Decoding the interactions and functions of non-coding RNA with artificial intelligence

In addition to encoding proteins, mRNAs have context-specific regulatory roles that contribute to many cellular processes. However, uncovering new mRNA functions is constrained by limitations of traditional biochemical and computational methods. In this Roadmap, we highlight how artificial intellige...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Molecular cell biology Jg. 26; H. 10; S. 797
Hauptverfasser: Jung, Vincent, Vincent-Cuaz, Cédric, Tumescheit, Charlotte, Fournier, Lisa, Darsinou, Marousa, Xu, Zhi Ming, Saadat, Ali, Wang, Yiran, Tsantoulis, Petros, Michielin, Olivier, Fellay, Jacques, Patani, Rickie, Ramos, Andres, Frossard, Pascal, Hastings, Janna, Riccio, Antonella, van der Plas, Lonneke, Luisier, Raphaëlle
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.10.2025
Schlagworte:
ISSN:1471-0080, 1471-0080
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In addition to encoding proteins, mRNAs have context-specific regulatory roles that contribute to many cellular processes. However, uncovering new mRNA functions is constrained by limitations of traditional biochemical and computational methods. In this Roadmap, we highlight how artificial intelligence can transform our understanding of RNA biology by fostering collaborations between RNA biologists and computational scientists to drive innovation in this fundamental field of research. We discuss how non-coding regions of the mRNA, including introns and 5' and 3' untranslated regions, regulate the metabolism and interactomes of mRNA, and the current challenges in characterizing these regions. We further discuss large language models, which can be used to learn biologically meaningful RNA sequence representations. We also provide a detailed roadmap for integrating large language models with graph neural networks to harness publicly available sequencing and knowledge data. Adopting this roadmap will allow us to predict RNA interactions with diverse molecules and the modelling of context-specific mRNA interactomes.
AbstractList In addition to encoding proteins, mRNAs have context-specific regulatory roles that contribute to many cellular processes. However, uncovering new mRNA functions is constrained by limitations of traditional biochemical and computational methods. In this Roadmap, we highlight how artificial intelligence can transform our understanding of RNA biology by fostering collaborations between RNA biologists and computational scientists to drive innovation in this fundamental field of research. We discuss how non-coding regions of the mRNA, including introns and 5' and 3' untranslated regions, regulate the metabolism and interactomes of mRNA, and the current challenges in characterizing these regions. We further discuss large language models, which can be used to learn biologically meaningful RNA sequence representations. We also provide a detailed roadmap for integrating large language models with graph neural networks to harness publicly available sequencing and knowledge data. Adopting this roadmap will allow us to predict RNA interactions with diverse molecules and the modelling of context-specific mRNA interactomes.In addition to encoding proteins, mRNAs have context-specific regulatory roles that contribute to many cellular processes. However, uncovering new mRNA functions is constrained by limitations of traditional biochemical and computational methods. In this Roadmap, we highlight how artificial intelligence can transform our understanding of RNA biology by fostering collaborations between RNA biologists and computational scientists to drive innovation in this fundamental field of research. We discuss how non-coding regions of the mRNA, including introns and 5' and 3' untranslated regions, regulate the metabolism and interactomes of mRNA, and the current challenges in characterizing these regions. We further discuss large language models, which can be used to learn biologically meaningful RNA sequence representations. We also provide a detailed roadmap for integrating large language models with graph neural networks to harness publicly available sequencing and knowledge data. Adopting this roadmap will allow us to predict RNA interactions with diverse molecules and the modelling of context-specific mRNA interactomes.
In addition to encoding proteins, mRNAs have context-specific regulatory roles that contribute to many cellular processes. However, uncovering new mRNA functions is constrained by limitations of traditional biochemical and computational methods. In this Roadmap, we highlight how artificial intelligence can transform our understanding of RNA biology by fostering collaborations between RNA biologists and computational scientists to drive innovation in this fundamental field of research. We discuss how non-coding regions of the mRNA, including introns and 5' and 3' untranslated regions, regulate the metabolism and interactomes of mRNA, and the current challenges in characterizing these regions. We further discuss large language models, which can be used to learn biologically meaningful RNA sequence representations. We also provide a detailed roadmap for integrating large language models with graph neural networks to harness publicly available sequencing and knowledge data. Adopting this roadmap will allow us to predict RNA interactions with diverse molecules and the modelling of context-specific mRNA interactomes.
Author Jung, Vincent
Xu, Zhi Ming
Saadat, Ali
Tumescheit, Charlotte
Darsinou, Marousa
Tsantoulis, Petros
Riccio, Antonella
Fellay, Jacques
Wang, Yiran
Michielin, Olivier
Patani, Rickie
Vincent-Cuaz, Cédric
Luisier, Raphaëlle
Hastings, Janna
Fournier, Lisa
van der Plas, Lonneke
Ramos, Andres
Frossard, Pascal
Author_xml – sequence: 1
  givenname: Vincent
  orcidid: 0009-0005-6731-1553
  surname: Jung
  fullname: Jung, Vincent
  organization: Signal Processing Laboratory (LTS4), School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 2
  givenname: Cédric
  orcidid: 0009-0004-5056-7977
  surname: Vincent-Cuaz
  fullname: Vincent-Cuaz, Cédric
  organization: Signal Processing Laboratory (LTS4), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 3
  givenname: Charlotte
  surname: Tumescheit
  fullname: Tumescheit, Charlotte
  organization: Swiss Institute of Bioinformatics, Lausanne, Switzerland
– sequence: 4
  givenname: Lisa
  orcidid: 0009-0000-8453-2888
  surname: Fournier
  fullname: Fournier, Lisa
  organization: School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 5
  givenname: Marousa
  surname: Darsinou
  fullname: Darsinou, Marousa
  organization: UCL Laboratory for Molecular Cell Biology, University College London, London, UK
– sequence: 6
  givenname: Zhi Ming
  surname: Xu
  fullname: Xu, Zhi Ming
  organization: Swiss Institute of Bioinformatics, Lausanne, Switzerland
– sequence: 7
  givenname: Ali
  orcidid: 0000-0002-1479-1304
  surname: Saadat
  fullname: Saadat, Ali
  organization: School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 8
  givenname: Yiran
  surname: Wang
  fullname: Wang, Yiran
  organization: Department of Neuromuscular Diseases, University College London, London, UK
– sequence: 9
  givenname: Petros
  orcidid: 0000-0003-3613-6682
  surname: Tsantoulis
  fullname: Tsantoulis, Petros
  organization: Institute of Structural and Molecular Biology, University College London, London, UK
– sequence: 10
  givenname: Olivier
  surname: Michielin
  fullname: Michielin, Olivier
  organization: Swiss Institute of Bioinformatics, Lausanne, Switzerland
– sequence: 11
  givenname: Jacques
  orcidid: 0000-0002-8240-939X
  surname: Fellay
  fullname: Fellay, Jacques
  organization: School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 12
  givenname: Rickie
  orcidid: 0000-0002-3825-7675
  surname: Patani
  fullname: Patani, Rickie
  organization: Department of Neuromuscular Diseases, University College London, London, UK
– sequence: 13
  givenname: Andres
  surname: Ramos
  fullname: Ramos, Andres
  organization: Research Department of Structural and Molecular Biology, University College London, London, UK
– sequence: 14
  givenname: Pascal
  surname: Frossard
  fullname: Frossard, Pascal
  organization: Signal Processing Laboratory (LTS4), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 15
  givenname: Janna
  surname: Hastings
  fullname: Hastings, Janna
  organization: School of Medicine, University of St. Gallen, St. Gallen, Switzerland
– sequence: 16
  givenname: Antonella
  surname: Riccio
  fullname: Riccio, Antonella
  organization: UCL Laboratory for Molecular Cell Biology, University College London, London, UK
– sequence: 17
  givenname: Lonneke
  surname: van der Plas
  fullname: van der Plas, Lonneke
  organization: Faculty of Communication, Culture and Society and Faculty of Informatics, Università della Svizzera italiana USI, Lugano, Switzerland
– sequence: 18
  givenname: Raphaëlle
  orcidid: 0000-0002-5657-2943
  surname: Luisier
  fullname: Luisier, Raphaëlle
  email: raphaelle.luisier@gmail.com, raphaelle.luisier@gmail.com
  organization: Swiss Institute of Bioinformatics, Lausanne, Switzerland. raphaelle.luisier@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40537558$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtKxDAUQIOMOA_9AReSpZtqkjZNuhzGJ4iCqNuSx81MpJOOTcrg31u1gqt7D5z7nKNJaAMgdErJBSW5vIwF5ZJkhPGMEMlFtj9AM1oI-o1k8i-fonmM74TQkgp-hKYF4bngXM7Q2xWY1vqwxmkD2IcEnTLJtyFiFSx2fRipdXgYn43y8-MS733aYNUl77zxqvkpbhq_hmDgGB061UQ4GeMCvd5cv6zusoen2_vV8iEzuRAps8ZJLbS2YApLRUVUAZUohDDDfcAqw0rutNOCSVUqnldODKgqqrk1EjRboPPfvruu_eghpnrroxnWUAHaPtY5Y6zMq1KWg3o2qr3egq13nd-q7rP--wX7AmaNZL8
CitedBy_id crossref_primary_10_1016_j_fochms_2025_100294
ContentType Journal Article
Copyright 2025. Springer Nature Limited.
Copyright_xml – notice: 2025. Springer Nature Limited.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1038/s41580-025-00857-w
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1471-0080
ExternalDocumentID 40537558
Genre Journal Article
Review
GroupedDBID ---
.55
0R~
123
29M
36B
39C
4.4
53G
70F
7RV
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AARCD
AAWYQ
ABDBF
ABFSG
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACSTC
ACUHS
ADBBV
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFFHD
AFFNX
AFHIU
AFKRA
AFRAH
AFSHS
AGAYW
AGSTI
AHBCP
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D0L
D1J
DB5
DU5
EAD
EAP
EBC
EBD
EBS
ECM
EE.
EIF
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LK8
M1P
M7P
N9A
NAPCQ
NFIDA
NNMJJ
NPM
O9-
ODYON
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
7X8
AAYZH
ID FETCH-LOGICAL-c377t-dcf8b7bbdec4d1790a4e97477c038e29c265fbfb728a6a539f7fbfa91b5dc8eb2
IEDL.DBID 7X8
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001511725600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0080
IngestDate Thu Oct 02 22:33:23 EDT 2025
Sat Nov 15 01:41:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2025. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-dcf8b7bbdec4d1790a4e97477c038e29c265fbfb728a6a539f7fbfa91b5dc8eb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0009-0005-6731-1553
0000-0003-3613-6682
0000-0002-1479-1304
0000-0002-5657-2943
0000-0002-3825-7675
0000-0002-8240-939X
0009-0000-8453-2888
0009-0004-5056-7977
PMID 40537558
PQID 3222639686
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3222639686
pubmed_primary_40537558
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nature reviews. Molecular cell biology
PublicationTitleAlternate Nat Rev Mol Cell Biol
PublicationYear 2025
SSID ssj0016175
Score 2.5018575
SecondaryResourceType review_article
Snippet In addition to encoding proteins, mRNAs have context-specific regulatory roles that contribute to many cellular processes. However, uncovering new mRNA...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 797
SubjectTerms Animals
Artificial Intelligence
Humans
Large Language Models
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Untranslated - genetics
RNA, Untranslated - metabolism
Sequence Analysis, RNA - methods
Title Decoding the interactions and functions of non-coding RNA with artificial intelligence
URI https://www.ncbi.nlm.nih.gov/pubmed/40537558
https://www.proquest.com/docview/3222639686
Volume 26
WOSCitedRecordID wos001511725600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvC6NN1ks5uTiFo8aCiipbeyr4CXpDZV8d87s0npSRC8BBaysEwm-83zG0KunM0SJxLNEmvAQeGRY5ngmgkD-pWZyIlQTTh6lHmuxuNs2Abc6rascnEnhovaVRZj5D3MCACapiq9nr4znBqF2dV2hMYq6cRgymBJlxwvswiAziJ0F0lwmcE0aptmolj1agAuFTEc5hpI3tnX7yZmgJrB9n8PuUO2WiOT3jRasUtWfLlHNpqxk9_7ZHQHPidiFgXrjyJhxKxpb6ipLh1FqGtWVUHLqmTty8_5DcWwLUVta4gnwuYFo-cBeR3cv9w-sHa-ArOxlHPmbKGMNMZ5mzhk6tKJR_dCWpCQ55nlqShMYSRXOtUizgoJS531jXBWgUt-SNbgFP6YUOWUj4QvUm5Nop3Scd8Z5ziSLcbOmy65XAhsAvqLSQld-uqjnixF1iVHjdQn04ZoY5Ig2YwQ6uQPu0_JJsevGerszkingL_Xn5N1-zl_q2cXQTHgmQ-ffgB1Z8Qb
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+the+interactions+and+functions+of+non-coding+RNA+with+artificial+intelligence&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Jung%2C+Vincent&rft.au=Vincent-Cuaz%2C+C%C3%A9dric&rft.au=Tumescheit%2C+Charlotte&rft.au=Fournier%2C+Lisa&rft.date=2025-10-01&rft.eissn=1471-0080&rft.volume=26&rft.issue=10&rft.spage=797&rft_id=info:doi/10.1038%2Fs41580-025-00857-w&rft_id=info%3Apmid%2F40537558&rft_id=info%3Apmid%2F40537558&rft.externalDocID=40537558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0080&client=summon