Green Computing Process and its Optimization Using Machine Learning Algorithm in Healthcare Sector
Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized optimization techniques in big data analytics consider the important part of the healthcare network communication issues in decision making a...
Uloženo v:
| Vydáno v: | Mobile networks and applications Ročník 25; číslo 4; s. 1307 - 1318 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1383-469X, 1572-8153 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized optimization techniques in big data analytics consider the important part of the healthcare network communication issues in decision making approach of patient information. This article focused on heart disease data mining and relevant issues since the heart diseases are considered as a reason for causing deaths just as for males and females all over the world. So, people need to be conscious of possible aspects of heart disease. Even though genetics has a part, some of the standards of living practiced are the fundamental reasons for the heart disease. The heart diseases are classified by classical techniques with 13 risk factors and helpful variables. The introduced approach delivers a new computing hybrid modeling scheme for detect the heart diseases. This study represents, various existing methods making decisions for cardio vascular risks depends on the artificial neural networks (ANN). This ANN based methods generally anticipated that Heart Failure attributes having same risk involvement to the heart failure diagnosis. In this article the strategy of an effective recognition method is analyzed for analyzing the failure related to heart diseases using a hybridized approach of K-Nearest Neighbor clustering and Spiral optimization in the classification of the cardio vascular risks. The hybridized KNN technique is matched with some data mining techniques like Support vector Machine (SVM), Convolutional Neural Networks (CNN), and Artificial Neural Networks (ANN). The experimental results of this work achieved optimized improved results significantly than other machine learning techniques. The illustrative results exposed that the hybrid scheme stated effectually classify heart disease in the way of computing optimized prediction of heart diseases. Overall the proposed algorithm evidence 5% of enhancement in prediction of heart diseases with comparison of other existing machine learning techniques. |
|---|---|
| AbstractList | Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized optimization techniques in big data analytics consider the important part of the healthcare network communication issues in decision making approach of patient information. This article focused on heart disease data mining and relevant issues since the heart diseases are considered as a reason for causing deaths just as for males and females all over the world. So, people need to be conscious of possible aspects of heart disease. Even though genetics has a part, some of the standards of living practiced are the fundamental reasons for the heart disease. The heart diseases are classified by classical techniques with 13 risk factors and helpful variables. The introduced approach delivers a new computing hybrid modeling scheme for detect the heart diseases. This study represents, various existing methods making decisions for cardio vascular risks depends on the artificial neural networks (ANN). This ANN based methods generally anticipated that Heart Failure attributes having same risk involvement to the heart failure diagnosis. In this article the strategy of an effective recognition method is analyzed for analyzing the failure related to heart diseases using a hybridized approach of K-Nearest Neighbor clustering and Spiral optimization in the classification of the cardio vascular risks. The hybridized KNN technique is matched with some data mining techniques like Support vector Machine (SVM), Convolutional Neural Networks (CNN), and Artificial Neural Networks (ANN). The experimental results of this work achieved optimized improved results significantly than other machine learning techniques. The illustrative results exposed that the hybrid scheme stated effectually classify heart disease in the way of computing optimized prediction of heart diseases. Overall the proposed algorithm evidence 5% of enhancement in prediction of heart diseases with comparison of other existing machine learning techniques. |
| Author | Zubar, A. H. Balamurugan, R. |
| Author_xml | – sequence: 1 givenname: A. H. surname: Zubar fullname: Zubar, A. H. email: aahameed@kau.edu.sa organization: Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University – sequence: 2 givenname: R. surname: Balamurugan fullname: Balamurugan, R. organization: Department of Mechanical Engineering, M.Kumarasamy College of Engineering |
| BookMark | eNp9kM1KAzEURoNUsK2-gKuA69H8TZNZlqJVqFTQgruQydxpU9qkJulCn96pFQQXXeUSvnO_yxmgng8eELqm5JYSIu8SpYSPCsJIQWgpqqI6Q31aSlYoWvJeN3PFCzGq3i_QIKU1IaQsleijehoBPJ6E7W6fnV_ilxgspISNb7DLCc932W3dl8kueLxIh8izsSvnAc_ARH_4GG-WIbq82mLn8SOYTV5ZEwG_gs0hXqLz1mwSXP2-Q7R4uH-bPBaz-fRpMp4VlkuZC7AUKBUla1TNqlY00ICQDeFKSaGaltRSUcGoaJhtyxEFXtoa6kqqVioDjA_RzXHvLoaPPaSs12EffVepmWAjSboa0qXYMWVjSClCq3fRbU381JTog0t9dKk7l_rHpa46SP2DrMs_SnI0bnMa5Uc0dT1-CfHvqhPUNxQSi2Q |
| CitedBy_id | crossref_primary_10_1080_03091902_2022_2080885 crossref_primary_10_1108_JIBR_05_2023_0162 crossref_primary_10_1111_coin_12487 |
| Cites_doi | 10.1016/j.procs.2017.11.283 10.1007/s10044-015-0452-8 10.1016/j.jacc.2014.12.040 10.1016/j.eswa.2016.10.020 10.1007/s40815-016-0255-0 10.1016/j.knosys.2017.06.026 10.1007/s40012-016-0100-5 10.1109/ACCESS.2017.2694446 10.1007/s00500-016-2080-7 10.1016/j.jocs.2016.01.001 10.1016/j.jbi.2018.03.016 10.1016/j.asoc.2013.09.020 10.1016/j.jacc.2009.12.047 10.1016/j.cmpb.2017.02.001 10.1007/s13534-017-0046-z 10.1016/j.knosys.2015.02.005 10.1016/j.jacc.2015.09.054 10.1016/j.jacc.2014.07.944 10.1016/j.ijepes.2014.04.037 10.1016/j.knosys.2016.02.001 10.1007/s00500-016-2410-9 10.1007/s13246-015-0337-6 10.1016/j.knosys.2015.02.011 10.1016/j.jacc.2013.11.043 10.1016/j.physa.2017.04.113 10.1016/j.cmpb.2013.08.017 10.1016/j.ins.2016.10.013 10.1016/j.asoc.2013.11.009 10.1016/j.patcog.2014.10.032 10.1007/978-81-322-2208-8_46 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11036-020-01549-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-8153 |
| EndPage | 1318 |
| ExternalDocumentID | 10_1007_s11036_020_01549_9 |
| GrantInformation_xml | – fundername: King Abdulaziz University grantid: DF-482-135-1441 funderid: http://dx.doi.org/10.13039/501100004054 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 85S 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c377t-ec1e11452d8b29f4dede47d0388748df0b7814214d2cf561e35cbeb978f78ae23 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552037600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1383-469X |
| IngestDate | Wed Nov 05 00:42:34 EST 2025 Sat Nov 29 03:18:14 EST 2025 Tue Nov 18 21:44:13 EST 2025 Fri Feb 21 02:33:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Heart failure Performance enhancement Comparative analysis Coronary artery disease Spiral KNN classifier Optimization of prediction model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-ec1e11452d8b29f4dede47d0388748df0b7814214d2cf561e35cbeb978f78ae23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2426703770 |
| PQPubID | 26070 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2426703770 crossref_primary_10_1007_s11036_020_01549_9 crossref_citationtrail_10_1007_s11036_020_01549_9 springer_journals_10_1007_s11036_020_01549_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing |
| PublicationTitle | Mobile networks and applications |
| PublicationTitleAbbrev | Mobile Netw Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gao, Yang, Han, Huo, Chen, Yu, Su (CR18) 2015; 66 Shah, Batool, Khan, Ashraf, Abbas, Hussain (CR31) 2017; 482 Patidar, Pachori, Rajendra Acharya (CR2) 2015; 82 Dwivedi (CR1) 2016; 12 Shao, Hou, Chiu (CR7) 2014; 14 CR13 Tayefi, Tajfard, Saffar, Hanachi, Amirabadizadeh, Esmaeily, Taghipour, Ferns, Moohebati, Ghayour-Mobarhan (CR12) 2017; 141 Hassan, Sayed, Khalil, Ghany (CR33) 2017; 19 Chandel, Kunwar, Sabitha, Choudhury, Mukherjee (CR17) 2016; 4 Ouwerkerk, Voors, Zwinderman (CR16) 2014; 2 Fleisher, Fleischmann, Auerbach, Barnason, Beckman, Bozkurt, Davila-Roman (CR19) 2014; 64 Park, Bhuiyan, Kang, Son, Kang (CR21) 2018; 22 Beyan, Fisher (CR30) 2015; 48 Acharya, Fujita, Adam, Lih, Sudarshan, Hong, Koh (CR24) 2017; 377 Acharya, Fujita, Sudarshan, Shu Lih, Adam, Tan, Koo, Jain, Lim, Chua (CR25) 2017; 132 Kumar, Inbarani (CR28) 2017; 21 Bashir, Qamar, Khan, Naseem (CR29) 2016; 13 Bashir, Qamar, Khan (CR5) 2015; 2 Kanj, Abdallah, Denœux, Tout (CR23) 2016; 19 Acharya, Faust, Vinitha, Swapna, Martis, Kadri, Suri (CR8) 2014; 1 Chen, Hao, Hwang, Lu, Lin (CR27) 2017; 5 Uyar, İlhan (CR11) 2017; 120 Kim, Greenland, Rossouw, Manson, Cochrane, Lasser, Limacher, Lloyd-Jones, Margolis, Robinson (CR15) 2010; 55 Du, Ding, Jia (CR32) 2016; 99 Samuel, Asogbon, Sangaiah, Fang, Li (CR9) 2017; 68 Nørgaard, Leipsic, Gaur, Seneviratne, Ko, Ito, Jensen (CR20) 2014; 63 Anooj (CR14) 2012; 24 Acharya, Rajendra, Ghista, Lim, Molinari, Sankaranarayanan (CR4) 2015; 81 Sabahi (CR10) 2018; 83 Sergi, Veronese, Fontana, De Rui, Bolzetta, Zambon, Corti (CR6) 2015; 10 Sanz, Galar, Jurio, Brugos, Pagola, Bustince (CR3) 2014; 20 Benasla, Belmadani, Rahli (CR22) 2014; 62 Beritelli, Capizzi, Sciuto, Napoli, Scaglione (CR26) 2018; 8 JA Sanz (1549_CR3) 2014; 20 UR Acharya (1549_CR24) 2017; 377 S Kanj (1549_CR23) 2016; 19 M Du (1549_CR32) 2016; 99 M Chen (1549_CR27) 2017; 5 S Bashir (1549_CR5) 2015; 2 LA Fleisher (1549_CR19) 2014; 64 AK Dwivedi (1549_CR1) 2016; 12 OW Samuel (1549_CR9) 2017; 68 M Tayefi (1549_CR12) 2017; 141 S Patidar (1549_CR2) 2015; 82 U Acharya (1549_CR4) 2015; 81 N Hassan (1549_CR33) 2017; 19 L Benasla (1549_CR22) 2014; 62 W Ouwerkerk (1549_CR16) 2014; 2 F Beritelli (1549_CR26) 2018; 8 SU Kumar (1549_CR28) 2017; 21 F Sabahi (1549_CR10) 2018; 83 G Sergi (1549_CR6) 2015; 10 UR Acharya (1549_CR25) 2017; 132 BL Nørgaard (1549_CR20) 2014; 63 S Bashir (1549_CR29) 2016; 13 UR Acharya (1549_CR8) 2014; 1 SMS Shah (1549_CR31) 2017; 482 K Uyar (1549_CR11) 2017; 120 HC Kim (1549_CR15) 2010; 55 PK Anooj (1549_CR14) 2012; 24 K Chandel (1549_CR17) 2016; 4 J Park (1549_CR21) 2018; 22 R Gao (1549_CR18) 2015; 66 C Beyan (1549_CR30) 2015; 48 YE Shao (1549_CR7) 2014; 14 1549_CR13 |
| References_xml | – volume: 120 start-page: 588 year: 2017 end-page: 593 ident: CR11 article-title: Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.283 – volume: 24 start-page: 27 issue: 1 year: 2012 end-page: 40 ident: CR14 article-title: Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules publication-title: J King Saud Univ Comput Inf Sci – volume: 19 start-page: 145 issue: 1 year: 2016 end-page: 161 ident: CR23 article-title: Editing training data for multi-label classification with the k-nearest neighbor rule publication-title: Pattern Anal Applic doi: 10.1007/s10044-015-0452-8 – volume: 10 start-page: 976 year: 2015 end-page: 983 ident: CR6 article-title: Pre-frailty and risk of cardiovascular disease in elderly men and women: the pro. VA study publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2014.12.040 – volume: 68 start-page: 163 year: 2017 end-page: 172 ident: CR9 article-title: An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.020 – volume: 19 start-page: 1546 issue: 5 year: 2017 end-page: 1559 ident: CR33 article-title: Fuzzy Soft Expert System in Prediction of Coronary Artery Disease publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-016-0255-0 – volume: 132 start-page: 156 year: 2017 end-page: 166 ident: CR25 article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.06.026 – volume: 4 start-page: 313 issue: 2–4 year: 2016 end-page: 319 ident: CR17 article-title: A comparative study on thyroid disease detection using K-nearest neighbor and naive Bayes classification techniques publication-title: CSI Trans ICT doi: 10.1007/s40012-016-0100-5 – volume: 5 start-page: 8869 year: 2017 end-page: 8879 ident: CR27 article-title: Disease prediction by machine learning over big data from healthcare communities publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694446 – volume: 21 start-page: 4721 issue: 16 year: 2017 end-page: 4733 ident: CR28 article-title: Neighborhood rough set based ECG signal classification for diagnosis of cardiac diseases publication-title: Soft Comput doi: 10.1007/s00500-016-2080-7 – volume: 13 start-page: 10 year: 2016 end-page: 25 ident: CR29 article-title: HMV: a medical decision support framework using multi-layer classifiers for disease prediction publication-title: J Comput Sci doi: 10.1016/j.jocs.2016.01.001 – volume: 83 start-page: 204 year: 2018 end-page: 216 ident: CR10 article-title: Bimodal fuzzy analytic hierarchy process (BFAHP) for coronary heart disease risk assessment publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.03.016 – volume: 12 start-page: 1 year: 2016 end-page: 9 ident: CR1 article-title: Performance evaluation of different machine learning techniques for prediction of heart disease publication-title: Neural Comput & Applic – volume: 14 start-page: 47 year: 2014 end-page: 52 ident: CR7 article-title: Hybrid intelligent modeling schemes for heart disease classification publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.09.020 – volume: 55 start-page: 2080 issue: 19 year: 2010 end-page: 2091 ident: CR15 article-title: Multimarker prediction of coronary heart disease risk: the Women's Health Initiative publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2009.12.047 – volume: 141 start-page: 105 year: 2017 end-page: 109 ident: CR12 article-title: Hs-CRP is strongly associated with coronary heart disease (CHD): a data mining approach using decision tree algorithm publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2017.02.001 – volume: 8 start-page: 77 issue: 1 year: 2018 end-page: 85 ident: CR26 article-title: Automatic heart activity diagnosis based on gram polynomials and probabilistic neural networks publication-title: Biomed Eng Lett doi: 10.1007/s13534-017-0046-z – volume: 81 start-page: 56 year: 2015 end-page: 64 ident: CR4 article-title: Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.02.005 – volume: 66 start-page: 2298 issue: 21 year: 2015 end-page: 2309 ident: CR18 article-title: Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.09.054 – volume: 64 start-page: e77 issue: 22 year: 2014 end-page: e137 ident: CR19 article-title: ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association task force on practice guidelines publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2014.07.944 – volume: 62 start-page: 163 year: 2014 end-page: 174 ident: CR22 article-title: Spiral optimization algorithm for solving combined economic and emission dispatch publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.04.037 – volume: 99 start-page: 135 year: 2016 end-page: 145 ident: CR32 article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.02.001 – volume: 22 start-page: 1225 issue: 4 year: 2018 end-page: 1236 ident: CR21 article-title: Nearest neighbor search with locally weighted linear regression for heartbeat classification publication-title: Soft Comput doi: 10.1007/s00500-016-2410-9 – ident: CR13 – volume: 2 start-page: 305 year: 2015 end-page: 323 ident: CR5 article-title: BagMOOV: a novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-015-0337-6 – volume: 82 start-page: 1 year: 2015 end-page: 10 ident: CR2 article-title: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.02.011 – volume: 2 start-page: 429 issue: 5 year: 2014 end-page: 436 ident: CR16 article-title: Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure publication-title: JACC: Heart Fail – volume: 63 start-page: 1145 issue: 12 year: 2014 end-page: 1155 ident: CR20 article-title: Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.11.043 – volume: 482 start-page: 796 year: 2017 end-page: 807 ident: CR31 article-title: Feature extraction through parallel probabilistic principal component analysis for heart disease diagnosis publication-title: Physica A Stat Mech Appl doi: 10.1016/j.physa.2017.04.113 – volume: 1 start-page: 55 year: 2014 end-page: 68 ident: CR8 article-title: Linear and nonlinear analysis of normal and CAD-affected heart rate signals publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2013.08.017 – volume: 377 start-page: 17 year: 2017 end-page: 29 ident: CR24 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study publication-title: Inf Sci doi: 10.1016/j.ins.2016.10.013 – volume: 20 start-page: 103 year: 2014 end-page: 111 ident: CR3 article-title: Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.11.009 – volume: 48 start-page: 1653 issue: 5 year: 2015 end-page: 1672 ident: CR30 article-title: Classifying imbalanced data sets using similarity based hierarchical decomposition publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.10.032 – volume: 62 start-page: 163 year: 2014 ident: 1549_CR22 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.04.037 – volume: 13 start-page: 10 year: 2016 ident: 1549_CR29 publication-title: J Comput Sci doi: 10.1016/j.jocs.2016.01.001 – volume: 482 start-page: 796 year: 2017 ident: 1549_CR31 publication-title: Physica A Stat Mech Appl doi: 10.1016/j.physa.2017.04.113 – volume: 81 start-page: 56 year: 2015 ident: 1549_CR4 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.02.005 – ident: 1549_CR13 doi: 10.1007/978-81-322-2208-8_46 – volume: 120 start-page: 588 year: 2017 ident: 1549_CR11 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.283 – volume: 99 start-page: 135 year: 2016 ident: 1549_CR32 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.02.001 – volume: 12 start-page: 1 year: 2016 ident: 1549_CR1 publication-title: Neural Comput & Applic – volume: 14 start-page: 47 year: 2014 ident: 1549_CR7 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.09.020 – volume: 5 start-page: 8869 year: 2017 ident: 1549_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694446 – volume: 2 start-page: 305 year: 2015 ident: 1549_CR5 publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-015-0337-6 – volume: 55 start-page: 2080 issue: 19 year: 2010 ident: 1549_CR15 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2009.12.047 – volume: 377 start-page: 17 year: 2017 ident: 1549_CR24 publication-title: Inf Sci doi: 10.1016/j.ins.2016.10.013 – volume: 83 start-page: 204 year: 2018 ident: 1549_CR10 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.03.016 – volume: 22 start-page: 1225 issue: 4 year: 2018 ident: 1549_CR21 publication-title: Soft Comput doi: 10.1007/s00500-016-2410-9 – volume: 82 start-page: 1 year: 2015 ident: 1549_CR2 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.02.011 – volume: 48 start-page: 1653 issue: 5 year: 2015 ident: 1549_CR30 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.10.032 – volume: 8 start-page: 77 issue: 1 year: 2018 ident: 1549_CR26 publication-title: Biomed Eng Lett doi: 10.1007/s13534-017-0046-z – volume: 4 start-page: 313 issue: 2–4 year: 2016 ident: 1549_CR17 publication-title: CSI Trans ICT doi: 10.1007/s40012-016-0100-5 – volume: 19 start-page: 1546 issue: 5 year: 2017 ident: 1549_CR33 publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-016-0255-0 – volume: 132 start-page: 156 year: 2017 ident: 1549_CR25 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.06.026 – volume: 2 start-page: 429 issue: 5 year: 2014 ident: 1549_CR16 publication-title: JACC: Heart Fail – volume: 66 start-page: 2298 issue: 21 year: 2015 ident: 1549_CR18 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.09.054 – volume: 68 start-page: 163 year: 2017 ident: 1549_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.020 – volume: 64 start-page: e77 issue: 22 year: 2014 ident: 1549_CR19 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2014.07.944 – volume: 21 start-page: 4721 issue: 16 year: 2017 ident: 1549_CR28 publication-title: Soft Comput doi: 10.1007/s00500-016-2080-7 – volume: 10 start-page: 976 year: 2015 ident: 1549_CR6 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2014.12.040 – volume: 20 start-page: 103 year: 2014 ident: 1549_CR3 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.11.009 – volume: 141 start-page: 105 year: 2017 ident: 1549_CR12 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2017.02.001 – volume: 19 start-page: 145 issue: 1 year: 2016 ident: 1549_CR23 publication-title: Pattern Anal Applic doi: 10.1007/s10044-015-0452-8 – volume: 63 start-page: 1145 issue: 12 year: 2014 ident: 1549_CR20 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.11.043 – volume: 1 start-page: 55 year: 2014 ident: 1549_CR8 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2013.08.017 – volume: 24 start-page: 27 issue: 1 year: 2012 ident: 1549_CR14 publication-title: J King Saud Univ Comput Inf Sci |
| SSID | ssj0005584 |
| Score | 2.2907643 |
| Snippet | Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1307 |
| SubjectTerms | Algorithms Artificial neural networks Cardiovascular disease Clustering Communications Engineering Computation Computer Communication Networks Data mining Decision making Electrical Engineering Engineering Health care Health care industry Heart diseases Heart failure IT in Business Learning theory Machine learning Networks Neural networks Optimization Optimization techniques Risk analysis Support vector machines |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBb0ShIA9sYKlNnNoeK0TVAQqigLpFcexApDZFTeD3YztOAwiQYMmQ2E505_judO_eAZxK08qKigQT6vuYxKSLBZcBllTwwNgokVh2_Ss6HLLxmN-6orC8QrtXKUl7UtfFbh1DnmvCHcsrhvkyrGhzx0zDhrvRYw3sCFjZypbpl3f52JXKfL_GZ3NU-5hf0qLW2vQ3__edW7DhvEvUK7fDNiypbAfWP3AO7oKwSBtUdnPQd5ArFUBRJlFa5OhGHyJTV52JLKIAXVvEpUKOjPUJ9SZPs3laPE9RmqHBAkKGRjYHsAcP_cv7iwF2jRZw7FNaYBV3lI6LAk8y4fGESCUVodIQxVDCZNIWhhjL6xDpxYl2uJQfxEIJHYAmlEXK8_ehkc0ydQBIaXXTSHGPKkX0_Ehfk0D6rKu1T6RoQqeSdxg7FnLTDGMS1vzJRn6hll9o5RfyJpwt5ryUHBy_jm5Vagzd_5iHxhHRZxul7SacV2qrH_-82uHfhh_Bmmc1bxCCLWgU81d1DKvxW5Hm8xO7T98BVjrhHw priority: 102 providerName: Springer Nature |
| Title | Green Computing Process and its Optimization Using Machine Learning Algorithm in Healthcare Sector |
| URI | https://link.springer.com/article/10.1007/s11036-020-01549-9 https://www.proquest.com/docview/2426703770 |
| Volume | 25 |
| WOSCitedRecordID | wos000552037600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-8153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005584 issn: 1383-469X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RwgADb0ShVB7YwKJNnDqZUKlASNBSlVdhierYKZUglDbw-zk7LgEkurBYysMP5S6-s_3ddwD7Uqey4iKmjLsuZRGrUxFIj0ouAk_bKBEbdv1L3m77vV7QsRtuEwurnM6JZqKWr5HeIz_SpgS1k_Pq8eiN6qxR-nTVptAowLz2bDSkr1Vt5hAPz8-S2vo4jHrQs0EzWehcTVPx6sWTYSmjwU_DlHubvw5Ijd05W_nviFdh2XqcpJGpyBrMqWQdlr7xEG6AMOgbkmV4wDvEhg-QfiLJMJ2QK5xYXmzEJjEoA9IyKExFLEHrgDSeB9h7-vRChgk5_4KVkWtzLrAJt2enN81zapMv0AiHnFIV1RSulTxH-sIJYiaVVIxLTR7DmS_jqtBkWU6NSSeK0QlTrhcJJXBRGnO_rxx3C4rJa6K2gShUAd5XgcOVYli_j2XsSdevo0YwKUpQm375MLLM5DpBxnOYcypraYUordBIKwxKcPBVZ5Txcsx8uzwVUWj_0UmYy6cEh1Mh54__bm1ndmu7sOgYvdIowTIU0_G72oOF6CMdTsYVKPD7hwrMn5y2O128uuC0YrQWy473iGX3-u4TyvrwiA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED0hQAIGvhGFAh5gAos2cepkQKgCqqJ-gESRuoU6dqASTYEGEH-K38jZSQggwdaBNY4tOX6-88Xv3gHsSl3KiouQMm7blAWsQoUnHSq58Bzto0Ro1PWbvN12u13vcgLes1wYTavMbKIx1HIY6H_kh9qVIDo5Lx0_PFJdNUrfrmYlNBJYNNTbK4Zso6PzU1zfPcuqnXVO6jStKkAD7B1TFZQVBgGOJV1heSGTSirGpVZF4cyVYUloFSirzKQVhHi6ULYTCCUw2gq521Na6ABN_hSzXa73VYPTnFLiuEkRXRenXfG6aZJOkqpX1tK_OlgzqmjU--4I89PtjwtZ4-dqC__tCy3CfHqiJtVkCyzBhIqWYe6LzuIKCMMuIkkFC3xC0vQI0osk6ccjcoGGc5BmpBLDoiAtwzJVJBWgvSXV-1ucbXw3IP2I1D9pc-TK3HuswvVYJrkGk9EwUutAFEKc95RncaUQFtjK7NCRtltBxDMpClDOVtoPUuV1XQDk3s81ozU6fESHb9DhewXY_-zzkOiO_Pl2MYOEn9qgkZ_joQAHGajy5t9H2_h7tB2YqXdaTb953m5swqxlMK0ZkUWYjJ-e1RZMBy9xf_S0bXYHgZtxg-0Dk65IXA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED0hQAgGvhHl0wNMYNGmTp0MCCGgogJKJUCqWEIdO6VSmwINIP4av46z4zSABBsDS4YkthT7-c4Xv3sHsCV1KSsuIsp4uUxZyCpU-NKlkgvf1T5KREZd_5zX616z6TdG4D3LhdG0yswmGkMt-6H-R76nXQmik_PiXmRpEY3j6sHDI9UVpPRJa1ZOI4XImXp7xfBtsF87xrnedpzqyfXRKbUVBmiIPSVUhSWFAYHrSE84fsSkkopxqRVSOPNkVBRaEcopMemEEe40VNkNhRIYeUXcaykteoDmf4xjjKnphA33NqeXuF5aUNfDIaj4TZuwk6btlbQMsA7cjEIa9b86xXyn--1w1vi86sx_Hq1ZmLY7bXKYLo05GFHxPEx90l9cAGFYRyStbIF3iE2bIK1Ykk4yIJdoUHs2U5UYdgW5MOxTRawwbZscdtv4tcl9j3Ricjqk05Ercx6yCDd_8pFLMBr3Y7UMRCH0eUv5DleKYfsWXiNXlr0KrgQmRQFK2awHoVVk14VBukGuJa2REiBSAoOUwC_AzrDNQ6pH8uvbaxk8AmubBkGOjQLsZgDLH__c28rvvW3CBGIsOK_Vz1Zh0jHw1kTJNRhNnp7VOoyHL0ln8LRhFgqBu7_G2geiQlGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+Computing+Process+and+its+Optimization+Using+Machine+Learning+Algorithm+in+Healthcare+Sector&rft.jtitle=Mobile+networks+and+applications&rft.au=Zubar%2C+A+H&rft.au=Balamurugan%2C+R&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1383-469X&rft.eissn=1572-8153&rft.volume=25&rft.issue=4&rft.spage=1307&rft.epage=1318&rft_id=info:doi/10.1007%2Fs11036-020-01549-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-469X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-469X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-469X&client=summon |