Recursive form of Sobolev gradient method for ODEs on long intervals

The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we show that the efficiency of the algorithm as often used breaks down for long intervals. Efficiency is recovered by solving from left to right o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 85; číslo 11; s. 1727 - 1740
Hlavní autoři: Mujeeb, D., Neuberger, J. W., Sial, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 01.11.2008
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we show that the efficiency of the algorithm as often used breaks down for long intervals. Efficiency is recovered by solving from left to right on subintervals of smaller length. The mathematical formulation for Sobolev gradients over non-uniform one-dimensional grids is given so that nodes can be added or removed as required for accuracy. A recursive variation of the Sobolev gradient algorithm is presented which constructs subintervals according to how much work is required to solve them. This allows efficient solution of initial-value problems on long intervals, including for stiff ODEs. The technique is illustrated by numerical solutions for the prototypical problem u′=u, equation for flame-size, and the van der Pol's equation.
AbstractList The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we show that the efficiency of the algorithm as often used breaks down for long intervals. Efficiency is recovered by solving from left to right on subintervals of smaller length. The mathematical formulation for Sobolev gradients over non-uniform one-dimensional grids is given so that nodes can be added or removed as required for accuracy. A recursive variation of the Sobolev gradient algorithm is presented which constructs subintervals according to how much work is required to solve them. This allows efficient solution of initial-value problems on long intervals, including for stiff ODEs. The technique is illustrated by numerical solutions for the prototypical problem u′=u, equation for flame-size, and the van der Pol's equation.
Author Mujeeb, D.
Sial, S.
Neuberger, J. W.
Author_xml – sequence: 1
  givenname: D.
  surname: Mujeeb
  fullname: Mujeeb, D.
  organization: Department of Computer Science , Cornell University
– sequence: 2
  givenname: J. W.
  surname: Neuberger
  fullname: Neuberger, J. W.
  organization: Department of Mathematics , University of North Texas
– sequence: 3
  givenname: S.
  surname: Sial
  fullname: Sial, S.
  email: sultans@lums.edu.pk
  organization: Department of Mathematics , Lahore University of Management Sciences, Sector U, DHA
BookMark eNqNkEtLAzEUhYNUsK3-AHdZuRvNnVdmwI209QGFgo91yGSSGkmTmqTV_ntnqCsLxdW5cM537-WM0MA6KxG6BHINpCI3hKSEQkkogaKo8rI4QUMgaZ2QtCwGaNj7SR84Q6MQPgghVU3LIZo-S7HxQW8lVs6vsFP4xTXOyC1eet5qaSNeyfju2t7Hi-ksYGexcXaJtY3Sb7kJ5-hUdSIvfnWM3u5nr5PHZL54eJrczRORURoTJZVoRd2SEhqZU-iegLpoacMVAAjgnNMsr0gNIqU8parNu0k1WZHJshQyG6Or_d61d58bGSJb6SCkMdxKtwksKwroVqZdEPZB4V0IXiq29nrF_Y4BYX1f7KCvjqF_GKEjj9rZ6Lk2R8nbPalt3yH_ct60LPKdcV55boXuXvvH4SP4AcXid8x-AFXSlPg
CitedBy_id crossref_primary_10_1002_num_23121
crossref_primary_10_1007_s40314_016_0319_7
crossref_primary_10_1016_j_jcp_2011_03_056
crossref_primary_10_1016_j_jcp_2009_10_048
Cites_doi 10.1016/j.cam.2004.01.038
10.1088/0953-2048/18/5/015
10.1016/j.camwa.2005.08.010
10.1007/978-1-4612-0977-5
10.1088/0266-5611/21/6/010
10.1007/BF01448839
10.1016/j.camwa.2005.08.011
10.1016/S0378-4754(02)00190-8
10.1016/S0021-9991(03)00202-X
10.1016/S0096-3003(99)00046-6
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2008
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2008
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160701558465
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1740
ExternalDocumentID 10_1080_00207160701558465
255704
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTCW
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYJJ
AAYXX
ABEFU
ACAGQ
ACGEE
ACTIO
AEUMN
AFFNX
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
AQRUH
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
HF~
H~9
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c377t-fefcdc9d061be471000195d7baf111c1aaa7348091c27a27fd41c2fb353e66ce3
IEDL.DBID TFW
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259927900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Wed Oct 01 14:40:19 EDT 2025
Sat Nov 29 02:21:29 EST 2025
Tue Nov 18 21:27:09 EST 2025
Mon Oct 20 23:46:36 EDT 2025
Mon May 13 12:10:04 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-fefcdc9d061be471000195d7baf111c1aaa7348091c27a27fd41c2fb353e66ce3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35510192
PQPubID 23500
PageCount 14
ParticipantIDs crossref_primary_10_1080_00207160701558465
proquest_miscellaneous_35510192
informaworld_taylorfrancis_310_1080_00207160701558465
crossref_citationtrail_10_1080_00207160701558465
PublicationCentury 2000
PublicationDate 2008-11-00
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-00
PublicationDecade 2000
PublicationTitle International journal of computer mathematics
PublicationYear 2008
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0011
Mahavier W. T. (CIT0009) 1997; 4
CIT0003
Karatson J. (CIT0005) 2004; 75
CIT0014
Beasley C. (CIT0001) 1981
CIT0002
CIT0013
CIT0016
CIT0004
CIT0015
CIT0007
CIT0006
CIT0017
Neuberger J. W. (CIT0012) 1997
CIT0008
References_xml – ident: CIT0008
  doi: 10.1016/j.cam.2004.01.038
– ident: CIT0015
  doi: 10.1088/0953-2048/18/5/015
– ident: CIT0017
– volume: 4
  start-page: 435
  year: 1997
  ident: CIT0009
  publication-title: Nonlinear World
– ident: CIT0011
– ident: CIT0006
  doi: 10.1016/j.camwa.2005.08.010
– ident: CIT0013
  doi: 10.1007/978-1-4612-0977-5
– ident: CIT0002
  doi: 10.1088/0266-5611/21/6/010
– ident: CIT0003
  doi: 10.1007/BF01448839
– ident: CIT0007
  doi: 10.1016/j.camwa.2005.08.011
– volume-title: Finite Element Solution to Nonlinear Partial Differential Equations
  year: 1981
  ident: CIT0001
– ident: CIT0004
  doi: 10.1016/S0378-4754(02)00190-8
– volume-title: Springer Lecture Notes in Mathematics 1670
  year: 1997
  ident: CIT0012
– ident: CIT0016
  doi: 10.1016/S0021-9991(03)00202-X
– ident: CIT0014
  doi: 10.1016/S0096-3003(99)00046-6
– volume: 75
  start-page: 1
  year: 2004
  ident: CIT0005
  publication-title: Electron. J. Differential Equations
SSID ssj0008976
Score 1.7946378
Snippet The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1727
SubjectTerms initial-value problems
numerical solutions
ODEs
Sobolev gradients
Title Recursive form of Sobolev gradient method for ODEs on long intervals
URI https://www.tandfonline.com/doi/abs/10.1080/00207160701558465
https://www.proquest.com/docview/35510192
Volume 85
WOSCitedRecordID wos000259927900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hioGF8hTl6YEJKVIa5-UR0VZMBUER3SLbsatKVYKatOLn43OSilLUAbZIOTuRfb472999B3DrxdIE8VI6Wvmp4wcxd1jcVY6gOpQ61Eyl3BabiIbDeDxmzzU2p6hhlbiH1hVRhLXVuLi5KBpEHGZwG8cYGmU1ztD4T0wxN1E9AvpGg_eVHY6ZLS2H0g6KN3eav_Ww5pXWOEs3bLR1PIP2P3_5APbriJPcVypyCDsqO4J2U82B1Iv7GHovePSOaHaC_0VyTV5zkc_UkkzmFhhWkqreNL4nT71-QfKMzPJsQqYWOWk0-QTeBv3Rw6NT11hwJI2i0kyRlqlkqXHrQvlI9YMZhGkkuDZWUHY558h_Y6IK6UXci3TqmyctaEBVGEpFT6GV5Zk6A8I4dzX1beqtTz1XeNoXYUQ1N3ssHnsdcJsxTmRNQI51MGZJd8VT-mOUOnC3avJRsW9sE3a_T1xS2iMPXdUn2RRPys-yA8GWJnTLp24apUjMcsQ7Fp6pfGHaBGjkmHf-x54vYM8iUmy24yW0yvlCXcGuXJbTYn5tFfwLr_L2BA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90Cvri_MT5tTz4JBS6pp-P4jYmzik6cW8lTZMxGK1s3fDPN5e2wznZg74VeklLcrlLLne_H8C15XO1iefckMKODdvxmRH4DWFEVLpcujIQMdNkE16v5w8GwXMRcJsWaZV4hpY5UIS21bi4MRhdpsRhCbfyjK7SVuUNlQN1NmELmenw8NVvvy8ssR9ocjkUN1C-vNX8rYslv7SEWrpipbXraVf_-9P7sFdsOsltriUHsCGSQ6iWhA6kWN9H0HzB6DsmtBP8MZJK8ppG6VjMyXCic8MyklNO43vy1GxNSZqQcZoMyUgnTyplPoa3dqt_1zEKmgWDU8_L1CxJHvMgVp49Ejai_WARYexFTCpDyBuMMYTAURsLbnnM8mRsqycZUYcK1-WCnkAlSRNxCiRgzJTU1tW3NrXMyJJ25HpUMnXMYr5VA7Mc5JAXGORIhTEOGwuo0h-jVIObRZOPHIBjnbD5febCTEc9ZE5RsioeZp9ZDZw1TeiaT9VLrQjVisRrFpaIdKbaOGjnAuvsjz3XYafTf-yG3fvewzns6gQVXfx4AZVsMhOXsM3n2Wg6udLa_gU6Nvon
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MT5tTz4JBS6pp-P4lYUZQ6d6FtJ02QMRju2bvjnm0vb4ZzsQd8KvaQludxdkt_9DuDa8rkK4jk3pLATw3Z8ZgR-SxgxlS6XrgxEwnSxCa_b9T8-gl6JzZmWsErcQ8uCKELbalzc40RWiDjM4FaO0VXKqpyh8p_OJmypsNlBpe6H7wtD7Ae6thyKGyhfXWr-1sWSW1oiLV0x0trzhPV__vM-7JUhJ7ktdOQANkR6CPWqnAMpV_cRtF_w7B3h7AT_i2SSvGZxNhJzMphoZFhOioLT-J48tztTkqVklKUDMtTQSaXKx_AWdvp390ZZZMHg1PNyNUeSJzxIlF-PhY1cP5hCmHgxk8oM8hZjDAlwVFjBLY9Znkxs9SRj6lDhulzQE6ilWSpOgQSMmZLaOvfWppYZW9KOXY9KpjZZzLcaYFZjHPGSgRwLYYyi1oKo9McoNeBm0WRc0G-sEza_T1yU6zMPWRQoWRWP8s-8Ac6aJnTNp5qVUkRqPeIlC0tFNlNtHLRygXX2x56bsNNrh9HTQ_fxHHY1OkVnPl5ALZ_MxCVs83k-nE6utK5_AURh-Nk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+form+of+Sobolev+gradient+method+for+ODEs+on+long+intervals&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Mujeeb%2C+D.&rft.au=Neuberger%2C+J.+W.&rft.au=Sial%2C+S.&rft.date=2008-11-01&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=85&rft.issue=11&rft.spage=1727&rft.epage=1740&rft_id=info:doi/10.1080%2F00207160701558465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207160701558465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon