Recursive form of Sobolev gradient method for ODEs on long intervals

The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we show that the efficiency of the algorithm as often used breaks down for long intervals. Efficiency is recovered by solving from left to right o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer mathematics Ročník 85; číslo 11; s. 1727 - 1740
Hlavní autori: Mujeeb, D., Neuberger, J. W., Sial, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 01.11.2008
Predmet:
ISSN:0020-7160, 1029-0265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we show that the efficiency of the algorithm as often used breaks down for long intervals. Efficiency is recovered by solving from left to right on subintervals of smaller length. The mathematical formulation for Sobolev gradients over non-uniform one-dimensional grids is given so that nodes can be added or removed as required for accuracy. A recursive variation of the Sobolev gradient algorithm is presented which constructs subintervals according to how much work is required to solve them. This allows efficient solution of initial-value problems on long intervals, including for stiff ODEs. The technique is illustrated by numerical solutions for the prototypical problem u′=u, equation for flame-size, and the van der Pol's equation.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7160
1029-0265
DOI:10.1080/00207160701558465