Green Computing Process and its Optimization Using Machine Learning Algorithm in Healthcare Sector

Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized optimization techniques in big data analytics consider the important part of the healthcare network communication issues in decision making a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mobile networks and applications Ročník 25; číslo 4; s. 1307 - 1318
Hlavní autoři: Zubar, A. H., Balamurugan, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2020
Springer Nature B.V
Témata:
ISSN:1383-469X, 1572-8153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized optimization techniques in big data analytics consider the important part of the healthcare network communication issues in decision making approach of patient information. This article focused on heart disease data mining and relevant issues since the heart diseases are considered as a reason for causing deaths just as for males and females all over the world. So, people need to be conscious of possible aspects of heart disease. Even though genetics has a part, some of the standards of living practiced are the fundamental reasons for the heart disease. The heart diseases are classified by classical techniques with 13 risk factors and helpful variables. The introduced approach delivers a new computing hybrid modeling scheme for detect the heart diseases. This study represents, various existing methods making decisions for cardio vascular risks depends on the artificial neural networks (ANN). This ANN based methods generally anticipated that Heart Failure attributes having same risk involvement to the heart failure diagnosis. In this article the strategy of an effective recognition method is analyzed for analyzing the failure related to heart diseases using a hybridized approach of K-Nearest Neighbor clustering and Spiral optimization in the classification of the cardio vascular risks. The hybridized KNN technique is matched with some data mining techniques like Support vector Machine (SVM), Convolutional Neural Networks (CNN), and Artificial Neural Networks (ANN). The experimental results of this work achieved optimized improved results significantly than other machine learning techniques. The illustrative results exposed that the hybrid scheme stated effectually classify heart disease in the way of computing optimized prediction of heart diseases. Overall the proposed algorithm evidence 5% of enhancement in prediction of heart diseases with comparison of other existing machine learning techniques.
AbstractList Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized optimization techniques in big data analytics consider the important part of the healthcare network communication issues in decision making approach of patient information. This article focused on heart disease data mining and relevant issues since the heart diseases are considered as a reason for causing deaths just as for males and females all over the world. So, people need to be conscious of possible aspects of heart disease. Even though genetics has a part, some of the standards of living practiced are the fundamental reasons for the heart disease. The heart diseases are classified by classical techniques with 13 risk factors and helpful variables. The introduced approach delivers a new computing hybrid modeling scheme for detect the heart diseases. This study represents, various existing methods making decisions for cardio vascular risks depends on the artificial neural networks (ANN). This ANN based methods generally anticipated that Heart Failure attributes having same risk involvement to the heart failure diagnosis. In this article the strategy of an effective recognition method is analyzed for analyzing the failure related to heart diseases using a hybridized approach of K-Nearest Neighbor clustering and Spiral optimization in the classification of the cardio vascular risks. The hybridized KNN technique is matched with some data mining techniques like Support vector Machine (SVM), Convolutional Neural Networks (CNN), and Artificial Neural Networks (ANN). The experimental results of this work achieved optimized improved results significantly than other machine learning techniques. The illustrative results exposed that the hybrid scheme stated effectually classify heart disease in the way of computing optimized prediction of heart diseases. Overall the proposed algorithm evidence 5% of enhancement in prediction of heart diseases with comparison of other existing machine learning techniques.
Author Zubar, A. H.
Balamurugan, R.
Author_xml – sequence: 1
  givenname: A. H.
  surname: Zubar
  fullname: Zubar, A. H.
  email: aahameed@kau.edu.sa
  organization: Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University
– sequence: 2
  givenname: R.
  surname: Balamurugan
  fullname: Balamurugan, R.
  organization: Department of Mechanical Engineering, M.Kumarasamy College of Engineering
BookMark eNp9kM1KAzEURoNUsK2-gKuA69H8TZNZlqJVqFTQgruQydxpU9qkJulCn96pFQQXXeUSvnO_yxmgng8eELqm5JYSIu8SpYSPCsJIQWgpqqI6Q31aSlYoWvJeN3PFCzGq3i_QIKU1IaQsleijehoBPJ6E7W6fnV_ilxgspISNb7DLCc932W3dl8kueLxIh8izsSvnAc_ARH_4GG-WIbq82mLn8SOYTV5ZEwG_gs0hXqLz1mwSXP2-Q7R4uH-bPBaz-fRpMp4VlkuZC7AUKBUla1TNqlY00ICQDeFKSaGaltRSUcGoaJhtyxEFXtoa6kqqVioDjA_RzXHvLoaPPaSs12EffVepmWAjSboa0qXYMWVjSClCq3fRbU381JTog0t9dKk7l_rHpa46SP2DrMs_SnI0bnMa5Uc0dT1-CfHvqhPUNxQSi2Q
CitedBy_id crossref_primary_10_1080_03091902_2022_2080885
crossref_primary_10_1108_JIBR_05_2023_0162
crossref_primary_10_1111_coin_12487
Cites_doi 10.1016/j.procs.2017.11.283
10.1007/s10044-015-0452-8
10.1016/j.jacc.2014.12.040
10.1016/j.eswa.2016.10.020
10.1007/s40815-016-0255-0
10.1016/j.knosys.2017.06.026
10.1007/s40012-016-0100-5
10.1109/ACCESS.2017.2694446
10.1007/s00500-016-2080-7
10.1016/j.jocs.2016.01.001
10.1016/j.jbi.2018.03.016
10.1016/j.asoc.2013.09.020
10.1016/j.jacc.2009.12.047
10.1016/j.cmpb.2017.02.001
10.1007/s13534-017-0046-z
10.1016/j.knosys.2015.02.005
10.1016/j.jacc.2015.09.054
10.1016/j.jacc.2014.07.944
10.1016/j.ijepes.2014.04.037
10.1016/j.knosys.2016.02.001
10.1007/s00500-016-2410-9
10.1007/s13246-015-0337-6
10.1016/j.knosys.2015.02.011
10.1016/j.jacc.2013.11.043
10.1016/j.physa.2017.04.113
10.1016/j.cmpb.2013.08.017
10.1016/j.ins.2016.10.013
10.1016/j.asoc.2013.11.009
10.1016/j.patcog.2014.10.032
10.1007/978-81-322-2208-8_46
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7SP
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11036-020-01549-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8153
EndPage 1318
ExternalDocumentID 10_1007_s11036_020_01549_9
GrantInformation_xml – fundername: King Abdulaziz University
  grantid: DF-482-135-1441
  funderid: http://dx.doi.org/10.13039/501100004054
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
85S
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c377t-ec1e11452d8b29f4dede47d0388748df0b7814214d2cf561e35cbeb978f78ae23
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552037600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1383-469X
IngestDate Wed Nov 05 00:42:34 EST 2025
Sat Nov 29 03:18:14 EST 2025
Tue Nov 18 21:44:13 EST 2025
Fri Feb 21 02:33:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Heart failure
Performance enhancement
Comparative analysis
Coronary artery disease
Spiral KNN classifier
Optimization of prediction model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-ec1e11452d8b29f4dede47d0388748df0b7814214d2cf561e35cbeb978f78ae23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2426703770
PQPubID 26070
PageCount 12
ParticipantIDs proquest_journals_2426703770
crossref_primary_10_1007_s11036_020_01549_9
crossref_citationtrail_10_1007_s11036_020_01549_9
springer_journals_10_1007_s11036_020_01549_9
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing
PublicationTitle Mobile networks and applications
PublicationTitleAbbrev Mobile Netw Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gao, Yang, Han, Huo, Chen, Yu, Su (CR18) 2015; 66
Shah, Batool, Khan, Ashraf, Abbas, Hussain (CR31) 2017; 482
Patidar, Pachori, Rajendra Acharya (CR2) 2015; 82
Dwivedi (CR1) 2016; 12
Shao, Hou, Chiu (CR7) 2014; 14
CR13
Tayefi, Tajfard, Saffar, Hanachi, Amirabadizadeh, Esmaeily, Taghipour, Ferns, Moohebati, Ghayour-Mobarhan (CR12) 2017; 141
Hassan, Sayed, Khalil, Ghany (CR33) 2017; 19
Chandel, Kunwar, Sabitha, Choudhury, Mukherjee (CR17) 2016; 4
Ouwerkerk, Voors, Zwinderman (CR16) 2014; 2
Fleisher, Fleischmann, Auerbach, Barnason, Beckman, Bozkurt, Davila-Roman (CR19) 2014; 64
Park, Bhuiyan, Kang, Son, Kang (CR21) 2018; 22
Beyan, Fisher (CR30) 2015; 48
Acharya, Fujita, Adam, Lih, Sudarshan, Hong, Koh (CR24) 2017; 377
Acharya, Fujita, Sudarshan, Shu Lih, Adam, Tan, Koo, Jain, Lim, Chua (CR25) 2017; 132
Kumar, Inbarani (CR28) 2017; 21
Bashir, Qamar, Khan, Naseem (CR29) 2016; 13
Bashir, Qamar, Khan (CR5) 2015; 2
Kanj, Abdallah, Denœux, Tout (CR23) 2016; 19
Acharya, Faust, Vinitha, Swapna, Martis, Kadri, Suri (CR8) 2014; 1
Chen, Hao, Hwang, Lu, Lin (CR27) 2017; 5
Uyar, İlhan (CR11) 2017; 120
Kim, Greenland, Rossouw, Manson, Cochrane, Lasser, Limacher, Lloyd-Jones, Margolis, Robinson (CR15) 2010; 55
Du, Ding, Jia (CR32) 2016; 99
Samuel, Asogbon, Sangaiah, Fang, Li (CR9) 2017; 68
Nørgaard, Leipsic, Gaur, Seneviratne, Ko, Ito, Jensen (CR20) 2014; 63
Anooj (CR14) 2012; 24
Acharya, Rajendra, Ghista, Lim, Molinari, Sankaranarayanan (CR4) 2015; 81
Sabahi (CR10) 2018; 83
Sergi, Veronese, Fontana, De Rui, Bolzetta, Zambon, Corti (CR6) 2015; 10
Sanz, Galar, Jurio, Brugos, Pagola, Bustince (CR3) 2014; 20
Benasla, Belmadani, Rahli (CR22) 2014; 62
Beritelli, Capizzi, Sciuto, Napoli, Scaglione (CR26) 2018; 8
JA Sanz (1549_CR3) 2014; 20
UR Acharya (1549_CR24) 2017; 377
S Kanj (1549_CR23) 2016; 19
M Du (1549_CR32) 2016; 99
M Chen (1549_CR27) 2017; 5
S Bashir (1549_CR5) 2015; 2
LA Fleisher (1549_CR19) 2014; 64
AK Dwivedi (1549_CR1) 2016; 12
OW Samuel (1549_CR9) 2017; 68
M Tayefi (1549_CR12) 2017; 141
S Patidar (1549_CR2) 2015; 82
U Acharya (1549_CR4) 2015; 81
N Hassan (1549_CR33) 2017; 19
L Benasla (1549_CR22) 2014; 62
W Ouwerkerk (1549_CR16) 2014; 2
F Beritelli (1549_CR26) 2018; 8
SU Kumar (1549_CR28) 2017; 21
F Sabahi (1549_CR10) 2018; 83
G Sergi (1549_CR6) 2015; 10
UR Acharya (1549_CR25) 2017; 132
BL Nørgaard (1549_CR20) 2014; 63
S Bashir (1549_CR29) 2016; 13
UR Acharya (1549_CR8) 2014; 1
SMS Shah (1549_CR31) 2017; 482
K Uyar (1549_CR11) 2017; 120
HC Kim (1549_CR15) 2010; 55
PK Anooj (1549_CR14) 2012; 24
K Chandel (1549_CR17) 2016; 4
J Park (1549_CR21) 2018; 22
R Gao (1549_CR18) 2015; 66
C Beyan (1549_CR30) 2015; 48
YE Shao (1549_CR7) 2014; 14
1549_CR13
References_xml – volume: 120
  start-page: 588
  year: 2017
  end-page: 593
  ident: CR11
  article-title: Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.283
– volume: 24
  start-page: 27
  issue: 1
  year: 2012
  end-page: 40
  ident: CR14
  article-title: Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules
  publication-title: J King Saud Univ Comput Inf Sci
– volume: 19
  start-page: 145
  issue: 1
  year: 2016
  end-page: 161
  ident: CR23
  article-title: Editing training data for multi-label classification with the k-nearest neighbor rule
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-015-0452-8
– volume: 10
  start-page: 976
  year: 2015
  end-page: 983
  ident: CR6
  article-title: Pre-frailty and risk of cardiovascular disease in elderly men and women: the pro. VA study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.12.040
– volume: 68
  start-page: 163
  year: 2017
  end-page: 172
  ident: CR9
  article-title: An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.020
– volume: 19
  start-page: 1546
  issue: 5
  year: 2017
  end-page: 1559
  ident: CR33
  article-title: Fuzzy Soft Expert System in Prediction of Coronary Artery Disease
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-016-0255-0
– volume: 132
  start-page: 156
  year: 2017
  end-page: 166
  ident: CR25
  article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.06.026
– volume: 4
  start-page: 313
  issue: 2–4
  year: 2016
  end-page: 319
  ident: CR17
  article-title: A comparative study on thyroid disease detection using K-nearest neighbor and naive Bayes classification techniques
  publication-title: CSI Trans ICT
  doi: 10.1007/s40012-016-0100-5
– volume: 5
  start-page: 8869
  year: 2017
  end-page: 8879
  ident: CR27
  article-title: Disease prediction by machine learning over big data from healthcare communities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694446
– volume: 21
  start-page: 4721
  issue: 16
  year: 2017
  end-page: 4733
  ident: CR28
  article-title: Neighborhood rough set based ECG signal classification for diagnosis of cardiac diseases
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2080-7
– volume: 13
  start-page: 10
  year: 2016
  end-page: 25
  ident: CR29
  article-title: HMV: a medical decision support framework using multi-layer classifiers for disease prediction
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2016.01.001
– volume: 83
  start-page: 204
  year: 2018
  end-page: 216
  ident: CR10
  article-title: Bimodal fuzzy analytic hierarchy process (BFAHP) for coronary heart disease risk assessment
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.03.016
– volume: 12
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR1
  article-title: Performance evaluation of different machine learning techniques for prediction of heart disease
  publication-title: Neural Comput & Applic
– volume: 14
  start-page: 47
  year: 2014
  end-page: 52
  ident: CR7
  article-title: Hybrid intelligent modeling schemes for heart disease classification
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.09.020
– volume: 55
  start-page: 2080
  issue: 19
  year: 2010
  end-page: 2091
  ident: CR15
  article-title: Multimarker prediction of coronary heart disease risk: the Women's Health Initiative
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2009.12.047
– volume: 141
  start-page: 105
  year: 2017
  end-page: 109
  ident: CR12
  article-title: Hs-CRP is strongly associated with coronary heart disease (CHD): a data mining approach using decision tree algorithm
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2017.02.001
– volume: 8
  start-page: 77
  issue: 1
  year: 2018
  end-page: 85
  ident: CR26
  article-title: Automatic heart activity diagnosis based on gram polynomials and probabilistic neural networks
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-017-0046-z
– volume: 81
  start-page: 56
  year: 2015
  end-page: 64
  ident: CR4
  article-title: Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.02.005
– volume: 66
  start-page: 2298
  issue: 21
  year: 2015
  end-page: 2309
  ident: CR18
  article-title: Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.09.054
– volume: 64
  start-page: e77
  issue: 22
  year: 2014
  end-page: e137
  ident: CR19
  article-title: ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association task force on practice guidelines
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.07.944
– volume: 62
  start-page: 163
  year: 2014
  end-page: 174
  ident: CR22
  article-title: Spiral optimization algorithm for solving combined economic and emission dispatch
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.04.037
– volume: 99
  start-page: 135
  year: 2016
  end-page: 145
  ident: CR32
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.02.001
– volume: 22
  start-page: 1225
  issue: 4
  year: 2018
  end-page: 1236
  ident: CR21
  article-title: Nearest neighbor search with locally weighted linear regression for heartbeat classification
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2410-9
– ident: CR13
– volume: 2
  start-page: 305
  year: 2015
  end-page: 323
  ident: CR5
  article-title: BagMOOV: a novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-015-0337-6
– volume: 82
  start-page: 1
  year: 2015
  end-page: 10
  ident: CR2
  article-title: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.02.011
– volume: 2
  start-page: 429
  issue: 5
  year: 2014
  end-page: 436
  ident: CR16
  article-title: Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure
  publication-title: JACC: Heart Fail
– volume: 63
  start-page: 1145
  issue: 12
  year: 2014
  end-page: 1155
  ident: CR20
  article-title: Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps)
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.11.043
– volume: 482
  start-page: 796
  year: 2017
  end-page: 807
  ident: CR31
  article-title: Feature extraction through parallel probabilistic principal component analysis for heart disease diagnosis
  publication-title: Physica A Stat Mech Appl
  doi: 10.1016/j.physa.2017.04.113
– volume: 1
  start-page: 55
  year: 2014
  end-page: 68
  ident: CR8
  article-title: Linear and nonlinear analysis of normal and CAD-affected heart rate signals
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2013.08.017
– volume: 377
  start-page: 17
  year: 2017
  end-page: 29
  ident: CR24
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.10.013
– volume: 20
  start-page: 103
  year: 2014
  end-page: 111
  ident: CR3
  article-title: Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.11.009
– volume: 48
  start-page: 1653
  issue: 5
  year: 2015
  end-page: 1672
  ident: CR30
  article-title: Classifying imbalanced data sets using similarity based hierarchical decomposition
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.10.032
– volume: 62
  start-page: 163
  year: 2014
  ident: 1549_CR22
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.04.037
– volume: 13
  start-page: 10
  year: 2016
  ident: 1549_CR29
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2016.01.001
– volume: 482
  start-page: 796
  year: 2017
  ident: 1549_CR31
  publication-title: Physica A Stat Mech Appl
  doi: 10.1016/j.physa.2017.04.113
– volume: 81
  start-page: 56
  year: 2015
  ident: 1549_CR4
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.02.005
– ident: 1549_CR13
  doi: 10.1007/978-81-322-2208-8_46
– volume: 120
  start-page: 588
  year: 2017
  ident: 1549_CR11
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.283
– volume: 99
  start-page: 135
  year: 2016
  ident: 1549_CR32
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.02.001
– volume: 12
  start-page: 1
  year: 2016
  ident: 1549_CR1
  publication-title: Neural Comput & Applic
– volume: 14
  start-page: 47
  year: 2014
  ident: 1549_CR7
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.09.020
– volume: 5
  start-page: 8869
  year: 2017
  ident: 1549_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694446
– volume: 2
  start-page: 305
  year: 2015
  ident: 1549_CR5
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-015-0337-6
– volume: 55
  start-page: 2080
  issue: 19
  year: 2010
  ident: 1549_CR15
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2009.12.047
– volume: 377
  start-page: 17
  year: 2017
  ident: 1549_CR24
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.10.013
– volume: 83
  start-page: 204
  year: 2018
  ident: 1549_CR10
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.03.016
– volume: 22
  start-page: 1225
  issue: 4
  year: 2018
  ident: 1549_CR21
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2410-9
– volume: 82
  start-page: 1
  year: 2015
  ident: 1549_CR2
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.02.011
– volume: 48
  start-page: 1653
  issue: 5
  year: 2015
  ident: 1549_CR30
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.10.032
– volume: 8
  start-page: 77
  issue: 1
  year: 2018
  ident: 1549_CR26
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-017-0046-z
– volume: 4
  start-page: 313
  issue: 2–4
  year: 2016
  ident: 1549_CR17
  publication-title: CSI Trans ICT
  doi: 10.1007/s40012-016-0100-5
– volume: 19
  start-page: 1546
  issue: 5
  year: 2017
  ident: 1549_CR33
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-016-0255-0
– volume: 132
  start-page: 156
  year: 2017
  ident: 1549_CR25
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.06.026
– volume: 2
  start-page: 429
  issue: 5
  year: 2014
  ident: 1549_CR16
  publication-title: JACC: Heart Fail
– volume: 66
  start-page: 2298
  issue: 21
  year: 2015
  ident: 1549_CR18
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.09.054
– volume: 68
  start-page: 163
  year: 2017
  ident: 1549_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.020
– volume: 64
  start-page: e77
  issue: 22
  year: 2014
  ident: 1549_CR19
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.07.944
– volume: 21
  start-page: 4721
  issue: 16
  year: 2017
  ident: 1549_CR28
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2080-7
– volume: 10
  start-page: 976
  year: 2015
  ident: 1549_CR6
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.12.040
– volume: 20
  start-page: 103
  year: 2014
  ident: 1549_CR3
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.11.009
– volume: 141
  start-page: 105
  year: 2017
  ident: 1549_CR12
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2017.02.001
– volume: 19
  start-page: 145
  issue: 1
  year: 2016
  ident: 1549_CR23
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-015-0452-8
– volume: 63
  start-page: 1145
  issue: 12
  year: 2014
  ident: 1549_CR20
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.11.043
– volume: 1
  start-page: 55
  year: 2014
  ident: 1549_CR8
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2013.08.017
– volume: 24
  start-page: 27
  issue: 1
  year: 2012
  ident: 1549_CR14
  publication-title: J King Saud Univ Comput Inf Sci
SSID ssj0005584
Score 2.2908604
Snippet Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1307
SubjectTerms Algorithms
Artificial neural networks
Cardiovascular disease
Clustering
Communications Engineering
Computation
Computer Communication Networks
Data mining
Decision making
Electrical Engineering
Engineering
Health care
Health care industry
Heart diseases
Heart failure
IT in Business
Learning theory
Machine learning
Networks
Neural networks
Optimization
Optimization techniques
Risk analysis
Support vector machines
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMbWOThNPaEqoqKgRYkQOoWxa9SqU1LE_j92I7TABJdWPNwonwX35393XcAXOoYgEbc50jglCMs2gyxNuVIuyIdLMc64OAW6Yd4MCDDIX1yC265o1VWc6KdqMWMmzXyG-NKtHXGsXc7f0ema5TZXXUtNNbBholsDKWv73VrikdEyqa2JEQ6DRy6opmydM43UrwmebIqZYj-dEx1tPlrg9T6nd7uf994D-y4iBN2ShPZB2syOwDb33QIDwGz7BtYdnjQR6ArH4BpJuC4yOGjnlimrmITWpYB7FsWpoROoHUEO5ORfnrxNoXjDN4vaWXw2e4LHIHX3t1L9x655guI61cukOS-1LlSFAjCAqqwkELiWBjxmBgToTxmxLICH4uAKx2EyTDiTDKdlKqYpDIIj0Ejm2XyBECCKVZhm2HhSUyUpEr5hEehwqlIlSebwK--fMKdMrlpkDFJak1lg1ai0UosWgltgqvlPfNSl2Pl1a0KosT9o3lS49ME1xXI9em_RztdPdoZ2AqsXRmWYAs0isWHPAeb_LMY54sLa6FfGJ_rHA
  priority: 102
  providerName: ProQuest
Title Green Computing Process and its Optimization Using Machine Learning Algorithm in Healthcare Sector
URI https://link.springer.com/article/10.1007/s11036-020-01549-9
https://www.proquest.com/docview/2426703770
Volume 25
WOSCitedRecordID wos000552037600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005584
  issn: 1383-469X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLaAcYADb8RgTDlwg0h9pEt6BARCAsbEc3Cp2jzGpK2grfD7SbKUAgIkuERqm0aVnca2_PkzwI72AeKI-xwLknJMRCvDWSvmWJsi7SxT7XBwq-kz2m6zbjfuuKKwcYl2L1OS9qSuit18Q55rwh3LK4bjaahpc8dMw4bLq9sK2BGxSStbFmId_HVdqcz3a3w2R5WP-SUtaq3N8eL_vnMJFpx3ifYn22EZpmS-AvMfOAdXIbNIGzTp5qDvIFcqgNJcoH4xRhf6EBm66kxkEQXo3CIuJXJkrD20P-g9jfrF4xD1c3TyDiFDVzYHsAY3x0fXhyfYNVrAPKS0wJL7UsdFUSBYFsSKCCkkocIQxVDChPIyQ4wV-EQEXGmHS4YRz2SmA1BFWSqDcB1m8qdcbgBiJCYqbGVEeJIwJWOlfMajUJFUpMqTdfBLeSfcsZCbZhiDpOJPNvJLtPwSK78krsPu-zvPEw6OX2c3SjUm7n8cJ8YR0WcbpV4d9kq1VY9_Xm3zb9O3YC6wmjcIwQbMFKMXuQ2z_LXoj0dNmKZ3902oHRy1O5f66pRiPZ57h3rsRA9Nu4_fAN0C5pQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuQwEC0hQJrhAAwMoll9gBNY00mctnNACLGoUTcNEiD1LZN4gZYgLB1A_BTfSNlJCIMENw5zTWJLiZ9riV-9AljDGCAKpSepYomkTLVSmrYiSdEVYbDMMeCQbqW7vNcT_X50MgIvVS2MpVVWNtEZanUj7T_yP9aVIDo5b27f3lHbNcqerlYtNApYdPTzE6Zsw63DPVzfdd8_2D_bbdOyqwCVODqnWnoak4DQVyL1I8OUVppxZVVROBPKNFOrAuV7TPnSYHShg1CmOsVsy3CRaCt0gCZ_jAWC233V4bSmlISiaKIrAoppZ78s0ilK9Twr_WuTNaeKRqN_HWEd3X44kHV-7mDqf_tC0zBZRtRkp9gCv2BEZzMw8U5ncRZSxy4iRQcLvELK8giSZIoM8iE5RsN5XVakEseiIEeOZapJKUB7QXauLvBt88trMshI-402R07ducdvOP-Wl5yD0ewm0_NABIuYCVopU03NhNGRMZ6QYWBYohLT1A3wqpWOZam8bhuAXMW1ZrRFR4zoiB064qgBG29jbgvdkS-fXqogEZc2aBjXeGjAZgWq-vbnsy18Pdsq_GifHXXj7mGvswg_fYdpy4hcgtH8_kEvw7h8zAfD-xW3Owj8_W6wvQKgFkh-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTuMwFL1CgEbDgscwiEIBL2AFFk3qNM4CoQqoQECpNCBVs8kkfkAlCI8GEL_G13HtOGRAgh0LtnFiKfHxfcTnnguwijFAFAhPUMkSQZlspTRtRYKiK8JgOcSAQ9iVPgq7Xd7vR70ReC5rYQytsrSJ1lDLa2H-kW8aV4LoDMPGpna0iN5uZ_vmlpoOUuaktWynUUDkUD09Yvo23DrYxbVe8_3O3unOPnUdBqjAmXKqhKcwIQh8yVM_0kwqqVgojUJKyLjUjdQoQvkek77QGGmoZiBSlWLmpUOeKCN6gOZ_LMQc09AJe8Hfil4S8KKhLm9SHO67gp2ibM8zMsAmcbMKaTR66xSrSPfd4az1eZ2p7_y1pmHSRdqkXWyNGRhR2S-Y-E9_cRZSyzoiRWcLvEJc2QRJMkkG-ZCcoEG9cpWqxLIryLFlnyrihGnPSfvyHN82v7gig4zsv9LpyB97HvIbzr7kJedgNLvO1DwQziKmm62UyYZiXKtIa4-LoKlZIhPdUDXwylWPhVNkN41BLuNKS9ogJUakxBYpcVSD9ddnbgo9kk_vrpfwiJ1tGsYVNmqwUQKsGv54toXPZ1uBH4ix-Oige7gIP30Lb0OUrMNofnevlmBcPOSD4d2y3SgE_n011l4ArWhRog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+Computing+Process+and+its+Optimization+Using+Machine+Learning+Algorithm+in+Healthcare+Sector&rft.jtitle=Mobile+networks+and+applications&rft.au=Zubar%2C+A.+H.&rft.au=Balamurugan%2C+R.&rft.date=2020-08-01&rft.pub=Springer+US&rft.issn=1383-469X&rft.eissn=1572-8153&rft.volume=25&rft.issue=4&rft.spage=1307&rft.epage=1318&rft_id=info:doi/10.1007%2Fs11036-020-01549-9&rft.externalDocID=10_1007_s11036_020_01549_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-469X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-469X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-469X&client=summon