– volume: 86
  year: 2023
  ident: b14
  article-title: Segmentation of gastric cancer from microscopic biopsy images using deep learning approach
  publication-title: Biomed. Signal Process. Control
– volume: 69
  year: 2021
  ident: b16
  article-title: Breast mass classification with transfer learning based on scaling of deep representations
  publication-title: Biomed. Signal Process. Control
– volume: 70
  start-page: 1330
  year: 2022
  end-page: 1339
  ident: b13
  article-title: Li-SegPNet: Encoder-decoder mode lightweight segmentation network for colorectal polyps analysis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 41
  start-page: 476
  year: 2021
  end-page: 490
  ident: b35
  article-title: SMU-Net: Saliency-guided morphology-aware U-Net for breast lesion segmentation in ultrasound image
  publication-title: IEEE Trans. Med. Imaging
– year: 2014
  ident: b20
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 40
  start-page: 3739
  year: 2021
  end-page: 3747
  ident: b8
  article-title: Weakly supervised deep ordinal cox model for survival prediction from whole-slide pathological images
  publication-title: IEEE Trans. Med. Imaging
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: b44
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: Jama
– volume: 38
  start-page: 686
  year: 2018
  end-page: 696
  ident: b47
  article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets
  publication-title: IEEE Trans. Med. Imaging
– volume: 56
  start-page: 1359
  year: 2020
  end-page: 1361
  ident: b15
  article-title: Classification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural network
  publication-title: Electron. Lett.
– volume: 6
  start-page: 014006
  year: 2019
  ident: b32
  article-title: Recurrent residual U-Net for medical image segmentation
  publication-title: J. Med. Imaging
– start-page: 23
  year: 2022
  end-page: 33
  ident: b29
  article-title: Unext: Mlp-based rapid medical image segmentation network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: H. Tokunaga, Y. Teramoto, A. Yoshizawa, R. Bise, Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12597–12606.
– volume: 53
  start-page: 197
  year: 2019
  end-page: 207
  ident: b37
  article-title: Attention gated networks: Learning to leverage salient regions in medical images
  publication-title: Med. Image Anal.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b23
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18
– volume: 70
  year: 2021
  ident: b11
  article-title: Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture
  publication-title: Med. Image Anal.
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  ident: b33
  article-title: MultiResUNet: Rethinking the U-net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
– volume: 29
  start-page: 461
  year: 2019
  end-page: 475
  ident: b28
  article-title: High-resolution encoder–decoder networks for low-contrast medical image segmentation
  publication-title: IEEE Trans. Image Process.
– start-page: 558
  year: 2020
  end-page: 564
  ident: b34
  article-title: Doubleu-net: A deep convolutional neural network for medical image segmentation
  publication-title: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems
– start-page: 483
  year: 2021
  end-page: 494
  ident: b42
  article-title: ComBiNet: Compact convolutional Bayesian neural network for image segmentation
  publication-title: Artificial Neural Networks and Machine Learning–ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part III 30
– volume: 25
  start-page: 1724
  year: 2020
  end-page: 1734
  ident: b38
  article-title: Multi-res-attention UNet: a CNN model for the segmentation of focal cortical dysplasia lesions from magnetic resonance images
  publication-title: IEEE J. Biomed. Health Inf.
– year: 2023
  ident: b41
  article-title: CFU-Net: A coarse-fine U-Net with multi-level attention for medical image segmentation
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 3
  year: 2018
  end-page: 11
  ident: b31
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Med. Image Anal. and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4
– volume: 71
  start-page: 1
  year: 2022
  end-page: 15
  ident: b5
  article-title: Ds-transunet: Dual swin transformer u-net for medical image segmentation
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2023
  ident: b18
  article-title: Afibri-net: A lightweight convolution neural network based atrial fibrillation detector
  publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b22
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 10
  ident: b39
  article-title: R2AU-Net: attention recurrent residual convolutional neural network for multimodal medical image segmentation
  publication-title: Secur. Commun. Netw.
– volume: 136
  year: 2021
  ident: b4
  article-title: Deep learning for colon cancer histopathological images analysis
  publication-title: Comput. Biol. Med.
– volume: 76
  year: 2022
  ident: b25
  article-title: ResGANet: Residual group attention network for medical image classification and segmentation
  publication-title: Med. Image Anal.
– volume: 34
  start-page: 2366
  year: 2015
  end-page: 2378
  ident: b46
  article-title: A stochastic polygons model for glandular structures in colon histology images
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: 263
  year: 2020
  end-page: 270
  ident: b24
  article-title: Real-time semantic segmentation with fast attention
  publication-title: IEEE Robot. Autom. Lett.
– volume: 10
  start-page: 231
  year: 2023
  ident: b3
  article-title: A large-scale synthetic pathological dataset for deep learning-enabled segmentation of breast cancer
  publication-title: Sci. Data
– volume: 173
  start-page: 52
  year: 2020
  end-page: 60
  ident: b2
  article-title: Breast cancer histopathological image classification using a hybrid deep neural network
  publication-title: Methods
– volume: 26
  start-page: 312
  year: 2021
  end-page: 323
  ident: b40
  article-title: Multi-level attention network for retinal vessel segmentation
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 32
  start-page: 528
  year: 2022
  end-page: 543
  ident: b26
  article-title: Nonlocal convolutional block attention module VNet for gliomas automatic segmentation
  publication-title: Int. J. Imaging Syst. Technol.
– reference: J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
– volume: 41
  start-page: 965
  year: 2021
  end-page: 976
  ident: b36
  article-title: Kiu-net: Overcomplete convolutional architectures for biomedical image and volumetric segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 121
  start-page: 74
  year: 2020
  ident: 10.1016/j.bspc.2024.106590_b33
  article-title: MultiResUNet: Rethinking the U-net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.08.025
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b39
  article-title: R2AU-Net: attention recurrent residual convolutional neural network for multimodal medical image segmentation
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2021/6625688
– volume: 10
  start-page: 231
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.106590_b3
  article-title: A large-scale synthetic pathological dataset for deep learning-enabled segmentation of breast cancer
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02125-y
– year: 2023
  ident: 10.1016/j.bspc.2024.106590_b19
  article-title: CA-Net: A novel cascaded attention-based network for multi-stage glaucoma classification using fundus images
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3322499
– volume: 14
  start-page: 1370
  issue: 6
  year: 2022
  ident: 10.1016/j.bspc.2024.106590_b9
  article-title: Application of artificial intelligence in lung cancer
  publication-title: Cancers
  doi: 10.3390/cancers14061370
– year: 2023
  ident: 10.1016/j.bspc.2024.106590_b18
  article-title: Afibri-net: A lightweight convolution neural network based atrial fibrillation detector
  publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap.
  doi: 10.1109/TCSI.2023.3303936
– start-page: 558
  year: 2020
  ident: 10.1016/j.bspc.2024.106590_b34
  article-title: Doubleu-net: A deep convolutional neural network for medical image segmentation
– volume: 70
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b11
  article-title: Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.101996
– volume: 86
  year: 2023
  ident: 10.1016/j.bspc.2024.106590_b14
  article-title: Segmentation of gastric cancer from microscopic biopsy images using deep learning approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105250
– volume: 69
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b16
  article-title: Breast mass classification with transfer learning based on scaling of deep representations
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102828
– volume: 25
  start-page: 429
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2024.106590_b7
  article-title: Deep learning methods for lung cancer segmentation in whole-slide histopathology images—the acdc@ lunghp challenge 2019
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3039741
– start-page: 3
  year: 2018
  ident: 10.1016/j.bspc.2024.106590_b31
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– start-page: 234
  year: 2015
  ident: 10.1016/j.bspc.2024.106590_b23
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 38
  start-page: 686
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2024.106590_b47
  article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2870343
– start-page: 23
  year: 2022
  ident: 10.1016/j.bspc.2024.106590_b29
  article-title: Unext: Mlp-based rapid medical image segmentation network
– year: 2019
  ident: 10.1016/j.bspc.2024.106590_b45
– volume: 173
  start-page: 52
  year: 2020
  ident: 10.1016/j.bspc.2024.106590_b2
  article-title: Breast cancer histopathological image classification using a hybrid deep neural network
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.06.014
– start-page: 483
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b42
  article-title: ComBiNet: Compact convolutional Bayesian neural network for image segmentation
– year: 2023
  ident: 10.1016/j.bspc.2024.106590_b41
  article-title: CFU-Net: A coarse-fine U-Net with multi-level attention for medical image segmentation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 318
  start-page: 2199
  issue: 22
  year: 2017
  ident: 10.1016/j.bspc.2024.106590_b44
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: Jama
  doi: 10.1001/jama.2017.14585
– volume: 32
  start-page: 528
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2024.106590_b26
  article-title: Nonlocal convolutional block attention module VNet for gliomas automatic segmentation
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22639
– volume: 26
  start-page: 3163
  issue: 7
  year: 2022
  ident: 10.1016/j.bspc.2024.106590_b17
  article-title: A convolutional neural network and graph convolutional network based framework for classification of breast histopathological images
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3153671
– volume: 40
  start-page: 3739
  issue: 12
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b8
  article-title: Weakly supervised deep ordinal cox model for survival prediction from whole-slide pathological images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3097319
– volume: 76
  year: 2022
  ident: 10.1016/j.bspc.2024.106590_b25
  article-title: ResGANet: Residual group attention network for medical image classification and segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102313
– volume: 41
  start-page: 476
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b35
  article-title: SMU-Net: Saliency-guided morphology-aware U-Net for breast lesion segmentation in ultrasound image
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3116087
– year: 2014
  ident: 10.1016/j.bspc.2024.106590_b20
– ident: 10.1016/j.bspc.2024.106590_b43
  doi: 10.1609/aaai.v36i3.20144
– volume: 136
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b4
  article-title: Deep learning for colon cancer histopathological images analysis
  publication-title: Comput. Biol. Med.
– volume: 53
  start-page: 197
  year: 2019
  ident: 10.1016/j.bspc.2024.106590_b37
  article-title: Attention gated networks: Learning to leverage salient regions in medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.012
– volume: 6
  start-page: 014006
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2024.106590_b32
  article-title: Recurrent residual U-Net for medical image segmentation
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.6.1.014006
– volume: 25
  start-page: 1724
  issue: 5
  year: 2020
  ident: 10.1016/j.bspc.2024.106590_b38
  article-title: Multi-res-attention UNet: a CNN model for the segmentation of focal cortical dysplasia lesions from magnetic resonance images
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3024188
– volume: 23
  start-page: 1151
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2024.106590_b27
  article-title: RACE-net: a recurrent neural network for biomedical image segmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2852635
– volume: 152
  year: 2023
  ident: 10.1016/j.bspc.2024.106590_b6
  article-title: ATTransUNet: An enhanced hybrid transformer architecture for ultrasound and histopathology image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106365
– volume: 56
  start-page: 1359
  issue: 25
  year: 2020
  ident: 10.1016/j.bspc.2024.106590_b15
  article-title: Classification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural network
  publication-title: Electron. Lett.
  doi: 10.1049/el.2020.2380
– ident: 10.1016/j.bspc.2024.106590_b30
  doi: 10.1109/WACV51458.2022.00181
– volume: 34
  start-page: 2366
  issue: 11
  year: 2015
  ident: 10.1016/j.bspc.2024.106590_b46
  article-title: A stochastic polygons model for glandular structures in colon histology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2433900
– volume: 39
  start-page: 1930
  issue: 6
  year: 2019
  ident: 10.1016/j.bspc.2024.106590_b1
  article-title: Attention by selection: A deep selective attention approach to breast cancer classification
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2962013
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.106590_b5
  article-title: Ds-transunet: Dual swin transformer u-net for medical image segmentation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 70
  start-page: 1330
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2024.106590_b13
  article-title: Li-SegPNet: Encoder-decoder mode lightweight segmentation network for colorectal polyps analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3216269
– ident: 10.1016/j.bspc.2024.106590_b21
  doi: 10.1109/CVPR.2015.7298965
– volume: 41
  start-page: 965
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b36
  article-title: Kiu-net: Overcomplete convolutional architectures for biomedical image and volumetric segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3130469
– volume: 26
  start-page: 312
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2024.106590_b40
  article-title: Multi-level attention network for retinal vessel segmentation
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2021.3089201
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2024.106590_b22
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 29
  start-page: 461
  year: 2019
  ident: 10.1016/j.bspc.2024.106590_b28
  article-title: High-resolution encoder–decoder networks for low-contrast medical image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2919937
– ident: 10.1016/j.bspc.2024.106590_b10
  doi: 10.1109/CVPR.2019.01288
– volume: vol. 12032
  start-page: 942
  year: 2022
  ident: 10.1016/j.bspc.2024.106590_b12
  article-title: Evaluating transformer-based semantic segmentation networks for pathological image segmentation
– volume: 6
  start-page: 263
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2024.106590_b24
  article-title: Real-time semantic segmentation with fast attention
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3039744
SSID ssj0048714
Score 2.3847573
Snippet Histopathological image segmentation based on encoder–decoder architectures has emerged as a pivotal research area in medical image analysis. However, due to...
A novel deep learning-based CA-SegNet model for histopathological image segmentation.• A channel-attention feature fusion module (CAFFM) that significantly...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106590
SubjectTerms Channel attention
Computer Science
Deep learning
Encoder–decoder
Histopathological images
Medical image segmentation
Medical Imaging
Title CA-SegNet: A channel-attention encoder–decoder network for histopathological image segmentation
URI https://dx.doi.org/10.1016/j.bspc.2024.106590
https://hal.science/hal-04852251
Volume 96
WOSCitedRecordID wos001265932700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMceBQqyksrxK1aFHu9XpubVVqlEEWVWkTgsrLX68RR6kZJGuUv8K-ZfdhJGlGVA5dNNLEda-fz7Ox45huEPkpKVU5pTjJZdEhQMEbSkGYEnPHYL2IJLoUhce3xfj8aDOLzVut3XQuznPCqilarePpfVQ0yULYunf0HdTcXBQF8B6XDCGqH8V6KP07IhRr2lY35mcreSk2I5tG0mY2aujJXM5Ir83lU2Uxwk3Bo6Id1l-LGJpZXOqtnroZXrkqp2noPbKr3bWllOdSe7dRWHtS1jy4Vfh1yNd6ycuulieRba_NDldl18_rHGsNeOb5Zo_fXKDVx3Z_lqpa6cIUfNIlvLobmFvwNk8sDTYlsWx3XNtl2ud0x7zbSMP6UzaeaftIPQBQy2290m0u7m1yI8y-nonfW_7b960YCYjfpwThKJwTsGDiizFvCRnrP5yyO2mgvOTsZfK2XddjYGaL45nZdBZZNFrx9Q3_zch6M6ni98V8un6EnbuOBEwuY56ilqn30tG7qgZ2N30ePNxgqXyDRoOkzTvAOlvAtLGGHJQxYwjtYwgZLeBNLL9H305PL4y5xPTmIpDxaEC8t4o6UofRkTGXgSebRiMITn3GWZp2IqwA2qIrn0vPCTPFQ8ZT7LCgU7EyyDqUHqF1dV-oVwrSQCrzjIGeMBmmapVIV4I_GYSzjPAi9Q-TVcyikI6zXfVMmos5MHAs970LPu7DzfoiOmnOmlq7lzqNZrRrhHE7rSAoA3J3nfQA9Nn-gGdoBSkLL1kB6fZ-D3qBH64fkLWovZjfqHXool4tyPnvvIPgHvWWsoA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CA-SegNet%3A+A+channel-attention+encoder-decoder+network+for+histopathological+image+segmentation&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=He%2C+Feng&rft.au=Wang%2C+Weibo&rft.au=Ren%2C+Lijuan&rft.au=Zhao%2C+Yixuan&rft.date=2024-10-01&rft.pub=Elsevier&rft.issn=1746-8094&rft.volume=96&rft_id=info:doi/10.1016%2Fj.bspc.2024.106590&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04852251v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon