One or two frequencies? The Iterative Filtering answers

The Iterative Filtering method is a technique aimed at the decomposition of non-stationary and non-linear signals into simple oscillatory components. This method, proposed a decade ago as an alternative technique to the Empirical Mode Decomposition, has been used extensively in many applied fields o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 462; S. 128322
Hauptverfasser: Cicone, Antonio, Serra-Capizzano, Stefano, Zhou, Haomin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.02.2024
Schlagworte:
ISSN:0096-3003, 1873-5649, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Iterative Filtering method is a technique aimed at the decomposition of non-stationary and non-linear signals into simple oscillatory components. This method, proposed a decade ago as an alternative technique to the Empirical Mode Decomposition, has been used extensively in many applied fields of research and studied, from a mathematical point of view, in several papers published in the last few years. However, even if its convergence and stability are now established both in the continuous and discrete setting, it is still an open problem to understand up to what extent this approach can separate two close-by frequencies contained in a signal. In this paper, first we recall previously discovered theoretical results about Iterative Filtering. Afterward, we prove a few new theorems regarding the ability of this method in separating two nearby frequencies both in the case of continuously and discrete sampled signals. Among them, we prove a theorem which allows to construct filters which captures, up to machine precision, a specific frequency. We run numerical tests to confirm our findings and to compare the performance of Iterative Filtering with the one of Empirical Mode Decomposition and Synchrosqueezing methods. All the results presented confirm the ability of the technique under investigation in addressing the fundamental “one or two frequencies” question.
AbstractList The Iterative Filtering method is a technique aimed at the decomposition of non-stationary and non-linear signals into simple oscillatory components. This method, proposed a decade ago as an alternative technique to the Empirical Mode Decomposition, has been used extensively in many applied fields of research and studied, from a mathematical point of view, in several papers published in the last few years. However, even if its convergence and stability are now established both in the continuous and discrete setting, it is still an open problem to understand up to what extent this approach can separate two close-by frequencies contained in a signal.In this paper, first we recall previously discovered theoretical results about Iterative Filtering. Afterward, we prove a few new theorems regarding the ability of this method in separating two nearby frequencies both in the case of continuously and discrete sampled signals. Among them, we prove a theorem which allows to construct filters which captures, up to machine precision, a specific frequency. We run numerical tests to confirm our findings and to compare the performance of Iterative Filtering with the one of Empirical Mode Decomposition and Synchrosqueezing methods. All the results presented confirm the ability of the technique under investigation in addressing the fundamental "one or two frequencies" question.
The Iterative Filtering method is a technique aimed at the decomposition of non-stationary and non-linear signals into simple oscillatory components. This method, proposed a decade ago as an alternative technique to the Empirical Mode Decomposition, has been used extensively in many applied fields of research and studied, from a mathematical point of view, in several papers published in the last few years. However, even if its convergence and stability are now established both in the continuous and discrete setting, it is still an open problem to understand up to what extent this approach can separate two close-by frequencies contained in a signal. In this paper, first we recall previously discovered theoretical results about Iterative Filtering. Afterward, we prove a few new theorems regarding the ability of this method in separating two nearby frequencies both in the case of continuously and discrete sampled signals. Among them, we prove a theorem which allows to construct filters which captures, up to machine precision, a specific frequency. We run numerical tests to confirm our findings and to compare the performance of Iterative Filtering with the one of Empirical Mode Decomposition and Synchrosqueezing methods. All the results presented confirm the ability of the technique under investigation in addressing the fundamental “one or two frequencies” question.
ArticleNumber 128322
Author Cicone, Antonio
Zhou, Haomin
Serra-Capizzano, Stefano
Author_xml – sequence: 1
  givenname: Antonio
  surname: Cicone
  fullname: Cicone, Antonio
  email: antonio.cicone@univaq.it
  organization: DISIM, Università degli Studi dell'Aquila, L'Aquila, Italy
– sequence: 2
  givenname: Stefano
  surname: Serra-Capizzano
  fullname: Serra-Capizzano, Stefano
  email: stefano.serrac@uninsubria.it, stefano.serra@it.uu.se
  organization: Department of Science and High Technology, University of Insubria, Como, Italy
– sequence: 3
  givenname: Haomin
  surname: Zhou
  fullname: Zhou, Haomin
  email: hmzhou@gatech.edu
  organization: School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-518353$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kMtOwzAQRS1UJErhA9jlA0jwK3YiFqgqFCpV6qawtVxnUly1TrGTVvw9rgIbFl3NLO6ZqznXaOAaBwjdEZwRTMTDJtM7k1FMWUZowSi9QENSSJbmgpcDNMS4FCnDmF2h6xA2GGMpCB8iuXCQND5pj01Se_jqwBkL4SlZfkIya8Hr1h4gmdpt3K1bJ9qFI_hwgy5rvQ1w-ztH6H36spy8pfPF62wynqeGSdmmhtSUCEllSUGCMBUvq7zGFeO1EbWQpMCQr3JZaUpzQ0ooODdcMkEY1wUUbITu-7uxdd-t1N7bnfbfqtFWPduPsWr8WnWdyknBchbjso8b34TgoVbGtvGFxrVe260iWJ10qY2KutRJl-p1RZL8I_-qzjGPPQPRwMGCVyHKcwYq68G0qmrsGfoHftCDcQ
CitedBy_id crossref_primary_10_5194_nhess_25_1169_2025
crossref_primary_10_1109_MSP_2023_3257505
Cites_doi 10.1016/j.asoc.2018.10.022
10.3390/s18020406
10.1063/1.5145005
10.1007/s11075-019-00838-z
10.1016/j.ymssp.2012.09.015
10.1109/TE.2002.808234
10.1016/j.laa.2019.06.021
10.1007/s00211-020-01165-5
10.1142/S1793536909000205
10.1016/j.acha.2016.03.001
10.1016/j.acha.2010.08.002
10.1142/S179353690900028X
10.1016/j.bspc.2014.06.009
10.1038/s41598-020-72193-2
10.3390/sym10110623
10.1109/78.382394
10.1098/rspa.1998.0193
10.1109/TSP.2007.906771
10.1142/S179353691100074X
10.1109/ACCESS.2018.2873782
10.1007/s00521-017-2919-6
10.1137/16M1081087
10.1109/JSTARS.2016.2529702
10.1007/BF02345370
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.amc.2023.128322
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
ExternalDocumentID oai_DiVA_org_uu_518353
10_1016_j_amc_2023_128322
S0096300323004915
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6I.
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
TAE
VH1
VOH
WUQ
~HD
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c377t-c1f21672792e7e6cd49d5f0d34fc6f67180e5b57da225c19e844c4736134a8e83
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089065900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
1873-5649
IngestDate Tue Nov 04 17:03:58 EST 2025
Tue Nov 18 21:51:18 EST 2025
Sat Nov 29 07:23:39 EST 2025
Fri Feb 23 02:34:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-c1f21672792e7e6cd49d5f0d34fc6f67180e5b57da225c19e844c4736134a8e83
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-518353
ParticipantIDs swepub_primary_oai_DiVA_org_uu_518353
crossref_citationtrail_10_1016_j_amc_2023_128322
crossref_primary_10_1016_j_amc_2023_128322
elsevier_sciencedirect_doi_10_1016_j_amc_2023_128322
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Huang (br0290) 2014
Boashash (br0090) 2003
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (br0150) 1998; 454
Wu, Flandrin, Daubechies (br0180) 2011; 3
Mitiche, Morison, Nesbitt, Hughes-Narborough, Stewart, Boreham (br0270) 2018; 18
Colominas, Schlotthauer, Torres (br0020) 2014; 14
Sharma, Pachori, Upadhyay (br0250) 2017; 28
Sakar, Serbes, Gunduz, Tunc, Nizam, Sakar, Tutuncu, Aydin, Isenkul, Apaydin (br0010) 2019; 74
Flandrin (br0070) 1998
Cicone, Dell'Acqua (br0140) 2019; 373
Coifman, Steinerberger, Wu (br0260) 2017; 49
Lin, Wang, Zhou (br0080) 2009; 1
Cicone (br0100) 2020; 85
Cicone, Zhou (br0130) 2021; 147
Auger, Flandrin (br0160) 1995; 43
Boudraa, Cexus, Benramdane, Beghdadi (br0210) 2007
Cicone, Garoni, Serra-Capizzano (br0110) 2019; 580
Li, Wang, Liu, Liang, Si (br0240) 2018; 6
Vaseghi (br0030) 2008
Daubechies, Lu, Wu (br0190) 2011; 30
Guntu, Yeditha, Rathinasamy, Perc, Marwan, Kurths, Agarwal (br0060) 2020; 30
McInerny, Dai (br0040) 2003; 46
Lei, Lin, He, Zuo (br0200) 2013; 35
Echeverria, Crowe, Woolfson, Hayes-Gill (br0220) 2001; 39
Ge, Chen, Yu, Chen, An (br0280) 2018; 10
Cicone, Liu, Zhou (br0120) 2016; 41
Stallone, Cicone, Materassi (br0230) 2020; 10
Xue, Cao, Wang, Du, Yao (br0050) 2016; 9
Rilling, Flandrin (br0170) 2007; 56
Huang, Yang, Wang (br0300) 2009; 1
Lei (10.1016/j.amc.2023.128322_br0200) 2013; 35
Ge (10.1016/j.amc.2023.128322_br0280) 2018; 10
Li (10.1016/j.amc.2023.128322_br0240) 2018; 6
Cicone (10.1016/j.amc.2023.128322_br0140) 2019; 373
Coifman (10.1016/j.amc.2023.128322_br0260) 2017; 49
Echeverria (10.1016/j.amc.2023.128322_br0220) 2001; 39
Cicone (10.1016/j.amc.2023.128322_br0120) 2016; 41
Stallone (10.1016/j.amc.2023.128322_br0230) 2020; 10
Huang (10.1016/j.amc.2023.128322_br0300) 2009; 1
Auger (10.1016/j.amc.2023.128322_br0160) 1995; 43
Vaseghi (10.1016/j.amc.2023.128322_br0030) 2008
Huang (10.1016/j.amc.2023.128322_br0150) 1998; 454
Guntu (10.1016/j.amc.2023.128322_br0060) 2020; 30
Cicone (10.1016/j.amc.2023.128322_br0110) 2019; 580
Mitiche (10.1016/j.amc.2023.128322_br0270) 2018; 18
Sakar (10.1016/j.amc.2023.128322_br0010) 2019; 74
Wu (10.1016/j.amc.2023.128322_br0180) 2011; 3
Sharma (10.1016/j.amc.2023.128322_br0250) 2017; 28
Colominas (10.1016/j.amc.2023.128322_br0020) 2014; 14
Rilling (10.1016/j.amc.2023.128322_br0170) 2007; 56
Flandrin (10.1016/j.amc.2023.128322_br0070) 1998
Lin (10.1016/j.amc.2023.128322_br0080) 2009; 1
Xue (10.1016/j.amc.2023.128322_br0050) 2016; 9
Cicone (10.1016/j.amc.2023.128322_br0100) 2020; 85
McInerny (10.1016/j.amc.2023.128322_br0040) 2003; 46
Huang (10.1016/j.amc.2023.128322_br0290) 2014
Boudraa (10.1016/j.amc.2023.128322_br0210) 2007
Boashash (10.1016/j.amc.2023.128322_br0090) 2003
Cicone (10.1016/j.amc.2023.128322_br0130) 2021; 147
Daubechies (10.1016/j.amc.2023.128322_br0190) 2011; 30
References_xml – volume: 9
  start-page: 3821
  year: 2016
  end-page: 3831
  ident: br0050
  article-title: Application of the variational-mode decomposition for seismic time–frequency analysis
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– start-page: 1
  year: 2014
  end-page: 26
  ident: br0290
  article-title: Introduction to the Hilbert–Huang transform and its related mathematical problems
  publication-title: Hilbert–Huang Transform and Its Applications
– year: 2008
  ident: br0030
  article-title: Advanced Digital Signal Processing and Noise Reduction
– volume: 1
  start-page: 543
  year: 2009
  end-page: 560
  ident: br0080
  article-title: Iterative filtering as an alternative algorithm for empirical mode decomposition
  publication-title: Adv. Adapt. Data Anal.
– volume: 1
  start-page: 561
  year: 2009
  end-page: 571
  ident: br0300
  article-title: Convergence of a convolution-filtering-based algorithm for empirical mode decomposition
  publication-title: Adv. Adapt. Data Anal.
– year: 1998
  ident: br0070
  article-title: Time-Frequency/Time-Scale Analysis
– volume: 454
  start-page: 903
  year: 1998
  ident: br0150
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.
– volume: 10
  start-page: 623
  year: 2018
  ident: br0280
  article-title: Theoretical analysis of empirical mode decomposition
  publication-title: Symmetry
– volume: 6
  start-page: 66723
  year: 2018
  end-page: 66741
  ident: br0240
  article-title: The entropy algorithm and its variants in the fault diagnosis of rotating machinery: a review
  publication-title: IEEE Access
– volume: 74
  start-page: 255
  year: 2019
  end-page: 263
  ident: br0010
  article-title: A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform
  publication-title: Appl. Soft Comput.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: br0230
  article-title: New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms
  publication-title: Sci. Rep.
– volume: 30
  start-page: 243
  year: 2011
  end-page: 261
  ident: br0190
  article-title: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool
  publication-title: Appl. Comput. Harmon. Anal.
– start-page: 1
  year: 2007
  end-page: 4
  ident: br0210
  article-title: Noise filtering using empirical mode decomposition
  publication-title: 2007 9th International Symposium on Signal Processing and Its Applications
– volume: 373
  year: 2019
  ident: br0140
  article-title: Study of boundary conditions in the iterative filtering method for the decomposition of nonstationary signals
  publication-title: J. Comput. Appl. Math.
– volume: 39
  start-page: 471
  year: 2001
  end-page: 479
  ident: br0220
  article-title: Application of empirical mode decomposition to heart rate variability analysis
  publication-title: Med. Biol. Eng. Comput.
– year: 2003
  ident: br0090
  article-title: Time-Frequency Signal Analysis and Processing: a Comprehensive Reference
– volume: 30
  year: 2020
  ident: br0060
  article-title: Wavelet entropy-based evaluation of intrinsic predictability of time series
  publication-title: Chaos, Interdiscip. J. Nonlinear Sci.
– volume: 28
  start-page: 2959
  year: 2017
  end-page: 2978
  ident: br0250
  article-title: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals
  publication-title: Neural Comput. Appl.
– volume: 147
  start-page: 1
  year: 2021
  end-page: 28
  ident: br0130
  article-title: Numerical analysis for iterative filtering with new efficient implementations based on FFT
  publication-title: Numer. Math.
– volume: 18
  start-page: 406
  year: 2018
  ident: br0270
  article-title: Classification of partial discharge signals by combining adaptive local iterative filtering and entropy features
  publication-title: Sensors
– volume: 85
  start-page: 811
  year: 2020
  end-page: 827
  ident: br0100
  article-title: Iterative Filtering as a direct method for the decomposition of nonstationary signals
  publication-title: Numer. Algorithms
– volume: 46
  start-page: 149
  year: 2003
  end-page: 156
  ident: br0040
  article-title: Basic vibration signal processing for bearing fault detection
  publication-title: IEEE Trans. Ed.
– volume: 49
  start-page: 4838
  year: 2017
  end-page: 4864
  ident: br0260
  article-title: Carrier frequencies, holomorphy, and unwinding
  publication-title: SIAM J. Math. Anal.
– volume: 35
  start-page: 108
  year: 2013
  end-page: 126
  ident: br0200
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
– volume: 41
  start-page: 384
  year: 2016
  end-page: 411
  ident: br0120
  article-title: Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 56
  start-page: 85
  year: 2007
  end-page: 95
  ident: br0170
  article-title: One or two frequencies? The empirical mode decomposition answers
  publication-title: IEEE Trans. Signal Process.
– volume: 43
  start-page: 1068
  year: 1995
  end-page: 1089
  ident: br0160
  article-title: Improving the readability of time-frequency and time-scale representations by the reassignment method
  publication-title: IEEE Trans. Signal Process.
– volume: 3
  start-page: 29
  year: 2011
  end-page: 39
  ident: br0180
  article-title: One or two frequencies? The synchrosqueezing answers
  publication-title: Adv. Adapt. Data Anal.
– volume: 14
  start-page: 19
  year: 2014
  end-page: 29
  ident: br0020
  article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process. Control
– volume: 580
  start-page: 62
  year: 2019
  end-page: 95
  ident: br0110
  article-title: Spectral and convergence analysis of the discrete ALIF method
  publication-title: Linear Algebra Appl.
– year: 2008
  ident: 10.1016/j.amc.2023.128322_br0030
– volume: 74
  start-page: 255
  year: 2019
  ident: 10.1016/j.amc.2023.128322_br0010
  article-title: A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.022
– volume: 18
  start-page: 406
  issue: 2
  year: 2018
  ident: 10.1016/j.amc.2023.128322_br0270
  article-title: Classification of partial discharge signals by combining adaptive local iterative filtering and entropy features
  publication-title: Sensors
  doi: 10.3390/s18020406
– volume: 30
  issue: 3
  year: 2020
  ident: 10.1016/j.amc.2023.128322_br0060
  article-title: Wavelet entropy-based evaluation of intrinsic predictability of time series
  publication-title: Chaos, Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5145005
– volume: 85
  start-page: 811
  issue: 3
  year: 2020
  ident: 10.1016/j.amc.2023.128322_br0100
  article-title: Iterative Filtering as a direct method for the decomposition of nonstationary signals
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00838-z
– volume: 35
  start-page: 108
  issue: 1–2
  year: 2013
  ident: 10.1016/j.amc.2023.128322_br0200
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.09.015
– volume: 46
  start-page: 149
  issue: 1
  year: 2003
  ident: 10.1016/j.amc.2023.128322_br0040
  article-title: Basic vibration signal processing for bearing fault detection
  publication-title: IEEE Trans. Ed.
  doi: 10.1109/TE.2002.808234
– year: 1998
  ident: 10.1016/j.amc.2023.128322_br0070
– volume: 580
  start-page: 62
  year: 2019
  ident: 10.1016/j.amc.2023.128322_br0110
  article-title: Spectral and convergence analysis of the discrete ALIF method
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2019.06.021
– volume: 147
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.amc.2023.128322_br0130
  article-title: Numerical analysis for iterative filtering with new efficient implementations based on FFT
  publication-title: Numer. Math.
  doi: 10.1007/s00211-020-01165-5
– volume: 1
  start-page: 561
  issue: 4
  year: 2009
  ident: 10.1016/j.amc.2023.128322_br0300
  article-title: Convergence of a convolution-filtering-based algorithm for empirical mode decomposition
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000205
– volume: 41
  start-page: 384
  issue: 2
  year: 2016
  ident: 10.1016/j.amc.2023.128322_br0120
  article-title: Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.03.001
– volume: 30
  start-page: 243
  issue: 2
  year: 2011
  ident: 10.1016/j.amc.2023.128322_br0190
  article-title: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.08.002
– volume: 1
  start-page: 543
  issue: 4
  year: 2009
  ident: 10.1016/j.amc.2023.128322_br0080
  article-title: Iterative filtering as an alternative algorithm for empirical mode decomposition
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S179353690900028X
– volume: 14
  start-page: 19
  year: 2014
  ident: 10.1016/j.amc.2023.128322_br0020
  article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.06.009
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.amc.2023.128322_br0230
  article-title: New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72193-2
– volume: 10
  start-page: 623
  issue: 11
  year: 2018
  ident: 10.1016/j.amc.2023.128322_br0280
  article-title: Theoretical analysis of empirical mode decomposition
  publication-title: Symmetry
  doi: 10.3390/sym10110623
– year: 2003
  ident: 10.1016/j.amc.2023.128322_br0090
– volume: 43
  start-page: 1068
  issue: 5
  year: 1995
  ident: 10.1016/j.amc.2023.128322_br0160
  article-title: Improving the readability of time-frequency and time-scale representations by the reassignment method
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.382394
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.amc.2023.128322_br0150
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 56
  start-page: 85
  issue: 1
  year: 2007
  ident: 10.1016/j.amc.2023.128322_br0170
  article-title: One or two frequencies? The empirical mode decomposition answers
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.906771
– volume: 3
  start-page: 29
  issue: 1 and 2
  year: 2011
  ident: 10.1016/j.amc.2023.128322_br0180
  article-title: One or two frequencies? The synchrosqueezing answers
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S179353691100074X
– start-page: 1
  year: 2007
  ident: 10.1016/j.amc.2023.128322_br0210
  article-title: Noise filtering using empirical mode decomposition
– volume: 373
  year: 2019
  ident: 10.1016/j.amc.2023.128322_br0140
  article-title: Study of boundary conditions in the iterative filtering method for the decomposition of nonstationary signals
  publication-title: J. Comput. Appl. Math.
– volume: 6
  start-page: 66723
  year: 2018
  ident: 10.1016/j.amc.2023.128322_br0240
  article-title: The entropy algorithm and its variants in the fault diagnosis of rotating machinery: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873782
– start-page: 1
  year: 2014
  ident: 10.1016/j.amc.2023.128322_br0290
  article-title: Introduction to the Hilbert–Huang transform and its related mathematical problems
– volume: 28
  start-page: 2959
  issue: 10
  year: 2017
  ident: 10.1016/j.amc.2023.128322_br0250
  article-title: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2919-6
– volume: 49
  start-page: 4838
  issue: 6
  year: 2017
  ident: 10.1016/j.amc.2023.128322_br0260
  article-title: Carrier frequencies, holomorphy, and unwinding
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/16M1081087
– volume: 9
  start-page: 3821
  issue: 8
  year: 2016
  ident: 10.1016/j.amc.2023.128322_br0050
  article-title: Application of the variational-mode decomposition for seismic time–frequency analysis
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2529702
– volume: 39
  start-page: 471
  issue: 4
  year: 2001
  ident: 10.1016/j.amc.2023.128322_br0220
  article-title: Application of empirical mode decomposition to heart rate variability analysis
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345370
SSID ssj0007614
Score 2.4339247
Snippet The Iterative Filtering method is a technique aimed at the decomposition of non-stationary and non-linear signals into simple oscillatory components. This...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 128322
SubjectTerms Beräkningsvetenskap med inriktning mot numerisk analys
Scientific Computing with specialization in Numerical Analysis
Title One or two frequencies? The Iterative Filtering answers
URI https://dx.doi.org/10.1016/j.amc.2023.128322
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-518353
Volume 462
WOSCitedRecordID wos001089065900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 1873-5649
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWgZQELxJvyUhawoXKV-Jms0GgoAiQKi4JmZzl2jKZiklFmAlW_nuvYyXR4VGXBJoqiPO-xrq_tk3MQem6cttBrCFxCC4IBSpbjknGK09Jrr2hSFsL0ZhPy6CifzYpP0d5y1dsJyLrOT0-L5X-FGo4B2P7X2X-Ae7wpHIB9AB22ADtsLwX8x9p7Ne2vfzT7rg1E6bknvm0R-IbiczGqtq6GP9yW3fbq_BTaSpz29H7DgbcVKcKtxlO9nJ-d6d7B23PGHOxuZqObru_bdLOICt9xgoGwgZM85sRcUsxFUBYdkiYLOfS3BBzmAk4O9MLrQxJ6kHkvJLLpbbZ0rV_Pv0xU035VXac4JBdOr6JdInkB-Wl38u5w9n7sVaUIOu0w5MI07R2vxxcbVqt73t4vT_5rvXFeGLYvJo5voZtxFJBMAnq30ZWqvoNufNiAcRc9AByTpk0Ax-Qcjq_uoc9vDo-nb3F0scCGSrnGJnMk8-vdBalkJYxlheUutZQ5I5yA2iCteMml1ZBaTVZUOWOGSQp1FtN5ldP7aKcGnB-ixFoicijgrCOUpaUoteOyYjaF-_gF5D2UDt-qTJR4904j39TA5TtREB7lw6NCePbQy_GSZdA3uehkNgRQxQItFF4K4L_oshch2OMT_oz9o0ue9xhd37TTJ2hn3XbVU3TNfF_PV-2z2HB-AixnYro
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One+or+two+frequencies%3F&rft.jtitle=Applied+mathematics+and+computation&rft.au=Cicone%2C+Antonio&rft.au=Serra-Capizzano%2C+Stefano&rft.au=Zhou%2C+Haomin&rft.date=2024-02-01&rft.issn=1873-5649&rft.volume=462&rft_id=info:doi/10.1016%2Fj.amc.2023.128322&rft.externalDocID=oai_DiVA_org_uu_518353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon