Recursive form of Sobolev gradient method for ODEs on long intervals
The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we show that the efficiency of the algorithm as often used breaks down for long intervals. Efficiency is recovered by solving from left to right o...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 85; číslo 11; s. 1727 - 1740 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
01.11.2008
|
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we show that the efficiency of the algorithm as often used breaks down for long intervals. Efficiency is recovered by solving from left to right on subintervals of smaller length. The mathematical formulation for Sobolev gradients over non-uniform one-dimensional grids is given so that nodes can be added or removed as required for accuracy. A recursive variation of the Sobolev gradient algorithm is presented which constructs subintervals according to how much work is required to solve them. This allows efficient solution of initial-value problems on long intervals, including for stiff ODEs. The technique is illustrated by numerical solutions for the prototypical problem u′=u, equation for flame-size, and the van der Pol's equation. |
|---|---|
| AbstractList | The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we show that the efficiency of the algorithm as often used breaks down for long intervals. Efficiency is recovered by solving from left to right on subintervals of smaller length. The mathematical formulation for Sobolev gradients over non-uniform one-dimensional grids is given so that nodes can be added or removed as required for accuracy. A recursive variation of the Sobolev gradient algorithm is presented which constructs subintervals according to how much work is required to solve them. This allows efficient solution of initial-value problems on long intervals, including for stiff ODEs. The technique is illustrated by numerical solutions for the prototypical problem u'=u, equation for flame-size, and the van der Pol's equation. |
| Author | Mujeeb, D. Sial, S. Neuberger, J. W. |
| Author_xml | – sequence: 1 givenname: D. surname: Mujeeb fullname: Mujeeb, D. organization: Department of Computer Science , Cornell University – sequence: 2 givenname: J. W. surname: Neuberger fullname: Neuberger, J. W. organization: Department of Mathematics , University of North Texas – sequence: 3 givenname: S. surname: Sial fullname: Sial, S. email: sultans@lums.edu.pk organization: Department of Mathematics , Lahore University of Management Sciences, Sector U, DHA |
| BookMark | eNqNkEtLAzEUhYNUsK3-AHdZuRvNnVdmwI209QGFgo91yGSSGkmTmqTV_ntnqCsLxdW5cM537-WM0MA6KxG6BHINpCI3hKSEQkkogaKo8rI4QUMgaZ2QtCwGaNj7SR84Q6MQPgghVU3LIZo-S7HxQW8lVs6vsFP4xTXOyC1eet5qaSNeyfju2t7Hi-ksYGexcXaJtY3Sb7kJ5-hUdSIvfnWM3u5nr5PHZL54eJrczRORURoTJZVoRd2SEhqZU-iegLpoacMVAAjgnNMsr0gNIqU8parNu0k1WZHJshQyG6Or_d61d58bGSJb6SCkMdxKtwksKwroVqZdEPZB4V0IXiq29nrF_Y4BYX1f7KCvjqF_GKEjj9rZ6Lk2R8nbPalt3yH_ct60LPKdcV55boXuXvvH4SP4AcXid8x-AFXSlPg |
| CitedBy_id | crossref_primary_10_1002_num_23121 crossref_primary_10_1007_s40314_016_0319_7 crossref_primary_10_1016_j_jcp_2011_03_056 crossref_primary_10_1016_j_jcp_2009_10_048 |
| Cites_doi | 10.1016/j.cam.2004.01.038 10.1088/0953-2048/18/5/015 10.1016/j.camwa.2005.08.010 10.1007/978-1-4612-0977-5 10.1088/0266-5611/21/6/010 10.1007/BF01448839 10.1016/j.camwa.2005.08.011 10.1016/S0378-4754(02)00190-8 10.1016/S0021-9991(03)00202-X 10.1016/S0096-3003(99)00046-6 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2008 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2008 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/00207160701558465 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1029-0265 |
| EndPage | 1740 |
| ExternalDocumentID | 10_1080_00207160701558465 255704 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABUFD ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACNCT ACTCW ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGCQS AGDLA AGMYJ AHDZW AI. AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQTUD ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z MK~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UPT UT5 UU3 VH1 WH7 ZGOLN ~S~ 07G 1TA AAIKQ AAKBW AAYJJ AAYXX ABEFU ACAGQ ACGEE ACTIO AEUMN AFFNX AGLEN AGROQ AHMOU ALCKM AMEWO AMXXU AQRUH BCCOT BPLKW C06 CITATION CRFIH DMQIW DWIFK HF~ H~9 IVXBP LJTGL NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q ZY4 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c377t-fefcdc9d061be471000195d7baf111c1aaa7348091c27a27fd41c2fb353e66ce3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259927900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7160 |
| IngestDate | Wed Oct 01 14:40:19 EDT 2025 Sat Nov 29 02:21:29 EST 2025 Tue Nov 18 21:27:09 EST 2025 Mon Oct 20 23:46:36 EDT 2025 Mon May 13 12:10:04 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-fefcdc9d061be471000195d7baf111c1aaa7348091c27a27fd41c2fb353e66ce3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 35510192 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1080_00207160701558465 proquest_miscellaneous_35510192 informaworld_taylorfrancis_310_1080_00207160701558465 crossref_citationtrail_10_1080_00207160701558465 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-11-00 |
| PublicationDateYYYYMMDD | 2008-11-01 |
| PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-00 |
| PublicationDecade | 2000 |
| PublicationTitle | International journal of computer mathematics |
| PublicationYear | 2008 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0011 Mahavier W. T. (CIT0009) 1997; 4 CIT0003 Karatson J. (CIT0005) 2004; 75 CIT0014 Beasley C. (CIT0001) 1981 CIT0002 CIT0013 CIT0016 CIT0004 CIT0015 CIT0007 CIT0006 CIT0017 Neuberger J. W. (CIT0012) 1997 CIT0008 |
| References_xml | – ident: CIT0008 doi: 10.1016/j.cam.2004.01.038 – ident: CIT0015 doi: 10.1088/0953-2048/18/5/015 – ident: CIT0017 – volume: 4 start-page: 435 year: 1997 ident: CIT0009 publication-title: Nonlinear World – ident: CIT0011 – ident: CIT0006 doi: 10.1016/j.camwa.2005.08.010 – ident: CIT0013 doi: 10.1007/978-1-4612-0977-5 – ident: CIT0002 doi: 10.1088/0266-5611/21/6/010 – ident: CIT0003 doi: 10.1007/BF01448839 – ident: CIT0007 doi: 10.1016/j.camwa.2005.08.011 – volume-title: Finite Element Solution to Nonlinear Partial Differential Equations year: 1981 ident: CIT0001 – ident: CIT0004 doi: 10.1016/S0378-4754(02)00190-8 – volume-title: Springer Lecture Notes in Mathematics 1670 year: 1997 ident: CIT0012 – ident: CIT0016 doi: 10.1016/S0021-9991(03)00202-X – ident: CIT0014 doi: 10.1016/S0096-3003(99)00046-6 – volume: 75 start-page: 1 year: 2004 ident: CIT0005 publication-title: Electron. J. Differential Equations |
| SSID | ssj0008976 |
| Score | 1.7945396 |
| Snippet | The Sobolev gradient method has been shown to be effective at constructing finite-dimensional approximations to solutions of initial-value problems. Here we... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1727 |
| SubjectTerms | initial-value problems numerical solutions ODEs Sobolev gradients |
| Title | Recursive form of Sobolev gradient method for ODEs on long intervals |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207160701558465 https://www.proquest.com/docview/35510192 |
| Volume | 85 |
| WOSCitedRecordID | wos000259927900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 1029-0265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008976 issn: 0020-7160 databaseCode: TFW dateStart: 19640101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EPHixPrE-9-BJCDTPTY5iWzxIFa3YW9hnKZREmrT4853ZJMVa6UFvgcxsls28dvebGUJuEq1FKFXoKA7qFpjIOLHHXEfIIDShUiJkNlH4kQ0G8WiUPNfYnKKGVeIe2lSFIqytRuXmomgQcZjBDY4xAmEFZwj-E1PMIapHQN-w_760w3FiW8shtYPkzZ3mbyOseKWVmqVrNto6nn7rn1PeJ3t1xEnvKhE5IFs6OyStppsDrZX7iHRf8Ogd0ewU50VzQ19zkU_1go5nFhhW0qrfNL6nT91eQfOMTvNsTCcWOQmSfEze-r3h_YNT91hwpM9Y6RhtpJKJArcudIClfjCDUDHBDVhB6XLOsf4NRBXSY9xjRgXwZIQf-jqKpPZPyHaWZ_qUUJ0k3DUwjjIsiEGvpYgCmUCEIDsadplt0mnWOJV1AXLsgzFN3WWd0h-r1Ca3S5aPqvrGJuLO9x-XlvbIw1T9SdbJ0_KzbJNwA4u_4VPXjVCkoI54x8Iznc-BJ0Qjl3hnfxz5nOxaRIrNdrwg2-Vsri_JjlyUk2J2ZQX8Cw3s9mM |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4omuhFfEZ8sQdPJk2Adrvt0QgEI6JRjNyadh-EhLQGCvHnO7ttiYjhoLcmndlutvPYnZ35BuDalzKiXFBLhKhujnKV5TVY3Yq4QxUVIqLMFAp3Wa_nDQb-cx5wm-ZplfoMrTKgCGOrtXLrYHSREqdLuNEzuiit6A3RgdJN2DKd6VCe--33hSX2fNNcTpNbmr641fxtiCW_tIRaumKljetpl_876X3Yyzed5DaTkgPYkPEhlIuGDiTX7yNovujou05oJ3piJFHkNYmSsZyT4cTkhqUkazmt35OnZmtKkpiMk3hIRiZ5EoX5GN7arf5dx8rbLFjcZiy1lFRccF-gZ4-ko9F-dBGhYFGo0BDyehiGGgIHNxa8wcIGU8LBJxXZ1Jauy6V9AqU4ieUpEOn7YV3hOEIxx0PV5pHrcB83Cbwm8aBZgVqxyAHPMch1K4xxUF9Alf5YpQrcLFg-MgCOdcS1738uSE3UQ2UtSlbJg_QzrQBdw2Kv-VS1kIoANVJfs4SxTGbIQ7Wd8xtnfxy5Cjud_mM36N73Hs5h1ySomOLHCyilk5m8hG0-T0fTyZWR9i-iNPqI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oGuNFfEZ8sQdPJk2Adrvt0QhEI0GiGLk17T4ICWkJFOLPd3bbEhHDQW9NOrPdbOe1uzPfANz6UkaUC2qJENXNUa6yvAarWxF3qKJCRJSZQuEO63a9wcDv5bk5szytUu-hVQYUYWy1Vu6JUEVGnK7gRsfoorCiM0T_SbdhB8NmV-tlv_2xNMSeb3rLaXJL0xeXmr8NseKWVkBL14y08Tzt8j_nfAgHechJ7jMZOYItGR9DuWjnQHLtPoHmqz571-nsRM-LJIq8JVEylgsynJrMsJRkDaf1e_LSbM1IEpNxEg_JyKROoiifwnu71X94tPImCxa3GUstJRUX3Bfo1yPpaKwfXUIoWBQqNIO8HoahBsDBsII3WNhgSjj4pCKb2tJ1ubTPoBQnsTwHIn0_rCscRyjmeKjYPHId7mOIwGsSt5kVqBVrHPAcgVw3whgH9SVQ6Y9VqsDdkmWSwW9sIq59_3FBas48VNagZJ08SD_TCtANLPaGT1ULoQhQH_UlSxjLZI48VFs5v3Hxx5GrsNdrtoPOU_f5EvZNdoqpfLyCUjqdy2vY5Yt0NJveGFn_ApGk-TE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+form+of+Sobolev+gradient+method+for+ODEs+on+long+intervals&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Mujeeb%2C+D&rft.au=Neuberger%2C+J+W&rft.au=Sial%2C+S&rft.date=2008-11-01&rft.issn=0020-7160&rft.volume=85&rft.issue=11&rft.spage=1727&rft.epage=1740&rft_id=info:doi/10.1080%2F00207160701558465&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon |