Microneedles for advanced ocular drug delivery

[Display omitted] In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced drug delivery reviews Jg. 201; S. 115082
Hauptverfasser: Glover, Katie, Mishra, Deepakkumar, Gade, Shilpkala, Vora, Lalitkumar K., Wu, Yu, Paredes, Alejandro J., Donnelly, Ryan F., Singh, Thakur Raghu Raj
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2023
Schlagworte:
ISSN:0169-409X, 1872-8294, 1872-8294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic.
AbstractList In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic.In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic.
[Display omitted] In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic.
ArticleNumber 115082
Author Glover, Katie
Gade, Shilpkala
Mishra, Deepakkumar
Donnelly, Ryan F.
Wu, Yu
Paredes, Alejandro J.
Vora, Lalitkumar K.
Singh, Thakur Raghu Raj
Author_xml – sequence: 1
  givenname: Katie
  surname: Glover
  fullname: Glover, Katie
– sequence: 2
  givenname: Deepakkumar
  surname: Mishra
  fullname: Mishra, Deepakkumar
– sequence: 3
  givenname: Shilpkala
  surname: Gade
  fullname: Gade, Shilpkala
– sequence: 4
  givenname: Lalitkumar K.
  surname: Vora
  fullname: Vora, Lalitkumar K.
– sequence: 5
  givenname: Yu
  surname: Wu
  fullname: Wu, Yu
– sequence: 6
  givenname: Alejandro J.
  surname: Paredes
  fullname: Paredes, Alejandro J.
– sequence: 7
  givenname: Ryan F.
  surname: Donnelly
  fullname: Donnelly, Ryan F.
– sequence: 8
  givenname: Thakur Raghu Raj
  surname: Singh
  fullname: Singh, Thakur Raghu Raj
  email: r.thakur@qub.ac.uk
BookMark eNp9kD1PwzAURS1UJNrCH2DKyJLwbDexLbGgii-piAUkNsvYz8hVmhQ7qdR_T6IwMXR6yz1X754FmTVtg4RcUygo0Op2WxjnYsGA8YLSEiQ7I3MqBcslU6sZmQ8hla9AfV6QRUpbAMpEBXNSvAYbhy50NabMtzEz7mAaiy5rbV-bmLnYf2cO63DAeLwk597UCa_-7pJ8PD68r5_zzdvTy_p-k1suRJd_2bIUnCohlQVemgrBcCllyX3JuFdopLMwvOeE81JVpeMrbwUIbgzzAvmS3Ey9-9j-9Jg6vQvJYl2bBts-aSYrzpQEqIYom6LDjpQier2PYWfiUVPQoxy91aMcPcrRk5wBkv8gGzrThbbpogn1afRuQnHYfwgYdbIBR2Mhou20a8Mp_BejpYCB
CitedBy_id crossref_primary_10_1002_admi_202500429
crossref_primary_10_1002_smtd_202402048
crossref_primary_10_1002_adhm_202401309
crossref_primary_10_1016_j_jddst_2025_106890
crossref_primary_10_1089_jop_2025_0047
crossref_primary_10_1016_j_nantod_2024_102448
crossref_primary_10_1089_jop_2024_0153
crossref_primary_10_1116_6_0004159
crossref_primary_10_1016_j_ijpharm_2024_124347
crossref_primary_10_1016_j_addr_2023_115113
crossref_primary_10_1016_j_addr_2024_115478
crossref_primary_10_1016_j_jddst_2024_105529
crossref_primary_10_1016_j_jhazmat_2025_137536
crossref_primary_10_1039_D5BM00453E
crossref_primary_10_1016_j_cej_2025_160344
crossref_primary_10_1016_j_survophthal_2024_07_002
crossref_primary_10_1007_s42452_025_07002_4
crossref_primary_10_1016_j_ijbiomac_2025_145356
crossref_primary_10_1016_j_jddst_2024_105841
crossref_primary_10_3390_ijms242015352
crossref_primary_10_1016_j_jddst_2025_107029
crossref_primary_10_1016_j_mtbio_2025_102167
crossref_primary_10_1021_acsami_5c09445
crossref_primary_10_1016_j_jtos_2025_03_004
crossref_primary_10_1002_admt_202501152
crossref_primary_10_1016_j_heliyon_2024_e40658
crossref_primary_10_1002_adfm_202422602
crossref_primary_10_1016_j_ijpharm_2025_125932
crossref_primary_10_1016_j_tibtech_2024_05_002
crossref_primary_10_1039_D4NR03538K
crossref_primary_10_1002_advs_202412226
crossref_primary_10_1016_j_celbio_2025_100100
crossref_primary_10_1007_s11095_024_03718_x
crossref_primary_10_1016_j_ijpharm_2024_124195
crossref_primary_10_1016_j_mtbio_2025_101722
crossref_primary_10_2174_0115734137317813241014113421
crossref_primary_10_3390_pharmaceutics17050599
crossref_primary_10_1016_j_ijbiomac_2025_142695
crossref_primary_10_1016_j_jconrel_2024_05_013
crossref_primary_10_3390_pharmaceutics16020237
crossref_primary_10_1016_j_jconrel_2024_11_002
crossref_primary_10_1016_j_jconrel_2025_114116
crossref_primary_10_1016_j_eurpolymj_2025_113773
crossref_primary_10_1016_j_jddst_2024_106395
crossref_primary_10_1016_j_jconrel_2025_114078
crossref_primary_10_1016_j_drudis_2024_104098
crossref_primary_10_22159_ijap_2025v17i3_52517
crossref_primary_10_1111_ceo_14577
crossref_primary_10_1016_j_ijbiomac_2024_138885
crossref_primary_10_1007_s40820_024_01477_3
crossref_primary_10_1089_jop_2023_0161
crossref_primary_10_1016_j_mtbio_2025_101779
crossref_primary_10_2147_DDDT_S519048
crossref_primary_10_1007_s13346_025_01925_6
crossref_primary_10_1007_s11468_025_03208_9
crossref_primary_10_1002_advs_202403388
crossref_primary_10_1016_j_mtbio_2025_102080
crossref_primary_10_1002_smll_202506886
crossref_primary_10_1016_j_ijpharm_2025_125793
crossref_primary_10_1002_smsc_202500009
crossref_primary_10_1002_cbic_202400971
crossref_primary_10_1038_s41427_025_00614_7
crossref_primary_10_3390_pharmaceutics16111398
crossref_primary_10_1016_j_addr_2023_115109
crossref_primary_10_1016_j_ijpharm_2025_126009
crossref_primary_10_2174_0115672018301931240624072453
crossref_primary_10_1002_advs_202414548
crossref_primary_10_1021_acs_molpharmaceut_4c01115
crossref_primary_10_1016_j_ijpharm_2024_123883
crossref_primary_10_1016_j_exer_2025_110456
crossref_primary_10_1016_j_actbio_2025_05_065
Cites_doi 10.1007/s11095-011-0419-4
10.1016/j.preteyeres.2019.100773
10.3390/cosmetics9020031
10.1016/j.ejps.2013.05.005
10.1167/iovs.07-0066
10.1038/s41598-017-15830-7
10.1111/opo.12377
10.1016/j.ijpharm.2019.118808
10.1007/s13206-015-9305-9
10.2174/0929867324666170526124053
10.3389/fbioe.2018.00210
10.1016/j.ejpb.2021.05.022
10.1016/j.jconrel.2020.07.031
10.1016/j.ijpharm.2021.121305
10.1016/j.jconrel.2020.10.028
10.1111/ics.12372
10.1111/1523-1747.ep12338682
10.1371/journal.pone.0029692
10.1159/000108117
10.1016/j.snb.2017.08.030
10.1016/j.bioadv.2022.213169
10.1111/jphp.12152
10.1016/j.measurement.2019.04.065
10.1038/eye.2011.82
10.1038/s41467-018-06981-w
10.1016/j.ejpb.2014.04.018
10.1038/s41598-017-13150-4
10.1167/iovs.14-15257
10.1016/B978-0-12-420130-9.00001-3
10.1016/j.jiec.2022.11.072
10.3390/polym13162815
10.1167/tvst.5.6.14
10.1016/j.ejps.2020.105361
10.1016/j.snb.2015.09.071
10.1016/j.jmbbm.2014.09.004
10.1208/s12249-018-1004-5
10.3390/ma15217693
10.1038/s41598-020-58822-w
10.1007/s12247-020-09460-2
10.1088/1748-605X/ac2b7a
10.1016/j.preteyeres.2008.05.001
10.1167/iovs.14-14651
10.1002/mabi.202000089
10.1089/jop.2008.0090
10.1080/17425247.2016.1218460
10.1016/B978-1-4377-1926-0.10002-5
10.1097/IJG.0b013e31825af67d
10.1016/j.ejpb.2014.11.023
10.1007/s11095-018-2556-5
10.37765/ajmc.2022.89270
10.1166/jnn.2011.4499
10.1002/cjce.23673
10.1016/j.biomaterials.2020.120491
10.1038/s41598-019-47213-5
10.1016/j.actbio.2017.10.030
10.1002/adfm.201909197
10.1038/jid.1982.19
10.1016/j.medengphy.2007.06.011
10.1016/j.jid.2016.11.045
10.4274/tjo.galenos.2020.82504
10.1016/C2021-0-01278-5
10.1089/dia.2010.0204
10.1097/01.icu.0000193079.55240.18
10.1167/iovs.13-11747
10.3109/10717541003667798
10.1002/jin2.41
10.1016/j.jid.2018.09.001
10.1016/j.ijpharm.2014.05.042
10.1177/0954411918759801
10.3390/molecules26247565
10.2147/CCID.S142450
10.1080/10803548.2015.1136110
10.1186/s40463-017-0210-6
10.1155/2014/503645
10.1097/ICO.0000000000002182
10.1016/j.jconrel.2005.02.002
10.1007/s10544-013-9771-y
10.1016/j.engfracmech.2020.107289
10.1111/j.1365-2818.2012.03619.x
10.1016/j.jconrel.2018.03.001
10.1007/s13346-015-0237-z
10.1111/aos.14480
10.1111/aos.14042
10.1016/j.ejpb.2016.06.023
10.1016/j.ophtha.2020.01.006
10.3390/pharmaceutics13040579
10.1167/iovs.12-9872
10.1016/S0169-409X(01)00193-4
10.5114/pdia.2013.38359
10.1016/S0002-9394(14)72088-4
10.3390/pharmaceutics11070321
10.1167/iovs.11-8009
10.1016/j.jconrel.2016.02.041
10.1007/s10544-021-00604-w
10.1016/j.ejpb.2020.12.006
10.1167/iovs.16-19706
10.1016/j.drudis.2010.12.004
10.1080/03639045.2020.1776317
10.3389/fimmu.2020.590285
10.1007/s11095-010-0271-y
10.1159/000497475
10.1002/adhm.201200239
10.1038/eye.2008.88
10.1016/j.survophthal.2009.07.005
10.1080/1061186X.2020.1795180
10.1371/journal.pone.0162518
10.1097/AJP.0b013e31816778f9
10.1213/00000539-200102000-00041
10.1016/j.ejpb.2018.09.021
10.1007/s13346-016-0332-9
10.1007/s00403-013-1417-7
10.1007/s11095-008-9756-3
10.1016/j.actbio.2018.09.039
10.1038/clpt.1981.57
10.1096/fasebj.2022.36.S1.L7681
10.1016/j.jddst.2022.103653
10.1016/j.cis.2018.02.002
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.addr.2023.115082
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-8294
ExternalDocumentID 10_1016_j_addr_2023_115082
S0169409X23003976
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HX~
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSH
SSP
SSU
SSZ
T5K
TEORI
WUQ
Y6R
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7X8
ID FETCH-LOGICAL-c377t-bc557319789c035a6e0a388853f523f9ea8dc0872d7df8965d34fc7073aa2f7e3
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001081403600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-409X
1872-8294
IngestDate Sun Nov 09 12:52:14 EST 2025
Sat Nov 29 07:22:45 EST 2025
Tue Nov 18 21:46:28 EST 2025
Sun Apr 06 06:56:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ocular
Hollow microneedle
Microneedle
Computational modelling
Solid microneedle
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-bc557319789c035a6e0a388853f523f9ea8dc0872d7df8965d34fc7073aa2f7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.addr.2023.115082
PQID 2863298006
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2863298006
crossref_primary_10_1016_j_addr_2023_115082
crossref_citationtrail_10_1016_j_addr_2023_115082
elsevier_sciencedirect_doi_10_1016_j_addr_2023_115082
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Advanced drug delivery reviews
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References V. Morales-Canton, J. Fromow-Guerra, S.S. Longoria, R.R. Vera, M. Widmann, S. Patel, B. Yerxa, Suprachoroidal microinjection of bevacizumab is well tolerated in human patients, Invest Ophthalmol Vis Sci. 54 (2013) 3299 ARVO Abstract.
Singh, Chanda (b0700) 2021; 16
Than, Liu, Chang, Duong, Cheung, Xu, Wang, Chen (b0450) 2018; 9
L. Remington, Cornea and Sclera, in: 2012.
Geroski, Edelhauser (b0775) 2001; 52
Wu, Vora, Wang, Adrianto, Tekko, Waite, Donnelly, Thakur (b0095) 2021; 165
Ingrole, Azizoglu, Dul, Birchall, Gill, Prausnitz (b0065) 2021; 267
Mandal, Gote, Pal, Mitra, Ogundele, Mitra (b0015) 2019; 36
Yeh, Khurana, Shah, Henry, Wang, Kissner, Ciulla, Noronha (b0530) 2020; 127
Lee, Li, Ihm, Jung (b0615) 2018; 255
Li, Hu, Dong, Chen, Zhao, Wang, Zhang, Chen, Wu, Wang (b0625) 2020; 151
G. Honari, H. Maibach, Skin Structure and Function, in: H. Maibach, G. Honari (Eds.), Applied Dermatotoxicology: Clinical Aspects, Academic Press, 2014: pp. 1–10. https://doi.org/https://doi.org/10.1016/B978-0-12-420130-9.00001-3.
A. Alafnan, A.A. Seetharam, T. Hussain, M.S. Gupta, S.M.D. Rizvi, A. Moin, A. Alamri, A. Unnisa, A.M. Awadelkareem, A.E.O. Elkhalifa, P. Jayahanumaiah, M. Khalid, N. Balashanmugam, Development and Characterization of PEGDA Microneedles for Localized Drug Delivery of Gemcitabine to Treat Inflammatory Breast Cancer, Materials. 15 (2022) 1–13. https://doi.org/10.3390/ma15217693.
Boote, Sigal, Grytz, Hua, Nguyen, Girard (b0570) 2020; 74
Vurgese, Panda-Jonas, Jonas, Vavvas (b0800) 2012; 7
Dilsher Singh Dhoot (b0100) 2022; 63
Kalaycı (b0470) 2020; 50
J. Mathias, The Advantages and Disadvantages of Scanning Electron Microscopy (SEM), (2020). https://www.innovatechlabs.com/newsroom/2083/advantages-disadvantages-scanning-electron-microscopy/ (accessed February 10, 2023).
Albadr, Tekko, Vora, Ali, Laverty, Donnelly, Thakur (b0350) 2022; 12
Juliszewski, Kadłuczka, Kiełbasa (b0670) 2016; 22
Donnelly, Raj Singh, Woolfson (b0150) 2010; 17
Li, Zeng, Shan, Tong (b0170) 2017; 24
Kim, Grossniklaus, Edelhauser, Prausnitz (b0190) 2014; 55
Saadatkhah, Carillo Garcia, Ackermann, Leclerc, Latifi, Samih, Patience, Chaouki (b0340) 2020; 98
Roy, Garg, Venuganti (b0435) 2022; 612
Willekens, Gijbels, Smits, Schoevaerdts, Blanckaert, Feyen, Reynaerts, Stalmans (b0565) 2021; 99
Thrimawithana, Young, Bunt, Green, Alany (b0785) 2011; 16
Makvandi, Kirkby, Hutton, Shabani, Yiu, Baghbantaraghdari, Jamaledin, Carlotti, Mazzolai, Mattoli, Donnelly (b0325) 2021; 13
Aldawood, Andar, Desai (b0080) 2021; 13
Thakur Singh, Tekko, McAvoy, McMillan, Jones, Donnelly (b0310) 2017; 14
Lee, Ma, You, Kim, Byeon, Jung (b0370) 2015; 9
Halder, Gupta, Kumari, Gupta, Rai (b0235) 2021; 16
AZO Materials, Stainless Steel - Grade 304 (UNS S30400), (2023). https://www.azom.com/properties.aspx?ArticleID=965 (accessed February 6, 2023).
Kim, Edelhauser, Prausnitz (b0500) 2014; 55
Bekerman, Gottlieb, Vaiman (b0005) 2014; 2014
A. Than, C. Liu, H. Chang, P.K. Duong, C.M.G. Cheung, C. Xu, X. Wang, Peng. Chen, Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery., Nat Commun. 9 (2018) 1–12. https://doi.org/10.1038/s41467-018-06981-w.
Lee, You, Lee, Jung (b0930) 2013; 15
Albadr, Tekko, Vora, Ali, Laverty, Donnelly, Thakur (b0465) 2022; 12
Colter, Williams, Moran, Coats (b0050) 2015; 41
Alimardani, Sadat Abolmaali, Yousefi, Hossein Nowroozzadeh, Mohammad Tamaddon (b0265) 2023; 119
Larrañeta, Moore, Vicente-Pérez, González-Vázquez, Lutton, Woolfson, Donnelly (b0275) 2014; 472
Venkatkrish M. Kasetty; Luke G. Qin; Diego Espinosa-Heidmann; Dennis M. Marcus, Flow Mechanics of Suprachoroidal Injection, (2022). https://www.retinalphysician.com/issues/2022/special-edition-2022/flow-mechanics-of-suprachoroidal-injection#reference-27 (accessed August 10, 2023).
Quigley (b0475) 1996; 122
Amarnani, Shende (b0070) 2022; 24
L. de Oliveira Morais, R. de Freitas Dalavia, A. Paula Alcides, F. Quirino Soares, M. Feitoza-Silva, EVALUATION OF HIPODERMIC NEEDLES BRANDS THROUGH THE TEST OF CORROSION RESISTANCE, 2010.
Vora, Moffatt, Tekko, Paredes, Volpe-Zanutto, Mishra, Peng, Raj Singh Thakur, Donnelly (b0090) 2021; 159
Ayalasomayajula, Ashton, Kompella (b0445) 2009; 25
Goldstein, Do, Noronha, Kissner, Srivastava, Nguyen (b0560) 2016; 5
Wadstein, Alvarez, López (b0725) 2022; 9
Cholkar, Dasari, Pal, Mitra (b0020) 2013
Tuan-Mahmood, McCrudden, Torrisi, McAlister, Garland, Singh, Donnelly (b0690) 2013; 50
Pawlaczyk, Lelonkiewicz, Wieczorowski (b0740) 2013; 30
Alonso, Meirelles, Yushmanov, Tabak (b0755) 1996; 106
Bok, Zhao, Jeon, Jeong, Lim (b0220) 2020; 10
He, Zhang, Zheng, Li, Qi, Wu, Lu (b0305) 2021; 13
Coudrillier, Tian, Alexander, Myers, Quigley, Nguyen (b0805) 2012; 53
Arshad, Zafar, Zahra, Zaman, Akhtar, Kucuk, Farhan, Chang, Ahmad (b0295) 2021; 29
Kim, Flach, Jampol (b0405) 2010; 55
Becker, Ballin, Louis (b0415) 2015
Clearside Biomedical, Suprachoroidal space, (2021).
Thakur Singh, Tekko, McAvoy, McMillan, Jones, Donnelly (b0085) 2017; 14
Ueda, Saito, Murata, Hirano, Bise, Kabashima, Suzuki (b0735) 2019; 9
Jung, Chiang, Grossniklaus, Prausnitz (b0230) 2018; 277
Thakur, Tekko, Al-Shammari, Ali, McCarthy, Donnelly (b0155) 2016; 6
Gilger, Abarca, Salmon, Patel (b0430) 2013; 54
Khandan, Kahook, Rao (b0510) 2016; 223
Patel, Berezovsky, McCarey, Zarnitsyn, Edelhauser, Prausnitz (b0400) 2012; 53
McClements (b0575) 2018; 253
VOA News, Tiny Needles Treat Eye Disease, (2014). Tiny Needles Treat Eye Disease (accessed August 10, 2023).
Clearside Biomedical Inc., Suprachoroidal CLS-TA With Intravitreal Aflibercept Versus Aflibercept Alone in Subject With Diabetic Macular Edema (TYBEE), (2021). Suprachoroidal CLS-TA With Intravitreal Aflibercept Versus Aflibercept Alone in Subject With Diabetic Macular Edema (TYBEE) (accessed August 10, 2023).
Shields, Shields (b0410) 2006; 17
Chen, Ren, Li, Yao, Chen, Liu, Jiang (b0640) 2018; 65
Kim, Lutz, Wang, Robinson (b0815) 2007; 39
Thakur, Fallows, McMillan, Donnelly, Jones (b0200) 2014; 66
Jiang, Gill, Ghate, McCarey, Patel, Edelhauser, Prausnitz (b0175) 2007; 48
Clearside Biomedical Inc., Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis, (2021). Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis (accessed August 10, 2023).
(triamcinolone acetonide injectable suspension) for Suprachoroidal Use for the Treatment of Macular Edema Associated with Uveitis, (2021). https://ir.clearsidebio.com/news-releases/news-release-details/bausch-lomb-and-clearside-biomedical-announce-fda-approval (accessed January 9, 2023).
Falavarjani, Nguyen (b0040) 2013; 27
Migalska, Morrow, Garland, Thakur, Woolfson, Donnelly (b0165) 2011; 28
Price, Schmitt, McGuire, Shaw, Trobough (b0680) 1981; 29
Kim, Grossniklaus, Edelhauser, Prausnitz (b0375) 2014; 55
Rohan, Singh, Ichhpujani (b0480) 2020; 12
Penn, Madan, Caldwell, Bartoli, Caldwell, Hartnett (b0355) 2008; 27
Clearside Biomedical, Bausch + Lomb and Clearside Biomedical Announce FDA Approval of XIPERE
Gallo (b0665) 2017; 137
Aldawood, Andar, Desai (b0060) 2021; 13
De Martino, Battisti, Napolitano, Palladino, Serpico, Amendola, Martone, De Girolamo, Squillace, Dardano, De Stefano, Dello Iacono (b0630) 2022; 142
Roy, Galigama, Thorat, Mallela, Roy, Garg, Venuganti (b0460) 2019; 572
Ilochonwu, Urtti, Hennink, Vermonden (b0365) 2020; 326
Shaun Ian Retief Lampen; Rahul N. Khurana; David M Brown; Charles Clifton Wykoff, Suprachoroidal Space Alterations after Delivery of Triamcinolone Acetonide: Post-Hoc Analysis of the Phase 1/2 HULK Study of Patients with Diabetic Macular Edema, Invest Ophthalmol Vis Sci. 59 (2018).
Alexander, Brown, Danby, Flohr (b0280) 2018; 138
Choi, Cheong, Lee, Lee, Jin, Park (b0790) 2011; 11
Thakur, Tekko, Al-Shammari, Ali, McCarthy, Donnelly (b0245) 2016; 6
Jiang, Moore, Edelhauser, Prausnitz (b0115) 2009; 26
Clearside Biomedical Inc., MAGNOLIA: Extension Study of Patients With Non-infectious Uveitis Who Participated in CLS1001-301, (2021). https://www.clinicaltrials.gov/study/NCT02952001?term=microneedle%20AND%20ocular&page=2&rank=14 (accessed August 10, 2023).
Joodaki, Panzer (b0750) 2018; 232
Wei, Edwards, Martin, Huang, Crichton, Kendall (b0810) 2017; 7
Niemiec, Louiselle, Hilton, Dewberry, Zhang, Azeltine, Xu, Singh, Sakthivel, Seal, Liechty, Zgheib (b0765) 2020; 11
Lee, Song, Cho, Kim, Kim, Ryu (b0160) 2018; 80
Wan, Kapik, Wykoff, Henry, Barakat, Shah, Andino, Ciulla (b0655) 2020; 9
Tavakoli, Peynshaert, Lajunen, Devoldere, del Amo, Ruponen, De Smedt, Remaut, Urtti (b0035) 2020; 328
Amer, Chen (b0635) 2020; 20
Ng, Gupta (b0685) 2020; 15
Loizidou, Williams, Barrow, Eaton, McCrory, Evans, Allender (b0920) 2015; 89
Vora, Vavia, Larrañeta, Bell, Donnelly (b0130) 2018; 3
C.G. Krader, FDA approves XIPERE injection for treatment of uveitic macular edema, (2021). https://www.modernretina.com/view/fda-approves-triamcinolone-acetonide-for-suprachoroidal-injection-for-treatment-of-uveitic-macular-edema.
Ebrahiminejad, Faraji Rad, Prewett, Davies (b0255) 2022; 13
Rada, Achen, Perry, Fox (b0795) 1997; 38
WHO, World report on vision, 2019.
Bhatnagar, Saju, Cheerla, Gade, Garg, Venuganti (b0455) 2018; 8
Huang, Huang, Lin, Lin (b0315) 2017; 2017
U.S Food and Drug Administration, Microneedling Devices, (2020). https://www.fda.gov/medical-devices/aesthetic-cosmetic-devices/microneedling-devices (accessed August 10, 2023).
Lutton, Moore, Larrañeta, Ligett, Woolfson, Donnelly (b0940) 2015; 5
R.E. Lutton, J. Moore, E. Larrañeta, S. Ligett, A. David Woolfson, R.F. Donnelly, Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation, (2015). https://doi.org/10.1007/s13346.
Baranwal, Agnihotri, McGarry (b0730) 2020; 239
Iriarte, Awosika, Rengifo-Pardo, Ehrlich (b0075) 2017; 10
Weihermann, Lorencini, Brohem, de Carvalho (b0715) 2017; 39
Park, Jo, Cho, Lee, Kim, Ryu, Joo, Kim, Ryu (b0770) 2018; 133
Podoleanu (b0335) 2012; 247
Pieramici, Rabena (b0360) 2008; 22
Galvez-Martin, Martinez-Puig, Soto-Fernández, Romero-Rueda (b0720) 2022; 36
Patel, Lin, Edelhauser,
Alimardani (10.1016/j.addr.2023.115082_b0265) 2023; 119
Loizidou (10.1016/j.addr.2023.115082_b0660) 2016; 107
10.1016/j.addr.2023.115082_b0055
Pawlaczyk (10.1016/j.addr.2023.115082_b0740) 2013; 30
Yadav (10.1016/j.addr.2023.115082_b0820) 2018
Jiang (10.1016/j.addr.2023.115082_b0175) 2007; 48
Han (10.1016/j.addr.2023.115082_b0210) 2020; 30
Chen (10.1016/j.addr.2023.115082_b0640) 2018; 65
Cha (10.1016/j.addr.2023.115082_b0745) 2019; 142
Joodaki (10.1016/j.addr.2023.115082_b0750) 2018; 232
Gilger (10.1016/j.addr.2023.115082_b0120) 2020; 39
Aldawood (10.1016/j.addr.2023.115082_b0080) 2021; 13
Ingrole (10.1016/j.addr.2023.115082_b0065) 2021; 267
Vora (10.1016/j.addr.2023.115082_b0090) 2021; 159
Park (10.1016/j.addr.2023.115082_b0885) 2016; 57
Roy (10.1016/j.addr.2023.115082_b0145) 2020; 46
Thakur (10.1016/j.addr.2023.115082_b0200) 2014; 66
Griffin (10.1016/j.addr.2023.115082_b0605) 2017; 46
Nguyen (10.1016/j.addr.2023.115082_b0610) 2019; 6
10.1016/j.addr.2023.115082_b0285
10.1016/j.addr.2023.115082_b0045
10.1016/j.addr.2023.115082_b0320
Chiang (10.1016/j.addr.2023.115082_b0505) 2016; 228
Geroski (10.1016/j.addr.2023.115082_b0775) 2001; 52
Jung (10.1016/j.addr.2023.115082_b0230) 2018; 277
10.1016/j.addr.2023.115082_b0600
Thakur (10.1016/j.addr.2023.115082_b0245) 2016; 6
Thakur Singh (10.1016/j.addr.2023.115082_b0310) 2017; 14
Ciulla (10.1016/j.addr.2023.115082_b0520) 2022; 28
Alonso (10.1016/j.addr.2023.115082_b0755) 1996; 106
Wei (10.1016/j.addr.2023.115082_b0810) 2017; 7
Albadr (10.1016/j.addr.2023.115082_b0350) 2022; 12
Kim (10.1016/j.addr.2023.115082_b0375) 2014; 55
Albadr (10.1016/j.addr.2023.115082_b0465) 2022; 12
Ilochonwu (10.1016/j.addr.2023.115082_b0365) 2020; 326
Bhatnagar (10.1016/j.addr.2023.115082_b0455) 2018; 8
Aldawood (10.1016/j.addr.2023.115082_b0060) 2021; 13
Willekens (10.1016/j.addr.2023.115082_b0565) 2021; 99
Habot-Wilner (10.1016/j.addr.2023.115082_b0525) 2019; 97
Lee (10.1016/j.addr.2023.115082_b0615) 2018; 255
Tavakoli (10.1016/j.addr.2023.115082_b0035) 2020; 328
Donnelly (10.1016/j.addr.2023.115082_b0150) 2010; 17
Larrañeta (10.1016/j.addr.2023.115082_b0275) 2014; 472
Kim (10.1016/j.addr.2023.115082_b0405) 2010; 55
Lynch (10.1016/j.addr.2023.115082_b0760) 2017; 7
10.1016/j.addr.2023.115082_b0110
10.1016/j.addr.2023.115082_b0595
Mandal (10.1016/j.addr.2023.115082_b0015) 2019; 36
Kim (10.1016/j.addr.2023.115082_b0500) 2014; 55
Coudrillier (10.1016/j.addr.2023.115082_b0805) 2012; 53
Huang (10.1016/j.addr.2023.115082_b0315) 2017; 2017
Wan (10.1016/j.addr.2023.115082_b0655) 2020; 9
Saadatkhah (10.1016/j.addr.2023.115082_b0340) 2020; 98
Shields (10.1016/j.addr.2023.115082_b0410) 2006; 17
Li (10.1016/j.addr.2023.115082_b0170) 2017; 24
Consejo (10.1016/j.addr.2023.115082_b0780) 2017; 37
Choi (10.1016/j.addr.2023.115082_b0790) 2011; 11
10.1016/j.addr.2023.115082_b0580
10.1016/j.addr.2023.115082_b0585
Gallo (10.1016/j.addr.2023.115082_b0665) 2017; 137
Juliszewski (10.1016/j.addr.2023.115082_b0670) 2016; 22
Thakur (10.1016/j.addr.2023.115082_b0125) 2014; 66
Gupta (10.1016/j.addr.2023.115082_b0185) 2011; 13
10.1016/j.addr.2023.115082_b0105
Tratta (10.1016/j.addr.2023.115082_b0225) 2014; 88
Patel (10.1016/j.addr.2023.115082_b0400) 2012; 53
Rada (10.1016/j.addr.2023.115082_b0795) 1997; 38
Niemiec (10.1016/j.addr.2023.115082_b0765) 2020; 11
Makvandi (10.1016/j.addr.2023.115082_b0325) 2021; 13
10.1016/j.addr.2023.115082_b0250
Than (10.1016/j.addr.2023.115082_b0450) 2018; 9
Galvez-Martin (10.1016/j.addr.2023.115082_b0720) 2022; 36
Yeh (10.1016/j.addr.2023.115082_b0530) 2020; 127
10.1016/j.addr.2023.115082_b0895
Falavarjani (10.1016/j.addr.2023.115082_b0040) 2013; 27
Wu (10.1016/j.addr.2023.115082_b0095) 2021; 165
10.1016/j.addr.2023.115082_b0010
10.1016/j.addr.2023.115082_b0650
Thrimawithana (10.1016/j.addr.2023.115082_b0785) 2011; 16
Smith (10.1016/j.addr.2023.115082_b0705) 1982; 79
Boote (10.1016/j.addr.2023.115082_b0570) 2020; 74
McClements (10.1016/j.addr.2023.115082_b0575) 2018; 253
Podoleanu (10.1016/j.addr.2023.115082_b0335) 2012; 247
10.1016/j.addr.2023.115082_b0535
De Martino (10.1016/j.addr.2023.115082_b0630) 2022; 142
Roy (10.1016/j.addr.2023.115082_b0435) 2022; 612
Ueda (10.1016/j.addr.2023.115082_b0735) 2019; 9
Wu (10.1016/j.addr.2023.115082_b0135) 2023; 13
Lee (10.1016/j.addr.2023.115082_b0930) 2013; 15
Penn (10.1016/j.addr.2023.115082_b0355) 2008; 27
Park (10.1016/j.addr.2023.115082_b0260) 2005; 104
Goldstein (10.1016/j.addr.2023.115082_b0560) 2016; 5
Colter (10.1016/j.addr.2023.115082_b0050) 2015; 41
Arshad (10.1016/j.addr.2023.115082_b0295) 2021; 29
Xiu (10.1016/j.addr.2023.115082_b0675) 2022; 76
Weihermann (10.1016/j.addr.2023.115082_b0715) 2017; 39
Park (10.1016/j.addr.2023.115082_b0770) 2018; 133
Ebrahiminejad (10.1016/j.addr.2023.115082_b0255) 2022; 13
Jiang (10.1016/j.addr.2023.115082_b0115) 2009; 26
10.1016/j.addr.2023.115082_b0240
Lee (10.1016/j.addr.2023.115082_b0160) 2018; 80
Lutton (10.1016/j.addr.2023.115082_b0940) 2015; 5
Gill (10.1016/j.addr.2023.115082_b0180) 2008; 24
Li (10.1016/j.addr.2023.115082_b0625) 2020; 151
Migalska (10.1016/j.addr.2023.115082_b0165) 2011; 28
Al-Kasasbeh (10.1016/j.addr.2023.115082_b0330) 2020; 10
10.1016/j.addr.2023.115082_b0645
Vora (10.1016/j.addr.2023.115082_b0130) 2018; 3
Halder (10.1016/j.addr.2023.115082_b0235) 2021; 16
Rohan (10.1016/j.addr.2023.115082_b0480) 2020; 12
Quigley (10.1016/j.addr.2023.115082_b0475) 1996; 122
Cholkar (10.1016/j.addr.2023.115082_b0020) 2013
Ayalasomayajula (10.1016/j.addr.2023.115082_b0445) 2009; 25
Dilsher Singh Dhoot (10.1016/j.addr.2023.115082_b0100) 2022; 63
10.1016/j.addr.2023.115082_b0030
He (10.1016/j.addr.2023.115082_b0305) 2021; 13
Price (10.1016/j.addr.2023.115082_b0680) 1981; 29
Vurgese (10.1016/j.addr.2023.115082_b0800) 2012; 7
10.1016/j.addr.2023.115082_b0555
Kaushik (10.1016/j.addr.2023.115082_b0195) 2001
Patel (10.1016/j.addr.2023.115082_b0205) 2011; 28
10.1016/j.addr.2023.115082_b0550
Kim (10.1016/j.addr.2023.115082_b0190) 2014; 55
Wadstein (10.1016/j.addr.2023.115082_b0725) 2022; 9
Thakur Singh (10.1016/j.addr.2023.115082_b0085) 2017; 14
Thakur (10.1016/j.addr.2023.115082_b0155) 2016; 6
Johnson (10.1016/j.addr.2023.115082_b0590) 2016; 11
Becker (10.1016/j.addr.2023.115082_b0415) 2015
Kalaycı (10.1016/j.addr.2023.115082_b0470) 2020; 50
Lee (10.1016/j.addr.2023.115082_b0935) 2013; 2
Bhatnagar (10.1016/j.addr.2023.115082_b0290) 2018; 19
10.1016/j.addr.2023.115082_b0140
Lee (10.1016/j.addr.2023.115082_b0370) 2015; 9
Ng (10.1016/j.addr.2023.115082_b0685) 2020; 15
Alexander (10.1016/j.addr.2023.115082_b0280) 2018; 138
10.1016/j.addr.2023.115082_b0025
10.1016/j.addr.2023.115082_b0300
Gilger (10.1016/j.addr.2023.115082_b0430) 2013; 54
Baranwal (10.1016/j.addr.2023.115082_b0730) 2020; 239
Moiseev (10.1016/j.addr.2023.115082_b0215) 2019; 11
Pieramici (10.1016/j.addr.2023.115082_b0360) 2008; 22
Bok (10.1016/j.addr.2023.115082_b0220) 2020; 10
Singh (10.1016/j.addr.2023.115082_b0700) 2021; 16
Tuan-Mahmood (10.1016/j.addr.2023.115082_b0690) 2013; 50
Kim (10.1016/j.addr.2023.115082_b0815) 2007; 39
10.1016/j.addr.2023.115082_b0540
Roy (10.1016/j.addr.2023.115082_b0460) 2019; 572
Lavik (10.1016/j.addr.2023.115082_b0495) 2011; 25
Bekerman (10.1016/j.addr.2023.115082_b0005) 2014; 2014
Babalola (10.1016/j.addr.2023.115082_b0270) 2014; 306
10.1016/j.addr.2023.115082_b0545
Amarnani (10.1016/j.addr.2023.115082_b0070) 2022; 24
Czekalla (10.1016/j.addr.2023.115082_b0695) 2019; 32
Iriarte (10.1016/j.addr.2023.115082_b0075) 2017; 10
Khandan (10.1016/j.addr.2023.115082_b0510) 2016; 223
Selamat (10.1016/j.addr.2023.115082_b0345) 2021; 26
Amer (10.1016/j.addr.2023.115082_b0635) 2020; 20
Pailler-Mattei (10.1016/j.addr.2023.115082_b0710) 2008; 30
Loizidou (10.1016/j.addr.2023.115082_b0920) 2015; 89
References_xml – volume: 11
  start-page: 6382
  year: 2011
  end-page: 6388
  ident: b0790
  article-title: AFM Study for Morphological and Mechanical Properties of Human Scleral Surface
  publication-title: J. Nanosci. Nanotechnol.
– volume: 13
  start-page: 629
  year: 2022
  end-page: 640
  ident: b0255
  article-title: Fabrication and testing of polymer microneedles for transdermal drug delivery, Beilstein
  publication-title: Journal of Nanotechnology.
– volume: 27
  start-page: 331
  year: 2008
  end-page: 371
  ident: b0355
  article-title: Vascular endothelial growth factor in eye disease
  publication-title: Prog. Retin. Eye Res.
– volume: 165
  start-page: 306
  year: 2021
  end-page: 318
  ident: b0095
  article-title: Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye
  publication-title: Eur. J. Pharm. Biopharm.
– reference: National Institute of Biomedical Imaging and Bioengineering, Computational Modeling , (2020). https://www.nibib.nih.gov/science-education/science-topics/computational-modeling (accessed August 15, 2023).
– volume: 39
  start-page: 241
  year: 2017
  end-page: 247
  ident: b0715
  article-title: Elastin structure and its involvement in skin photoageing
  publication-title: Int. J. Cosmet. Sci.
– volume: 14
  start-page: 525
  year: 2017
  end-page: 537
  ident: b0085
  article-title: Minimally invasive microneedles for ocular drug delivery
  publication-title: Expert Opin. Drug Deliv.
– volume: 159
  start-page: 44
  year: 2021
  end-page: 76
  ident: b0090
  article-title: Microneedle array systems for long-acting drug delivery
  publication-title: Eur. J. Pharm. Biopharm.
– start-page: 502
  year: 2001
  end-page: 504
  ident: b0195
  article-title: Lack of Pain Associated with Microfabricated Microneedles
  publication-title: Anesth. Analg.
– volume: 76
  start-page: 103653
  year: 2022
  ident: b0675
  article-title: Drug delivery with dissolving microneedles: skin puncture, its influencing factors and improvement strategies
  publication-title: J Drug Deliv Sci Technol.
– volume: 36
  year: 2022
  ident: b0720
  article-title: In vitro evaluation of anti-aging and regenerative properties of dermatan sulfate for skin care
  publication-title: FASEB J.
– volume: 17
  start-page: 187
  year: 2010
  end-page: 207
  ident: b0150
  article-title: Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety
  publication-title: Drug Deliv.
– volume: 9
  start-page: 27
  year: 2020
  ident: b0655
  article-title: Clinical characterization of suprachoroidal injection procedure utilizing a microinjector across three retinal disorders, Transl Vis
  publication-title: Sci. Technol.
– volume: 80
  start-page: 48
  year: 2018
  end-page: 57
  ident: b0160
  article-title: Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery
  publication-title: Acta Biomater.
– volume: 38
  start-page: 1740
  year: 1997
  end-page: 1751
  ident: b0795
  article-title: Proteoglycans in the human sclera: Evidence for the presence of aggrecan
  publication-title: Invest. Ophthalmol. Vis. Sci.
– reference: Clearside Biomedical Inc., Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis, (2021). Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis (accessed August 10, 2023).
– volume: 151
  start-page: 105361
  year: 2020
  ident: b0625
  article-title: Dissolving Microneedle Arrays with Optimized Needle Geometry for Transcutaneous Immunization
  publication-title: Eur. J. Pharm. Sci.
– volume: 39
  start-page: 244
  year: 2007
  end-page: 254
  ident: b0815
  article-title: Transport Barriers in Transscleral Drug Delivery for Retinal Diseases
  publication-title: Ophthalmic Res.
– volume: 247
  start-page: 209
  year: 2012
  end-page: 219
  ident: b0335
  article-title: Optical coherence tomography
  publication-title: J. Microsc.
– reference: A. Than, C. Liu, H. Chang, P.K. Duong, C.M.G. Cheung, C. Xu, X. Wang, Peng. Chen, Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery., Nat Commun. 9 (2018) 1–12. https://doi.org/10.1038/s41467-018-06981-w.
– volume: 24
  start-page: 585
  year: 2008
  end-page: 594
  ident: b0180
  article-title: Effect of microneedle design on pain in human volunteers
  publication-title: Clin. J. Pain
– reference: Shaun Ian Retief Lampen; Rahul N. Khurana; David M Brown; Charles Clifton Wykoff, Suprachoroidal Space Alterations after Delivery of Triamcinolone Acetonide: Post-Hoc Analysis of the Phase 1/2 HULK Study of Patients with Diabetic Macular Edema, Invest Ophthalmol Vis Sci. 59 (2018).
– volume: 65
  start-page: 283
  year: 2018
  end-page: 291
  ident: b0640
  article-title: Rapid fabrication of microneedles using magnetorheological drawing lithography
  publication-title: Acta Biomater.
– reference: C.G. Krader, FDA approves XIPERE injection for treatment of uveitic macular edema, (2021). https://www.modernretina.com/view/fda-approves-triamcinolone-acetonide-for-suprachoroidal-injection-for-treatment-of-uveitic-macular-edema.
– volume: 328
  start-page: 952
  year: 2020
  end-page: 961
  ident: b0035
  article-title: Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface
  publication-title: J. Control. Release
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0735
  article-title: Combined multiphoton imaging and biaxial tissue extension for quantitative analysis of geometric fiber organization in human reticular dermis
  publication-title: Sci. Rep.
– volume: 3
  start-page: 89
  year: 2018
  end-page: 101
  ident: b0130
  article-title: Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug
  publication-title: J. Interdiscip. Nanomed.
– volume: 119
  start-page: 485
  year: 2023
  end-page: 498
  ident: b0265
  article-title: In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone
  publication-title: J. Ind. Eng. Chem.
– reference: R.E. Lutton, J. Moore, E. Larrañeta, S. Ligett, A. David Woolfson, R.F. Donnelly, Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation, (2015). https://doi.org/10.1007/s13346.
– volume: 36
  start-page: 36
  year: 2019
  ident: b0015
  article-title: Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease
  publication-title: Pharm. Res.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 5
  ident: b0005
  article-title: Variations in Eyeball Diameters of the Healthy Adults
  publication-title: J. Ophthalmol.
– volume: 39
  start-page: 362
  year: 2020
  end-page: 369
  ident: b0120
  article-title: A Fixed-Depth Microneedle Enhances Reproducibility and Safety for Corneal Gene Therapy
  publication-title: Cornea
– volume: 11
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0765
  article-title: Nanosilk Increases the Strength of Diabetic Skin and Delivers CNP-miR146a to Improve Wound Healing
  publication-title: Front. Immunol.
– volume: 223
  start-page: 15
  year: 2016
  end-page: 23
  ident: b0510
  article-title: Fenestrated microneedles for ocular drug delivery
  publication-title: Sens Actuators B Chem.
– volume: 9
  start-page: 31
  year: 2022
  ident: b0725
  article-title: Managing Skin Ageing as a Modifiable Disorder — The Clinical Application of Nourella ® Dual Approach Comprising
  publication-title: Cosmetics
– volume: 13
  start-page: 2815
  year: 2021
  ident: b0060
  article-title: A comprehensive review of microneedles: Types, materials, processes, characterizations and applications
  publication-title: Polymers (Basel).
– volume: 28
  start-page: S243
  year: 2022
  end-page: S252
  ident: b0520
  article-title: Microinjection via the Suprachoroidal Space: A Review of a Novel Mode of Administration
  publication-title: Am. J. Manag. Care
– volume: 22
  start-page: 279
  year: 2016
  end-page: 282
  ident: b0670
  article-title: Determining eyeball surface area directly exposed to the effects of external factors
  publication-title: Int. J. Occup. Saf. Ergon.
– volume: 30
  start-page: 599
  year: 2008
  end-page: 606
  ident: b0710
  article-title: In vivo measurements of the elastic mechanical properties of human skin by indentation tests
  publication-title: Med. Eng. Phys.
– volume: 10
  start-page: 289
  year: 2017
  end-page: 298
  ident: b0075
  article-title: Review of applications of microneedling in dermatology
  publication-title: Clin. Cosmet. Investig. Dermatol.
– volume: 55
  start-page: 7387
  year: 2014
  end-page: 7397
  ident: b0500
  article-title: Targeted delivery of antiglaucoma drugs to the supraciliary space using microneedles
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 142
  start-page: 213169
  year: 2022
  ident: b0630
  article-title: Effect of microneedles shape on skin penetration and transdermal drug administration
  publication-title: Biomaterials Advances.
– volume: 104
  start-page: 51
  year: 2005
  end-page: 66
  ident: b0260
  article-title: Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery
  publication-title: J. Control. Release
– volume: 106
  start-page: 1058
  year: 1996
  end-page: 1063
  ident: b0755
  article-title: Water increases the fluidity of intercellular membranes of stratum corneum: Correlation with water permeability, elastic, and electrical resistance properties
  publication-title: J, Invest. Dermatol.
– volume: 30
  start-page: 1909197
  year: 2020
  ident: b0210
  article-title: 4D Printing of a Bioinspired Microneedle Array with Backward‐Facing Barbs for Enhanced Tissue Adhesion
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 062004
  year: 2021
  ident: b0700
  article-title: Mechanical properties of whole-body soft human tissues: A review
  publication-title: Biomedical Materials (Bristol).
– volume: 57
  start-page: 5602
  year: 2016
  end-page: 5610
  ident: b0885
  article-title: Details of the collagen and elastin architecture in the human limbal conjunctiva, tenon’s capsule and sclera revealed by two-photon excited fluorescence microscopy
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 37
  start-page: 263
  year: 2017
  end-page: 274
  ident: b0780
  article-title: Scleral changes with accommodation
  publication-title: Ophthalmic Physiol. Opt.
– volume: 612
  start-page: 121305
  year: 2022
  ident: b0435
  article-title: Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye
  publication-title: Int. J. Pharm.
– volume: 16
  start-page: 558
  year: 2021
  end-page: 565
  ident: b0235
  article-title: Rai, Microneedle Array: Applications, Recent Advances, and Clinical Pertinence in Transdermal Drug Delivery
  publication-title: J. Pharm. Innov.
– volume: 28
  start-page: 166
  year: 2011
  end-page: 176
  ident: b0205
  article-title: Suprachoroidal drug delivery to the back of the eye using hollow microneedles
  publication-title: Pharm. Res.
– volume: 9
  start-page: 4433
  year: 2018
  ident: b0450
  article-title: Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery
  publication-title: Nat. Commun.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 7
  ident: b0635
  article-title: Self-Adhesive Microneedles with Interlocking Features for Sustained Ocular Drug Delivery
  publication-title: Macromol. Biosci.
– reference: J. Mathias, The Advantages and Disadvantages of Scanning Electron Microscopy (SEM), (2020). https://www.innovatechlabs.com/newsroom/2083/advantages-disadvantages-scanning-electron-microscopy/ (accessed February 10, 2023).
– volume: 11
  start-page: e0162518
  year: 2016
  ident: b0590
  article-title: Single-step fabrication of computationally designed microneedles by continuous liquid interface production
  publication-title: PLoS One
– volume: 306
  start-page: 1
  year: 2014
  end-page: 9
  ident: b0270
  article-title: Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis
  publication-title: Arch. Dermatol. Res.
– volume: 99
  start-page: 90
  year: 2021
  end-page: 96
  ident: b0565
  article-title: Phase I trial on robot assisted retinal vein cannulation with ocriplasmin infusion for central retinal vein occlusion
  publication-title: Acta Ophthalmol.
– volume: 5
  start-page: 14
  year: 2016
  ident: b0560
  article-title: Suprachoroidal corticosteroid administration: A novel route for local treatment of noninfectious uveitis
  publication-title: Transl. Vis. Sci. Technol.
– volume: 277
  start-page: 14
  year: 2018
  end-page: 22
  ident: b0230
  article-title: Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle
  publication-title: J. Control. Release
– volume: 255
  start-page: 384
  year: 2018
  end-page: 390
  ident: b0615
  article-title: A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling
  publication-title: Sens Actuators B Chem.
– reference: AZO Materials, Stainless Steel - Grade 304 (UNS S30400), (2023). https://www.azom.com/properties.aspx?ArticleID=965 (accessed February 6, 2023).
– volume: 30
  start-page: 302
  year: 2013
  end-page: 306
  ident: b0740
  article-title: Age-dependent biomechanical properties of the skin
  publication-title: Postepy Dermatol Alergol.
– volume: 46
  start-page: 1114
  year: 2020
  end-page: 1122
  ident: b0145
  article-title: Microneedle ocular patch: fabrication, characterization, and ex-vivo evaluation using pilocarpine as model drug
  publication-title: Drug Dev. Ind. Pharm.
– volume: 12
  start-page: 931
  year: 2022
  end-page: 943
  ident: b0465
  article-title: Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections, Drug Deliv
  publication-title: Transl. Res.
– volume: 107
  start-page: 1
  year: 2016
  end-page: 6
  ident: b0660
  article-title: Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 52
  start-page: 37
  year: 2001
  end-page: 48
  ident: b0775
  article-title: Transscleral drug delivery for posterior segment disease
  publication-title: Adv. Drug Deliv. Rev.
– volume: 7
  start-page: e29692
  year: 2012
  ident: b0800
  article-title: Scleral thickness in human eyes
  publication-title: PLoS One
– reference: V. Morales-Canton, J. Fromow-Guerra, S.S. Longoria, R.R. Vera, M. Widmann, S. Patel, B. Yerxa, Suprachoroidal microinjection of bevacizumab is well tolerated in human patients, Invest Ophthalmol Vis Sci. 54 (2013) 3299 ARVO Abstract.
– reference: WHO, World report on vision, 2019.
– volume: 8
  start-page: 473
  year: 2018
  end-page: 483
  ident: b0455
  article-title: Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles, Drug Deliv
  publication-title: Transl. Res.
– reference: Clearside Biomedical Inc., Suprachoroidal CLS-TA With Intravitreal Aflibercept Versus Aflibercept Alone in Subject With Diabetic Macular Edema (TYBEE), (2021). Suprachoroidal CLS-TA With Intravitreal Aflibercept Versus Aflibercept Alone in Subject With Diabetic Macular Edema (TYBEE) (accessed August 10, 2023).
– volume: 7
  year: 2017
  ident: b0810
  article-title: Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: From mice, rats, rabbits, pigs to humans
  publication-title: Sci. Rep.
– reference: L. de Oliveira Morais, R. de Freitas Dalavia, A. Paula Alcides, F. Quirino Soares, M. Feitoza-Silva, EVALUATION OF HIPODERMIC NEEDLES BRANDS THROUGH THE TEST OF CORROSION RESISTANCE, 2010.
– volume: 267
  start-page: 120491
  year: 2021
  ident: b0065
  article-title: Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity
  publication-title: Biomaterials
– volume: 66
  start-page: 584
  year: 2014
  end-page: 595
  ident: b0125
  article-title: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery
  publication-title: J. Pharm. Pharmacol.
– volume: 12
  start-page: 931
  year: 2022
  end-page: 943
  ident: b0350
  article-title: Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections, Drug Deliv
  publication-title: Transl. Res.
– volume: 572
  year: 2019
  ident: b0460
  article-title: Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis
  publication-title: Int. J. Pharm.
– volume: 29
  start-page: 414
  year: 1981
  end-page: 419
  ident: b0680
  article-title: Transdermal scopolamine in the prevention of motion sickness at sea
  publication-title: Clin. Pharmacol. Ther.
– volume: 9
  start-page: 232
  year: 2015
  end-page: 238
  ident: b0370
  article-title: Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) antibody via Tower Microneedle
  publication-title: BioChip J.
– reference: U.S Food and Drug Administration, Microneedling Devices, (2020). https://www.fda.gov/medical-devices/aesthetic-cosmetic-devices/microneedling-devices (accessed August 10, 2023).
– volume: 48
  start-page: 4038
  year: 2007
  end-page: 4043
  ident: b0175
  article-title: Coated microneedles for drug delivery to the eye
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 228
  start-page: 48
  year: 2016
  end-page: 57
  ident: b0505
  article-title: Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma
  publication-title: J. Control. Release
– volume: 89
  start-page: 224
  year: 2015
  end-page: 231
  ident: b0920
  article-title: Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 26
  start-page: 395
  year: 2009
  end-page: 403
  ident: b0115
  article-title: Intrascleral Drug Delivery to the Eye Using Hollow Microneedles
  publication-title: Pharm. Res.
– volume: 55
  start-page: 108
  year: 2010
  end-page: 133
  ident: b0405
  article-title: Nonsteroidal Anti-inflammatory Drugs in Ophthalmology
  publication-title: Surv. Ophthalmol.
– reference: Clearside Biomedical Inc., MAGNOLIA: Extension Study of Patients With Non-infectious Uveitis Who Participated in CLS1001-301, (2021). https://www.clinicaltrials.gov/study/NCT02952001?term=microneedle%20AND%20ocular&page=2&rank=14 (accessed August 10, 2023).
– volume: 326
  start-page: 419
  year: 2020
  end-page: 441
  ident: b0365
  article-title: Intravitreal hydrogels for sustained release of therapeutic proteins
  publication-title: J. Control. Release
– volume: 53
  start-page: 4433
  year: 2012
  ident: b0400
  article-title: Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 66
  start-page: 584
  year: 2014
  end-page: 595
  ident: b0200
  article-title: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery
  publication-title: J. Pharm. Pharmacol.
– reference: C. Boimer, C.M. Birt, Preservative Exposure and Surgical Outcomes in Glaucoma Patients: The PESO Study, J Glaucoma. 22 (2013). https://journals.lww.com/glaucomajournal/Fulltext/2013/12000/Preservative_Exposure_and_Surgical_Outcomes_in.10.aspx.
– volume: 13
  start-page: 579
  year: 2021
  ident: b0305
  article-title: Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride
  publication-title: Pharmaceutics.
– volume: 137
  start-page: 1213
  year: 2017
  end-page: 1214
  ident: b0665
  article-title: Human Skin Is the Largest Epithelial Surface for Interaction with Microbes
  publication-title: J, Invest. Dermatol.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 8
  ident: b0315
  article-title: A Transdermal Measurement Platform Based on Microfluidics
  publication-title: J. Chem.
– volume: 13
  start-page: 2142
  year: 2023
  end-page: 2158
  ident: b0135
  article-title: Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye., Drug Deliv
  publication-title: Transl. Res.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0760
  article-title: How aging impacts skin biomechanics: A multiscale study in mice
  publication-title: Sci. Rep.
– volume: 55
  start-page: 7376
  year: 2014
  ident: b0375
  article-title: Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 34
  ident: b0080
  article-title: A comprehensive review of microneedles: Types, materials, processes, characterizations and applications
  publication-title: Polymers (Basel).
– volume: 14
  start-page: 525
  year: 2017
  end-page: 537
  ident: b0310
  article-title: Minimally invasive microneedles for ocular drug delivery
  publication-title: Expert Opin. Drug Deliv.
– reference: Clearside Biomedical, Suprachoroidal space, (2021).
– volume: 88
  start-page: 116
  year: 2014
  end-page: 122
  ident: b0225
  article-title: In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 138
  start-page: 2295
  year: 2018
  end-page: 2300.e1
  ident: b0280
  article-title: Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool
  publication-title: J, Invest. Dermatol.
– volume: 50
  start-page: 288
  year: 2020
  end-page: 292
  ident: b0470
  article-title: Causes of blindness in the adult population in somalia
  publication-title: Turk J Ophthalmol.
– volume: 25
  start-page: 578
  year: 2011
  end-page: 586
  ident: b0495
  article-title: Novel drug delivery systems for glaucoma
  publication-title: Eye
– volume: 26
  start-page: 7565
  year: 2021
  ident: b0345
  article-title: Application of the metabolomics approach in food authentication
  publication-title: Molecules
– volume: 55
  start-page: 7376
  year: 2014
  end-page: 7386
  ident: b0190
  article-title: Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 50
  start-page: 623
  year: 2013
  end-page: 637
  ident: b0690
  article-title: Microneedles for intradermal and transdermal drug delivery
  publication-title: Eur. J. Pharm. Sci.
– reference: Venkatkrish M. Kasetty; Luke G. Qin; Diego Espinosa-Heidmann; Dennis M. Marcus, Flow Mechanics of Suprachoroidal Injection, (2022). https://www.retinalphysician.com/issues/2022/special-edition-2022/flow-mechanics-of-suprachoroidal-injection#reference-27 (accessed August 10, 2023).
– volume: 79
  start-page: 93
  year: 1982
  end-page: 104
  ident: b0705
  article-title: Structure of the dermal matrix during development and in the adult
  publication-title: J, Invest. Dermatol.
– volume: 98
  start-page: 34
  year: 2020
  end-page: 43
  ident: b0340
  article-title: Experimental methods in chemical engineering: Thermogravimetric analysis—TGA
  publication-title: Can. J. Chem. Eng.
– volume: 41
  start-page: 315
  year: 2015
  end-page: 324
  ident: b0050
  article-title: Age-related changes in dynamic moduli of ovine vitreous
  publication-title: J. Mech. Behav. Biomed. Mater.
– reference: Clearside Biomedical, Bausch + Lomb and Clearside Biomedical Announce FDA Approval of XIPERE
– volume: 122
  start-page: 460
  year: 1996
  ident: b0475
  article-title: Number of people with glaucoma worldwide
  publication-title: Am. J. Ophthalmol.
– reference: Y. LEVIN, Y. YESHURUN, M. HEFETZ, Y. SEFI, G. LAVI, MICRONEEDLE ADAPTER FOR DOSED DRUG DELIVERY DEVICES, 2007.
– volume: 19
  start-page: 1818
  year: 2018
  end-page: 1826
  ident: b0290
  article-title: Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies
  publication-title: AAPS PharmSciTech
– volume: 32
  start-page: 142
  year: 2019
  end-page: 150
  ident: b0695
  article-title: Noninvasive Determination of Epidermal and Stratum Corneum Thickness in vivo Using Two-Photon Microscopy and Optical Coherence Tomography: Impact of Body Area, Age, and Gender
  publication-title: Skin Pharmacol. Physiol.
– volume: 232
  start-page: 323
  year: 2018
  end-page: 343
  ident: b0750
  article-title: Skin mechanical properties and modeling: A review
  publication-title: Proc. Inst. Mech. Eng. H
– volume: 24
  year: 2022
  ident: b0070
  article-title: Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system
  publication-title: Biomed. Microdevices
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0220
  article-title: Ultrasonically and Iontophoretically Enhanced Drug-Delivery System Based on Dissolving Microneedle Patches
  publication-title: Sci. Rep.
– volume: 6
  start-page: 800
  year: 2016
  end-page: 815
  ident: b0245
  article-title: Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery, Drug Deliv
  publication-title: Transl. Res.
– volume: 22
  start-page: 1330
  year: 2008
  end-page: 1336
  ident: b0360
  article-title: Anti-VEGF therapy: Comparison of current and future agents
  publication-title: Eye
– reference: Kevin Ita, Microneedles, Elsevier, 2022. https://doi.org/https://doi.org/10.1016/C2021-0-01278-5.
– volume: 15
  start-page: 13
  year: 2020
  end-page: 25
  ident: b0685
  article-title: Transdermal drug delivery systems in diabetes management: A review, Asian
  publication-title: J. Pharm. Sci.
– reference: A. Alafnan, A.A. Seetharam, T. Hussain, M.S. Gupta, S.M.D. Rizvi, A. Moin, A. Alamri, A. Unnisa, A.M. Awadelkareem, A.E.O. Elkhalifa, P. Jayahanumaiah, M. Khalid, N. Balashanmugam, Development and Characterization of PEGDA Microneedles for Localized Drug Delivery of Gemcitabine to Treat Inflammatory Breast Cancer, Materials. 15 (2022) 1–13. https://doi.org/10.3390/ma15217693.
– volume: 17
  start-page: 228
  year: 2006
  end-page: 234
  ident: b0410
  article-title: Basic understanding of current classification and management of retinoblastoma
  publication-title: Curr. Opin. Ophthalmol.
– start-page: 1
  year: 2013
  end-page: 36
  ident: b0020
  article-title: Eye: anatomy, physiology and barriers to drug delivery, Ocular Transporters and Receptors: Their Role in Drug Delivery
  publication-title: Ocular Transporters and Receptors
– volume: 13
  year: 2021
  ident: b0325
  article-title: Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion
  publication-title: Nanomicro Lett.
– volume: 28
  start-page: 1919
  year: 2011
  end-page: 1930
  ident: b0165
  article-title: Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery
  publication-title: Pharm. Res.
– volume: 46
  year: 2017
  ident: b0605
  article-title: Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction
  publication-title: J. Otolaryngol. Head Neck Surg.
– volume: 2
  start-page: 812
  year: 2013
  end-page: 816
  ident: b0935
  article-title: Tower Microneedle via reverse drawing lithography for innocuous intravitreal drug delivery
  publication-title: Adv. Healthc. Mater.
– volume: 97
  start-page: 460
  year: 2019
  end-page: 472
  ident: b0525
  article-title: Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: a targeted approach
  publication-title: Acta Ophthalmol.
– volume: 127
  start-page: 948
  year: 2020
  end-page: 955
  ident: b0530
  article-title: Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial
  publication-title: Ophthalmology
– reference: G. Honari, H. Maibach, Skin Structure and Function, in: H. Maibach, G. Honari (Eds.), Applied Dermatotoxicology: Clinical Aspects, Academic Press, 2014: pp. 1–10. https://doi.org/https://doi.org/10.1016/B978-0-12-420130-9.00001-3.
– volume: 6
  year: 2019
  ident: b0610
  article-title: Biomechanical impact of the sclera on corneal deformation response to an air-puff: A finite-element study
  publication-title: Front. Bioeng. Biotechnol.
– volume: 13
  start-page: 451
  year: 2011
  end-page: 456
  ident: b0185
  article-title: Rapid Pharmacokinetics of Intradermal Insulin Administered Using Microneedles in Type 1 Diabetes Subjects
  publication-title: Diabetes Technol. Ther.
– reference: (triamcinolone acetonide injectable suspension) for Suprachoroidal Use for the Treatment of Macular Edema Associated with Uveitis, (2021). https://ir.clearsidebio.com/news-releases/news-release-details/bausch-lomb-and-clearside-biomedical-announce-fda-approval (accessed January 9, 2023).
– reference: L. Remington, Cornea and Sclera, in: 2012.
– reference: VOA News, Tiny Needles Treat Eye Disease, (2014). Tiny Needles Treat Eye Disease (accessed August 10, 2023).
– volume: 10
  start-page: 690
  year: 2020
  end-page: 705
  ident: b0330
  article-title: Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches, Drug Deliv
  publication-title: Transl. Res.
– volume: 29
  start-page: 60
  year: 2021
  end-page: 68
  ident: b0295
  article-title: Fabrication and characterisation of self-applicating heparin sodium microneedle patches
  publication-title: J. Drug Target.
– volume: 16
  start-page: 270
  year: 2011
  end-page: 277
  ident: b0785
  article-title: Drug delivery to the posterior segment of the eye
  publication-title: Drug Discov. Today
– reference: Clearside Biomedical Inc., Suprachoroidal Injection of CLS-TA Alone or With Aflibercept in Subjects With Diabetic Macular Edema (HULK), (2021). Suprachoroidal Injection of CLS-TA Alone or With Aflibercept in Subjects With Diabetic Macular Edema (HULK) (accessed August 10, 2023).
– start-page: 1
  year: 2015
  end-page: 4
  ident: b0415
  publication-title: Glaucoma and corticosteriod provocative testing
– volume: 15
  start-page: 841
  year: 2013
  end-page: 848
  ident: b0930
  article-title: Tower microneedle minimizes vitreal reflux in intravitreal injection
  publication-title: Biomed. Microdevices
– volume: 472
  start-page: 65
  year: 2014
  end-page: 73
  ident: b0275
  article-title: A proposed model membrane and test method for microneedle insertion studies
  publication-title: Int. J. Pharm.
– volume: 239
  year: 2020
  ident: b0730
  article-title: The influence of fibre alignment on the fracture toughness of anisotropic soft tissue
  publication-title: Eng. Fract. Mech.
– volume: 142
  start-page: 170
  year: 2019
  end-page: 180
  ident: b0745
  article-title: Noninvasive determination of fiber orientation and tracking 2-dimensional deformation of human skin utilizing spatially resolved reflectance of infrared light measurement in vivo
  publication-title: Measurement (Lond).
– volume: 27
  start-page: 787
  year: 2013
  end-page: 794
  ident: b0040
  article-title: Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature
  publication-title: Eye (Basingstoke).
– volume: 11
  year: 2019
  ident: b0215
  article-title: Penetration enhancers in ocular drug delivery
  publication-title: Pharmaceutics.
– volume: 63
  year: 2022
  ident: b0100
  article-title: Suprachoroidal Delivery of RGX-314 for Diabetic Retinopathy: The Phase II ALTITUDE
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 6
  start-page: 800
  year: 2016
  end-page: 815
  ident: b0155
  article-title: Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery
  publication-title: Drug Deliv. and Transl. Res.
– volume: 74
  year: 2020
  ident: b0570
  article-title: Scleral structure and biomechanics
  publication-title: Prog. Retin. Eye Res.
– volume: 53
  start-page: 1714
  year: 2012
  end-page: 1728
  ident: b0805
  article-title: Biomechanics of the human posterior sclera: Age- and glaucoma-related changes measured using inflation testing
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 17
  ident: b0480
  publication-title: Sahil Thakur, Promising therapeutic drug delivery systems for glaucoma: a comprehensive review, Ther Adv Vaccines.
– volume: 133
  start-page: 31
  year: 2018
  end-page: 41
  ident: b0770
  article-title: Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 54
  start-page: 2483
  year: 2013
  end-page: 2492
  ident: b0430
  article-title: Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 24
  year: 2017
  ident: b0170
  article-title: Microneedle Patches as Drug and Vaccine Delivery Platform
  publication-title: Curr. Med. Chem.
– volume: 25
  start-page: 97
  year: 2009
  end-page: 103
  ident: b0445
  article-title: Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-α-induced angiogenesis in chick chorioallantoic membrane (CAM)
  publication-title: J. Ocul. Pharmacol. Ther.
– volume: 5
  start-page: 313
  year: 2015
  end-page: 331
  ident: b0940
  article-title: Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation
  publication-title: Drug Deliv Translational Research
– volume: 253
  start-page: 1
  year: 2018
  end-page: 22
  ident: b0575
  article-title: Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review
  publication-title: Adv. Colloid Interface Sci.
– start-page: 51
  year: 2018
  end-page: 67
  ident: b0820
  article-title: Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers
  publication-title: Drug Delivery for the Retina and Posterior Segment Disease
– volume: 28
  start-page: 1919
  year: 2011
  ident: 10.1016/j.addr.2023.115082_b0165
  article-title: Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-011-0419-4
– volume: 74
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0570
  article-title: Scleral structure and biomechanics
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2019.100773
– volume: 9
  start-page: 31
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0725
  article-title: Managing Skin Ageing as a Modifiable Disorder — The Clinical Application of Nourella ® Dual Approach Comprising
  publication-title: Cosmetics
  doi: 10.3390/cosmetics9020031
– volume: 50
  start-page: 623
  year: 2013
  ident: 10.1016/j.addr.2023.115082_b0690
  article-title: Microneedles for intradermal and transdermal drug delivery
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2013.05.005
– volume: 48
  start-page: 4038
  year: 2007
  ident: 10.1016/j.addr.2023.115082_b0175
  article-title: Coated microneedles for drug delivery to the eye
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.07-0066
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0480
  publication-title: Sahil Thakur, Promising therapeutic drug delivery systems for glaucoma: a comprehensive review, Ther Adv Vaccines.
– volume: 7
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0810
  article-title: Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: From mice, rats, rabbits, pigs to humans
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15830-7
– volume: 37
  start-page: 263
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0780
  article-title: Scleral changes with accommodation
  publication-title: Ophthalmic Physiol. Opt.
  doi: 10.1111/opo.12377
– volume: 572
  year: 2019
  ident: 10.1016/j.addr.2023.115082_b0460
  article-title: Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.118808
– start-page: 1
  year: 2013
  ident: 10.1016/j.addr.2023.115082_b0020
  article-title: Eye: anatomy, physiology and barriers to drug delivery, Ocular Transporters and Receptors: Their Role in Drug Delivery
– ident: 10.1016/j.addr.2023.115082_b0105
– volume: 9
  start-page: 232
  year: 2015
  ident: 10.1016/j.addr.2023.115082_b0370
  article-title: Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) antibody via Tower Microneedle
  publication-title: BioChip J.
  doi: 10.1007/s13206-015-9305-9
– ident: 10.1016/j.addr.2023.115082_b0045
– volume: 24
  issue: 22
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0170
  article-title: Microneedle Patches as Drug and Vaccine Delivery Platform
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867324666170526124053
– ident: 10.1016/j.addr.2023.115082_b0320
– volume: 27
  start-page: 787
  year: 2013
  ident: 10.1016/j.addr.2023.115082_b0040
  article-title: Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature
  publication-title: Eye (Basingstoke).
– ident: 10.1016/j.addr.2023.115082_b0535
– volume: 6
  year: 2019
  ident: 10.1016/j.addr.2023.115082_b0610
  article-title: Biomechanical impact of the sclera on corneal deformation response to an air-puff: A finite-element study
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2018.00210
– volume: 165
  start-page: 306
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0095
  article-title: Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2021.05.022
– volume: 326
  start-page: 419
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0365
  article-title: Intravitreal hydrogels for sustained release of therapeutic proteins
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.07.031
– volume: 612
  start-page: 121305
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0435
  article-title: Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.121305
– volume: 328
  start-page: 952
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0035
  article-title: Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.10.028
– volume: 39
  start-page: 241
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0715
  article-title: Elastin structure and its involvement in skin photoageing
  publication-title: Int. J. Cosmet. Sci.
  doi: 10.1111/ics.12372
– volume: 106
  start-page: 1058
  year: 1996
  ident: 10.1016/j.addr.2023.115082_b0755
  article-title: Water increases the fluidity of intercellular membranes of stratum corneum: Correlation with water permeability, elastic, and electrical resistance properties
  publication-title: J, Invest. Dermatol.
  doi: 10.1111/1523-1747.ep12338682
– volume: 7
  start-page: e29692
  issue: 1
  year: 2012
  ident: 10.1016/j.addr.2023.115082_b0800
  article-title: Scleral thickness in human eyes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029692
– volume: 38
  start-page: 1740
  year: 1997
  ident: 10.1016/j.addr.2023.115082_b0795
  article-title: Proteoglycans in the human sclera: Evidence for the presence of aggrecan
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 39
  start-page: 244
  year: 2007
  ident: 10.1016/j.addr.2023.115082_b0815
  article-title: Transport Barriers in Transscleral Drug Delivery for Retinal Diseases
  publication-title: Ophthalmic Res.
  doi: 10.1159/000108117
– volume: 255
  start-page: 384
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0615
  article-title: A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling
  publication-title: Sens Actuators B Chem.
  doi: 10.1016/j.snb.2017.08.030
– volume: 142
  start-page: 213169
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0630
  article-title: Effect of microneedles shape on skin penetration and transdermal drug administration
  publication-title: Biomaterials Advances.
  doi: 10.1016/j.bioadv.2022.213169
– volume: 66
  start-page: 584
  issue: 4
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0200
  article-title: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.12152
– volume: 15
  start-page: 13
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0685
  article-title: Transdermal drug delivery systems in diabetes management: A review, Asian
  publication-title: J. Pharm. Sci.
– volume: 142
  start-page: 170
  year: 2019
  ident: 10.1016/j.addr.2023.115082_b0745
  article-title: Noninvasive determination of fiber orientation and tracking 2-dimensional deformation of human skin utilizing spatially resolved reflectance of infrared light measurement in vivo
  publication-title: Measurement (Lond).
  doi: 10.1016/j.measurement.2019.04.065
– volume: 25
  start-page: 578
  year: 2011
  ident: 10.1016/j.addr.2023.115082_b0495
  article-title: Novel drug delivery systems for glaucoma
  publication-title: Eye
  doi: 10.1038/eye.2011.82
– volume: 9
  start-page: 4433
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0450
  article-title: Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06981-w
– volume: 88
  start-page: 116
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0225
  article-title: In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2014.04.018
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0760
  article-title: How aging impacts skin biomechanics: A multiscale study in mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13150-4
– volume: 55
  start-page: 7376
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0190
  article-title: Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.14-15257
– ident: 10.1016/j.addr.2023.115082_b0285
  doi: 10.1016/B978-0-12-420130-9.00001-3
– volume: 119
  start-page: 485
  year: 2023
  ident: 10.1016/j.addr.2023.115082_b0265
  article-title: In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2022.11.072
– ident: 10.1016/j.addr.2023.115082_b0555
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0080
  article-title: A comprehensive review of microneedles: Types, materials, processes, characterizations and applications
  publication-title: Polymers (Basel).
  doi: 10.3390/polym13162815
– volume: 5
  start-page: 14
  issue: 6
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0560
  article-title: Suprachoroidal corticosteroid administration: A novel route for local treatment of noninfectious uveitis
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.5.6.14
– ident: 10.1016/j.addr.2023.115082_b0650
– volume: 151
  start-page: 105361
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0625
  article-title: Dissolving Microneedle Arrays with Optimized Needle Geometry for Transcutaneous Immunization
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2020.105361
– volume: 223
  start-page: 15
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0510
  article-title: Fenestrated microneedles for ocular drug delivery
  publication-title: Sens Actuators B Chem.
  doi: 10.1016/j.snb.2015.09.071
– volume: 41
  start-page: 315
  year: 2015
  ident: 10.1016/j.addr.2023.115082_b0050
  article-title: Age-related changes in dynamic moduli of ovine vitreous
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2014.09.004
– volume: 19
  start-page: 1818
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0290
  article-title: Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-018-1004-5
– ident: 10.1016/j.addr.2023.115082_b0300
  doi: 10.3390/ma15217693
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0220
  article-title: Ultrasonically and Iontophoretically Enhanced Drug-Delivery System Based on Dissolving Microneedle Patches
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58822-w
– volume: 16
  start-page: 558
  issue: 3
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0235
  article-title: Rai, Microneedle Array: Applications, Recent Advances, and Clinical Pertinence in Transdermal Drug Delivery
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-020-09460-2
– volume: 16
  start-page: 062004
  issue: 6
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0700
  article-title: Mechanical properties of whole-body soft human tissues: A review
  publication-title: Biomedical Materials (Bristol).
  doi: 10.1088/1748-605X/ac2b7a
– volume: 27
  start-page: 331
  year: 2008
  ident: 10.1016/j.addr.2023.115082_b0355
  article-title: Vascular endothelial growth factor in eye disease
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2008.05.001
– volume: 55
  start-page: 7387
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0500
  article-title: Targeted delivery of antiglaucoma drugs to the supraciliary space using microneedles
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.14-14651
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0635
  article-title: Self-Adhesive Microneedles with Interlocking Features for Sustained Ocular Drug Delivery
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.202000089
– volume: 25
  start-page: 97
  year: 2009
  ident: 10.1016/j.addr.2023.115082_b0445
  article-title: Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-α-induced angiogenesis in chick chorioallantoic membrane (CAM)
  publication-title: J. Ocul. Pharmacol. Ther.
  doi: 10.1089/jop.2008.0090
– volume: 14
  start-page: 525
  issue: 4
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0310
  article-title: Minimally invasive microneedles for ocular drug delivery
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2016.1218460
– ident: 10.1016/j.addr.2023.115082_b0600
– ident: 10.1016/j.addr.2023.115082_b0025
  doi: 10.1016/B978-1-4377-1926-0.10002-5
– ident: 10.1016/j.addr.2023.115082_b0030
  doi: 10.1097/IJG.0b013e31825af67d
– volume: 89
  start-page: 224
  year: 2015
  ident: 10.1016/j.addr.2023.115082_b0920
  article-title: Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2014.11.023
– volume: 36
  start-page: 36
  year: 2019
  ident: 10.1016/j.addr.2023.115082_b0015
  article-title: Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-018-2556-5
– volume: 28
  start-page: S243
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0520
  article-title: Microinjection via the Suprachoroidal Space: A Review of a Novel Mode of Administration
  publication-title: Am. J. Manag. Care
  doi: 10.37765/ajmc.2022.89270
– ident: 10.1016/j.addr.2023.115082_b0540
– ident: 10.1016/j.addr.2023.115082_b0110
– start-page: 1
  year: 2015
  ident: 10.1016/j.addr.2023.115082_b0415
  publication-title: Glaucoma and corticosteriod provocative testing
– volume: 11
  start-page: 6382
  year: 2011
  ident: 10.1016/j.addr.2023.115082_b0790
  article-title: AFM Study for Morphological and Mechanical Properties of Human Scleral Surface
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.4499
– volume: 98
  start-page: 34
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0340
  article-title: Experimental methods in chemical engineering: Thermogravimetric analysis—TGA
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23673
– volume: 267
  start-page: 120491
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0065
  article-title: Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120491
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.addr.2023.115082_b0735
  article-title: Combined multiphoton imaging and biaxial tissue extension for quantitative analysis of geometric fiber organization in human reticular dermis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47213-5
– volume: 65
  start-page: 283
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0640
  article-title: Rapid fabrication of microneedles using magnetorheological drawing lithography
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.10.030
– volume: 30
  start-page: 1909197
  issue: 11
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0210
  article-title: 4D Printing of a Bioinspired Microneedle Array with Backward‐Facing Barbs for Enhanced Tissue Adhesion
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909197
– volume: 79
  start-page: 93
  year: 1982
  ident: 10.1016/j.addr.2023.115082_b0705
  article-title: Structure of the dermal matrix during development and in the adult
  publication-title: J, Invest. Dermatol.
  doi: 10.1038/jid.1982.19
– ident: 10.1016/j.addr.2023.115082_b0140
  doi: 10.1038/s41467-018-06981-w
– volume: 30
  start-page: 599
  year: 2008
  ident: 10.1016/j.addr.2023.115082_b0710
  article-title: In vivo measurements of the elastic mechanical properties of human skin by indentation tests
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2007.06.011
– volume: 137
  start-page: 1213
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0665
  article-title: Human Skin Is the Largest Epithelial Surface for Interaction with Microbes
  publication-title: J, Invest. Dermatol.
  doi: 10.1016/j.jid.2016.11.045
– volume: 50
  start-page: 288
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0470
  article-title: Causes of blindness in the adult population in somalia
  publication-title: Turk J Ophthalmol.
  doi: 10.4274/tjo.galenos.2020.82504
– ident: 10.1016/j.addr.2023.115082_b0240
  doi: 10.1016/C2021-0-01278-5
– ident: 10.1016/j.addr.2023.115082_b0585
– ident: 10.1016/j.addr.2023.115082_b0645
– volume: 13
  start-page: 451
  issue: 4
  year: 2011
  ident: 10.1016/j.addr.2023.115082_b0185
  article-title: Rapid Pharmacokinetics of Intradermal Insulin Administered Using Microneedles in Type 1 Diabetes Subjects
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2010.0204
– volume: 17
  start-page: 228
  year: 2006
  ident: 10.1016/j.addr.2023.115082_b0410
  article-title: Basic understanding of current classification and management of retinoblastoma
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/01.icu.0000193079.55240.18
– volume: 54
  start-page: 2483
  year: 2013
  ident: 10.1016/j.addr.2023.115082_b0430
  article-title: Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-11747
– volume: 17
  start-page: 187
  year: 2010
  ident: 10.1016/j.addr.2023.115082_b0150
  article-title: Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety
  publication-title: Drug Deliv.
  doi: 10.3109/10717541003667798
– volume: 3
  start-page: 89
  issue: 2
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0130
  article-title: Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug
  publication-title: J. Interdiscip. Nanomed.
  doi: 10.1002/jin2.41
– volume: 138
  start-page: 2295
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0280
  article-title: Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool
  publication-title: J, Invest. Dermatol.
  doi: 10.1016/j.jid.2018.09.001
– volume: 472
  start-page: 65
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0275
  article-title: A proposed model membrane and test method for microneedle insertion studies
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.05.042
– volume: 232
  start-page: 323
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0750
  article-title: Skin mechanical properties and modeling: A review
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/0954411918759801
– volume: 26
  start-page: 7565
  issue: 24
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0345
  article-title: Application of the metabolomics approach in food authentication
  publication-title: Molecules
  doi: 10.3390/molecules26247565
– volume: 10
  start-page: 289
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0075
  article-title: Review of applications of microneedling in dermatology
  publication-title: Clin. Cosmet. Investig. Dermatol.
  doi: 10.2147/CCID.S142450
– ident: 10.1016/j.addr.2023.115082_b0895
– volume: 22
  start-page: 279
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0670
  article-title: Determining eyeball surface area directly exposed to the effects of external factors
  publication-title: Int. J. Occup. Saf. Ergon.
  doi: 10.1080/10803548.2015.1136110
– volume: 46
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0605
  article-title: Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction
  publication-title: J. Otolaryngol. Head Neck Surg.
  doi: 10.1186/s40463-017-0210-6
– ident: 10.1016/j.addr.2023.115082_b0545
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0005
  article-title: Variations in Eyeball Diameters of the Healthy Adults
  publication-title: J. Ophthalmol.
  doi: 10.1155/2014/503645
– ident: 10.1016/j.addr.2023.115082_b0580
– volume: 13
  start-page: 629
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0255
  article-title: Fabrication and testing of polymer microneedles for transdermal drug delivery, Beilstein
  publication-title: Journal of Nanotechnology.
– volume: 8
  start-page: 473
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0455
  article-title: Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles, Drug Deliv
  publication-title: Transl. Res.
– volume: 39
  start-page: 362
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0120
  article-title: A Fixed-Depth Microneedle Enhances Reproducibility and Safety for Corneal Gene Therapy
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000002182
– volume: 104
  start-page: 51
  year: 2005
  ident: 10.1016/j.addr.2023.115082_b0260
  article-title: Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2005.02.002
– volume: 63
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0100
  article-title: Suprachoroidal Delivery of RGX-314 for Diabetic Retinopathy: The Phase II ALTITUDETM Study
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 15
  start-page: 841
  year: 2013
  ident: 10.1016/j.addr.2023.115082_b0930
  article-title: Tower microneedle minimizes vitreal reflux in intravitreal injection
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-013-9771-y
– volume: 10
  start-page: 690
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0330
  article-title: Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches, Drug Deliv
  publication-title: Transl. Res.
– volume: 239
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0730
  article-title: The influence of fibre alignment on the fracture toughness of anisotropic soft tissue
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107289
– volume: 247
  start-page: 209
  year: 2012
  ident: 10.1016/j.addr.2023.115082_b0335
  article-title: Optical coherence tomography
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2012.03619.x
– volume: 277
  start-page: 14
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0230
  article-title: Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.03.001
– ident: 10.1016/j.addr.2023.115082_b0055
– ident: 10.1016/j.addr.2023.115082_b0250
  doi: 10.1007/s13346-015-0237-z
– volume: 99
  start-page: 90
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0565
  article-title: Phase I trial on robot assisted retinal vein cannulation with ocriplasmin infusion for central retinal vein occlusion
  publication-title: Acta Ophthalmol.
  doi: 10.1111/aos.14480
– volume: 97
  start-page: 460
  year: 2019
  ident: 10.1016/j.addr.2023.115082_b0525
  article-title: Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: a targeted approach
  publication-title: Acta Ophthalmol.
  doi: 10.1111/aos.14042
– start-page: 51
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0820
  article-title: Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers
– volume: 107
  start-page: 1
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0660
  article-title: Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2016.06.023
– volume: 127
  start-page: 948
  issue: 7
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0530
  article-title: Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.01.006
– volume: 13
  start-page: 579
  issue: 4
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0305
  article-title: Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride
  publication-title: Pharmaceutics.
  doi: 10.3390/pharmaceutics13040579
– volume: 53
  start-page: 4433
  issue: 8
  year: 2012
  ident: 10.1016/j.addr.2023.115082_b0400
  article-title: Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.12-9872
– volume: 52
  start-page: 37
  year: 2001
  ident: 10.1016/j.addr.2023.115082_b0775
  article-title: Transscleral drug delivery for posterior segment disease
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(01)00193-4
– volume: 30
  start-page: 302
  year: 2013
  ident: 10.1016/j.addr.2023.115082_b0740
  article-title: Age-dependent biomechanical properties of the skin
  publication-title: Postepy Dermatol Alergol.
  doi: 10.5114/pdia.2013.38359
– volume: 122
  start-page: 460
  year: 1996
  ident: 10.1016/j.addr.2023.115082_b0475
  article-title: Number of people with glaucoma worldwide
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/S0002-9394(14)72088-4
– volume: 12
  start-page: 931
  issue: 4
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0350
  article-title: Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections, Drug Deliv
  publication-title: Transl. Res.
– volume: 11
  year: 2019
  ident: 10.1016/j.addr.2023.115082_b0215
  article-title: Penetration enhancers in ocular drug delivery
  publication-title: Pharmaceutics.
  doi: 10.3390/pharmaceutics11070321
– volume: 53
  start-page: 1714
  year: 2012
  ident: 10.1016/j.addr.2023.115082_b0805
  article-title: Biomechanics of the human posterior sclera: Age- and glaucoma-related changes measured using inflation testing
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-8009
– volume: 228
  start-page: 48
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0505
  article-title: Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.02.041
– volume: 5
  start-page: 313
  year: 2015
  ident: 10.1016/j.addr.2023.115082_b0940
  article-title: Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation
  publication-title: Drug Deliv Translational Research
  doi: 10.1007/s13346-015-0237-z
– volume: 24
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0070
  article-title: Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-021-00604-w
– volume: 159
  start-page: 44
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0090
  article-title: Microneedle array systems for long-acting drug delivery
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2020.12.006
– ident: 10.1016/j.addr.2023.115082_b0010
– volume: 13
  start-page: 2815
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0060
  article-title: A comprehensive review of microneedles: Types, materials, processes, characterizations and applications
  publication-title: Polymers (Basel).
  doi: 10.3390/polym13162815
– volume: 57
  start-page: 5602
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0885
  article-title: Details of the collagen and elastin architecture in the human limbal conjunctiva, tenon’s capsule and sclera revealed by two-photon excited fluorescence microscopy
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.16-19706
– volume: 16
  start-page: 270
  year: 2011
  ident: 10.1016/j.addr.2023.115082_b0785
  article-title: Drug delivery to the posterior segment of the eye
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2010.12.004
– volume: 13
  start-page: 2142
  issue: 8
  year: 2023
  ident: 10.1016/j.addr.2023.115082_b0135
  article-title: Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye., Drug Deliv
  publication-title: Transl. Res.
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0315
  article-title: A Transdermal Measurement Platform Based on Microfluidics
  publication-title: J. Chem.
– volume: 46
  start-page: 1114
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0145
  article-title: Microneedle ocular patch: fabrication, characterization, and ex-vivo evaluation using pilocarpine as model drug
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2020.1776317
– volume: 12
  start-page: 931
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0465
  article-title: Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections, Drug Deliv
  publication-title: Transl. Res.
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0765
  article-title: Nanosilk Increases the Strength of Diabetic Skin and Delivers CNP-miR146a to Improve Wound Healing
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.590285
– volume: 9
  start-page: 27
  issue: 11
  year: 2020
  ident: 10.1016/j.addr.2023.115082_b0655
  article-title: Clinical characterization of suprachoroidal injection procedure utilizing a microinjector across three retinal disorders, Transl Vis
  publication-title: Sci. Technol.
– volume: 28
  start-page: 166
  year: 2011
  ident: 10.1016/j.addr.2023.115082_b0205
  article-title: Suprachoroidal drug delivery to the back of the eye using hollow microneedles
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-010-0271-y
– volume: 14
  start-page: 525
  year: 2017
  ident: 10.1016/j.addr.2023.115082_b0085
  article-title: Minimally invasive microneedles for ocular drug delivery
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2016.1218460
– volume: 32
  start-page: 142
  year: 2019
  ident: 10.1016/j.addr.2023.115082_b0695
  article-title: Noninvasive Determination of Epidermal and Stratum Corneum Thickness in vivo Using Two-Photon Microscopy and Optical Coherence Tomography: Impact of Body Area, Age, and Gender
  publication-title: Skin Pharmacol. Physiol.
  doi: 10.1159/000497475
– volume: 2
  start-page: 812
  year: 2013
  ident: 10.1016/j.addr.2023.115082_b0935
  article-title: Tower Microneedle via reverse drawing lithography for innocuous intravitreal drug delivery
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201200239
– volume: 13
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0325
  article-title: Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion
  publication-title: Nanomicro Lett.
– volume: 22
  start-page: 1330
  year: 2008
  ident: 10.1016/j.addr.2023.115082_b0360
  article-title: Anti-VEGF therapy: Comparison of current and future agents
  publication-title: Eye
  doi: 10.1038/eye.2008.88
– volume: 55
  start-page: 108
  year: 2010
  ident: 10.1016/j.addr.2023.115082_b0405
  article-title: Nonsteroidal Anti-inflammatory Drugs in Ophthalmology
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2009.07.005
– volume: 29
  start-page: 60
  issue: 1
  year: 2021
  ident: 10.1016/j.addr.2023.115082_b0295
  article-title: Fabrication and characterisation of self-applicating heparin sodium microneedle patches
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2020.1795180
– volume: 11
  start-page: e0162518
  issue: 9
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0590
  article-title: Single-step fabrication of computationally designed microneedles by continuous liquid interface production
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162518
– volume: 24
  start-page: 585
  issue: 7
  year: 2008
  ident: 10.1016/j.addr.2023.115082_b0180
  article-title: Effect of microneedle design on pain in human volunteers
  publication-title: Clin. J. Pain
  doi: 10.1097/AJP.0b013e31816778f9
– start-page: 502
  year: 2001
  ident: 10.1016/j.addr.2023.115082_b0195
  article-title: Lack of Pain Associated with Microfabricated Microneedles
  publication-title: Anesth. Analg.
  doi: 10.1213/00000539-200102000-00041
– volume: 55
  start-page: 7376
  issue: 11
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0375
  article-title: Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.14-15257
– volume: 133
  start-page: 31
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0770
  article-title: Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.09.021
– volume: 6
  start-page: 800
  issue: 6
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0155
  article-title: Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery
  publication-title: Drug Deliv. and Transl. Res.
  doi: 10.1007/s13346-016-0332-9
– ident: 10.1016/j.addr.2023.115082_b0550
– volume: 6
  start-page: 800
  year: 2016
  ident: 10.1016/j.addr.2023.115082_b0245
  article-title: Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery, Drug Deliv
  publication-title: Transl. Res.
– volume: 306
  start-page: 1
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0270
  article-title: Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis
  publication-title: Arch. Dermatol. Res.
  doi: 10.1007/s00403-013-1417-7
– volume: 66
  start-page: 584
  year: 2014
  ident: 10.1016/j.addr.2023.115082_b0125
  article-title: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.12152
– volume: 26
  start-page: 395
  year: 2009
  ident: 10.1016/j.addr.2023.115082_b0115
  article-title: Intrascleral Drug Delivery to the Eye Using Hollow Microneedles
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-008-9756-3
– volume: 80
  start-page: 48
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0160
  article-title: Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.09.039
– volume: 29
  start-page: 414
  issue: 3
  year: 1981
  ident: 10.1016/j.addr.2023.115082_b0680
  article-title: Transdermal scopolamine in the prevention of motion sickness at sea
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1038/clpt.1981.57
– volume: 36
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0720
  article-title: In vitro evaluation of anti-aging and regenerative properties of dermatan sulfate for skin care
  publication-title: FASEB J.
  doi: 10.1096/fasebj.2022.36.S1.L7681
– ident: 10.1016/j.addr.2023.115082_b0595
– volume: 76
  start-page: 103653
  year: 2022
  ident: 10.1016/j.addr.2023.115082_b0675
  article-title: Drug delivery with dissolving microneedles: skin puncture, its influencing factors and improvement strategies
  publication-title: J Drug Deliv Sci Technol.
  doi: 10.1016/j.jddst.2022.103653
– volume: 253
  start-page: 1
  year: 2018
  ident: 10.1016/j.addr.2023.115082_b0575
  article-title: Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2018.02.002
SSID ssj0012760
Score 2.6573653
SecondaryResourceType review_article
Snippet [Display omitted] In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases,...
In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115082
SubjectTerms Computational modelling
Hollow microneedle
Microneedle
Ocular
Solid microneedle
Title Microneedles for advanced ocular drug delivery
URI https://dx.doi.org/10.1016/j.addr.2023.115082
https://www.proquest.com/docview/2863298006
Volume 201
WOSCitedRecordID wos001081403600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-8294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012760
  issn: 0169-409X
  databaseCode: AIEXJ
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBhIvCAaI8TEFCe2la5XadWw_VmgIGEyVVlDfIscfrGuUVk2L1v-ec-wkWycmQOIliiKfE_l3Od_5vhB6J_u2b4kGzS3hzkChtisVy-B3JxILmmGT2KrZBDs745OJGIUW92XVToAVBb-6Eov_CjU8A7Bd6uxfwN1MCg_gHkCHK8AO1z8C_qsLsStgU8pN6WMkazf_3Mec6uX6R0eb3EVk3HDqDuuBN0aE7JZG926jPk9dTdYGsWl5sfTOIwNb3GzmYrcbmlDd9_ximi9mMm_2gu9zT_PFmQMVSee0d_0kArcxbeF47FaKjD-xTATwQNUvtxG52JPdEt_-JOGyB0LX1WrFpOcUVt-daKss9rmb2M0LNlTslKodtIcZFSDZ9oafTiafG18SZlWuePMhIXXKR_ltv-l36snWRl1pH-PH6FEwG6Khh_sJumeKffTANxLd7KOjka9AvjmOxm1CXXkcHUWjtjb55inqXeeOCLgjqrkj8twROeyjGvtn6NuHk_H7j93QMqOrCGOrbqYoZSBVGRcqJlQmJpaEc9DJLMXECiO5VjFnWDNtuUioJgOrGMh5KbFlhjxHuwV8xQsUYUsHSmU45hq0Vsl4rIXMXD8BY_tcDw5Qv16pVIV68q6tSZ7WgYOXqVvd1K1u6lf3AHUamoWvpnLnaFoDkAZ90Ot5KfDLnXRva7RSEJbOAyYLM1-XKeYJwQJspOTlP879Cj1sWf812l0t1-YNuq9-rqbl8hDtsAk_DAz4C_wJkIg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microneedles+for+advanced+ocular+drug+delivery&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Glover%2C+Katie&rft.au=Mishra%2C+Deepakkumar&rft.au=Gade%2C+Shilpkala&rft.au=Vora%2C+Lalitkumar+K.&rft.date=2023-10-01&rft.pub=Elsevier+B.V&rft.issn=0169-409X&rft.volume=201&rft_id=info:doi/10.1016%2Fj.addr.2023.115082&rft.externalDocID=S0169409X23003976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon