Microneedles for advanced ocular drug delivery
[Display omitted] In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops...
Gespeichert in:
| Veröffentlicht in: | Advanced drug delivery reviews Jg. 201; S. 115082 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.10.2023
|
| Schlagworte: | |
| ISSN: | 0169-409X, 1872-8294, 1872-8294 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic. |
|---|---|
| AbstractList | In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic.In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic. [Display omitted] In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic. |
| ArticleNumber | 115082 |
| Author | Glover, Katie Gade, Shilpkala Mishra, Deepakkumar Donnelly, Ryan F. Wu, Yu Paredes, Alejandro J. Vora, Lalitkumar K. Singh, Thakur Raghu Raj |
| Author_xml | – sequence: 1 givenname: Katie surname: Glover fullname: Glover, Katie – sequence: 2 givenname: Deepakkumar surname: Mishra fullname: Mishra, Deepakkumar – sequence: 3 givenname: Shilpkala surname: Gade fullname: Gade, Shilpkala – sequence: 4 givenname: Lalitkumar K. surname: Vora fullname: Vora, Lalitkumar K. – sequence: 5 givenname: Yu surname: Wu fullname: Wu, Yu – sequence: 6 givenname: Alejandro J. surname: Paredes fullname: Paredes, Alejandro J. – sequence: 7 givenname: Ryan F. surname: Donnelly fullname: Donnelly, Ryan F. – sequence: 8 givenname: Thakur Raghu Raj surname: Singh fullname: Singh, Thakur Raghu Raj email: r.thakur@qub.ac.uk |
| BookMark | eNp9kD1PwzAURS1UJNrCH2DKyJLwbDexLbGgii-piAUkNsvYz8hVmhQ7qdR_T6IwMXR6yz1X754FmTVtg4RcUygo0Op2WxjnYsGA8YLSEiQ7I3MqBcslU6sZmQ8hla9AfV6QRUpbAMpEBXNSvAYbhy50NabMtzEz7mAaiy5rbV-bmLnYf2cO63DAeLwk597UCa_-7pJ8PD68r5_zzdvTy_p-k1suRJd_2bIUnCohlQVemgrBcCllyX3JuFdopLMwvOeE81JVpeMrbwUIbgzzAvmS3Ey9-9j-9Jg6vQvJYl2bBts-aSYrzpQEqIYom6LDjpQier2PYWfiUVPQoxy91aMcPcrRk5wBkv8gGzrThbbpogn1afRuQnHYfwgYdbIBR2Mhou20a8Mp_BejpYCB |
| CitedBy_id | crossref_primary_10_1002_admi_202500429 crossref_primary_10_1002_smtd_202402048 crossref_primary_10_1002_adhm_202401309 crossref_primary_10_1016_j_jddst_2025_106890 crossref_primary_10_1089_jop_2025_0047 crossref_primary_10_1016_j_nantod_2024_102448 crossref_primary_10_1089_jop_2024_0153 crossref_primary_10_1116_6_0004159 crossref_primary_10_1016_j_ijpharm_2024_124347 crossref_primary_10_1016_j_addr_2023_115113 crossref_primary_10_1016_j_addr_2024_115478 crossref_primary_10_1016_j_jddst_2024_105529 crossref_primary_10_1016_j_jhazmat_2025_137536 crossref_primary_10_1039_D5BM00453E crossref_primary_10_1016_j_cej_2025_160344 crossref_primary_10_1016_j_survophthal_2024_07_002 crossref_primary_10_1007_s42452_025_07002_4 crossref_primary_10_1016_j_ijbiomac_2025_145356 crossref_primary_10_1016_j_jddst_2024_105841 crossref_primary_10_3390_ijms242015352 crossref_primary_10_1016_j_jddst_2025_107029 crossref_primary_10_1016_j_mtbio_2025_102167 crossref_primary_10_1021_acsami_5c09445 crossref_primary_10_1016_j_jtos_2025_03_004 crossref_primary_10_1002_admt_202501152 crossref_primary_10_1016_j_heliyon_2024_e40658 crossref_primary_10_1002_adfm_202422602 crossref_primary_10_1016_j_ijpharm_2025_125932 crossref_primary_10_1016_j_tibtech_2024_05_002 crossref_primary_10_1039_D4NR03538K crossref_primary_10_1002_advs_202412226 crossref_primary_10_1016_j_celbio_2025_100100 crossref_primary_10_1007_s11095_024_03718_x crossref_primary_10_1016_j_ijpharm_2024_124195 crossref_primary_10_1016_j_mtbio_2025_101722 crossref_primary_10_2174_0115734137317813241014113421 crossref_primary_10_3390_pharmaceutics17050599 crossref_primary_10_1016_j_ijbiomac_2025_142695 crossref_primary_10_1016_j_jconrel_2024_05_013 crossref_primary_10_3390_pharmaceutics16020237 crossref_primary_10_1016_j_jconrel_2024_11_002 crossref_primary_10_1016_j_jconrel_2025_114116 crossref_primary_10_1016_j_eurpolymj_2025_113773 crossref_primary_10_1016_j_jddst_2024_106395 crossref_primary_10_1016_j_jconrel_2025_114078 crossref_primary_10_1016_j_drudis_2024_104098 crossref_primary_10_22159_ijap_2025v17i3_52517 crossref_primary_10_1111_ceo_14577 crossref_primary_10_1016_j_ijbiomac_2024_138885 crossref_primary_10_1007_s40820_024_01477_3 crossref_primary_10_1089_jop_2023_0161 crossref_primary_10_1016_j_mtbio_2025_101779 crossref_primary_10_2147_DDDT_S519048 crossref_primary_10_1007_s13346_025_01925_6 crossref_primary_10_1007_s11468_025_03208_9 crossref_primary_10_1002_advs_202403388 crossref_primary_10_1016_j_mtbio_2025_102080 crossref_primary_10_1002_smll_202506886 crossref_primary_10_1016_j_ijpharm_2025_125793 crossref_primary_10_1002_smsc_202500009 crossref_primary_10_1002_cbic_202400971 crossref_primary_10_1038_s41427_025_00614_7 crossref_primary_10_3390_pharmaceutics16111398 crossref_primary_10_1016_j_addr_2023_115109 crossref_primary_10_1016_j_ijpharm_2025_126009 crossref_primary_10_2174_0115672018301931240624072453 crossref_primary_10_1002_advs_202414548 crossref_primary_10_1021_acs_molpharmaceut_4c01115 crossref_primary_10_1016_j_ijpharm_2024_123883 crossref_primary_10_1016_j_exer_2025_110456 crossref_primary_10_1016_j_actbio_2025_05_065 |
| Cites_doi | 10.1007/s11095-011-0419-4 10.1016/j.preteyeres.2019.100773 10.3390/cosmetics9020031 10.1016/j.ejps.2013.05.005 10.1167/iovs.07-0066 10.1038/s41598-017-15830-7 10.1111/opo.12377 10.1016/j.ijpharm.2019.118808 10.1007/s13206-015-9305-9 10.2174/0929867324666170526124053 10.3389/fbioe.2018.00210 10.1016/j.ejpb.2021.05.022 10.1016/j.jconrel.2020.07.031 10.1016/j.ijpharm.2021.121305 10.1016/j.jconrel.2020.10.028 10.1111/ics.12372 10.1111/1523-1747.ep12338682 10.1371/journal.pone.0029692 10.1159/000108117 10.1016/j.snb.2017.08.030 10.1016/j.bioadv.2022.213169 10.1111/jphp.12152 10.1016/j.measurement.2019.04.065 10.1038/eye.2011.82 10.1038/s41467-018-06981-w 10.1016/j.ejpb.2014.04.018 10.1038/s41598-017-13150-4 10.1167/iovs.14-15257 10.1016/B978-0-12-420130-9.00001-3 10.1016/j.jiec.2022.11.072 10.3390/polym13162815 10.1167/tvst.5.6.14 10.1016/j.ejps.2020.105361 10.1016/j.snb.2015.09.071 10.1016/j.jmbbm.2014.09.004 10.1208/s12249-018-1004-5 10.3390/ma15217693 10.1038/s41598-020-58822-w 10.1007/s12247-020-09460-2 10.1088/1748-605X/ac2b7a 10.1016/j.preteyeres.2008.05.001 10.1167/iovs.14-14651 10.1002/mabi.202000089 10.1089/jop.2008.0090 10.1080/17425247.2016.1218460 10.1016/B978-1-4377-1926-0.10002-5 10.1097/IJG.0b013e31825af67d 10.1016/j.ejpb.2014.11.023 10.1007/s11095-018-2556-5 10.37765/ajmc.2022.89270 10.1166/jnn.2011.4499 10.1002/cjce.23673 10.1016/j.biomaterials.2020.120491 10.1038/s41598-019-47213-5 10.1016/j.actbio.2017.10.030 10.1002/adfm.201909197 10.1038/jid.1982.19 10.1016/j.medengphy.2007.06.011 10.1016/j.jid.2016.11.045 10.4274/tjo.galenos.2020.82504 10.1016/C2021-0-01278-5 10.1089/dia.2010.0204 10.1097/01.icu.0000193079.55240.18 10.1167/iovs.13-11747 10.3109/10717541003667798 10.1002/jin2.41 10.1016/j.jid.2018.09.001 10.1016/j.ijpharm.2014.05.042 10.1177/0954411918759801 10.3390/molecules26247565 10.2147/CCID.S142450 10.1080/10803548.2015.1136110 10.1186/s40463-017-0210-6 10.1155/2014/503645 10.1097/ICO.0000000000002182 10.1016/j.jconrel.2005.02.002 10.1007/s10544-013-9771-y 10.1016/j.engfracmech.2020.107289 10.1111/j.1365-2818.2012.03619.x 10.1016/j.jconrel.2018.03.001 10.1007/s13346-015-0237-z 10.1111/aos.14480 10.1111/aos.14042 10.1016/j.ejpb.2016.06.023 10.1016/j.ophtha.2020.01.006 10.3390/pharmaceutics13040579 10.1167/iovs.12-9872 10.1016/S0169-409X(01)00193-4 10.5114/pdia.2013.38359 10.1016/S0002-9394(14)72088-4 10.3390/pharmaceutics11070321 10.1167/iovs.11-8009 10.1016/j.jconrel.2016.02.041 10.1007/s10544-021-00604-w 10.1016/j.ejpb.2020.12.006 10.1167/iovs.16-19706 10.1016/j.drudis.2010.12.004 10.1080/03639045.2020.1776317 10.3389/fimmu.2020.590285 10.1007/s11095-010-0271-y 10.1159/000497475 10.1002/adhm.201200239 10.1038/eye.2008.88 10.1016/j.survophthal.2009.07.005 10.1080/1061186X.2020.1795180 10.1371/journal.pone.0162518 10.1097/AJP.0b013e31816778f9 10.1213/00000539-200102000-00041 10.1016/j.ejpb.2018.09.021 10.1007/s13346-016-0332-9 10.1007/s00403-013-1417-7 10.1007/s11095-008-9756-3 10.1016/j.actbio.2018.09.039 10.1038/clpt.1981.57 10.1096/fasebj.2022.36.S1.L7681 10.1016/j.jddst.2022.103653 10.1016/j.cis.2018.02.002 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2023 The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 |
| DOI | 10.1016/j.addr.2023.115082 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1872-8294 |
| ExternalDocumentID | 10_1016_j_addr_2023_115082 S0169409X23003976 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ABZDS ACDAQ ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEHWI AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HX~ HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SPT SSH SSP SSU SSZ T5K TEORI WUQ Y6R ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7X8 |
| ID | FETCH-LOGICAL-c377t-bc557319789c035a6e0a388853f523f9ea8dc0872d7df8965d34fc7073aa2f7e3 |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001081403600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-409X 1872-8294 |
| IngestDate | Sun Nov 09 12:52:14 EST 2025 Sat Nov 29 07:22:45 EST 2025 Tue Nov 18 21:46:28 EST 2025 Sun Apr 06 06:56:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ocular Hollow microneedle Microneedle Computational modelling Solid microneedle |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c377t-bc557319789c035a6e0a388853f523f9ea8dc0872d7df8965d34fc7073aa2f7e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.addr.2023.115082 |
| PQID | 2863298006 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2863298006 crossref_primary_10_1016_j_addr_2023_115082 crossref_citationtrail_10_1016_j_addr_2023_115082 elsevier_sciencedirect_doi_10_1016_j_addr_2023_115082 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced drug delivery reviews |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | V. Morales-Canton, J. Fromow-Guerra, S.S. Longoria, R.R. Vera, M. Widmann, S. Patel, B. Yerxa, Suprachoroidal microinjection of bevacizumab is well tolerated in human patients, Invest Ophthalmol Vis Sci. 54 (2013) 3299 ARVO Abstract. Singh, Chanda (b0700) 2021; 16 Than, Liu, Chang, Duong, Cheung, Xu, Wang, Chen (b0450) 2018; 9 L. Remington, Cornea and Sclera, in: 2012. Geroski, Edelhauser (b0775) 2001; 52 Wu, Vora, Wang, Adrianto, Tekko, Waite, Donnelly, Thakur (b0095) 2021; 165 Ingrole, Azizoglu, Dul, Birchall, Gill, Prausnitz (b0065) 2021; 267 Mandal, Gote, Pal, Mitra, Ogundele, Mitra (b0015) 2019; 36 Yeh, Khurana, Shah, Henry, Wang, Kissner, Ciulla, Noronha (b0530) 2020; 127 Lee, Li, Ihm, Jung (b0615) 2018; 255 Li, Hu, Dong, Chen, Zhao, Wang, Zhang, Chen, Wu, Wang (b0625) 2020; 151 G. Honari, H. Maibach, Skin Structure and Function, in: H. Maibach, G. Honari (Eds.), Applied Dermatotoxicology: Clinical Aspects, Academic Press, 2014: pp. 1–10. https://doi.org/https://doi.org/10.1016/B978-0-12-420130-9.00001-3. A. Alafnan, A.A. Seetharam, T. Hussain, M.S. Gupta, S.M.D. Rizvi, A. Moin, A. Alamri, A. Unnisa, A.M. Awadelkareem, A.E.O. Elkhalifa, P. Jayahanumaiah, M. Khalid, N. Balashanmugam, Development and Characterization of PEGDA Microneedles for Localized Drug Delivery of Gemcitabine to Treat Inflammatory Breast Cancer, Materials. 15 (2022) 1–13. https://doi.org/10.3390/ma15217693. Boote, Sigal, Grytz, Hua, Nguyen, Girard (b0570) 2020; 74 Vurgese, Panda-Jonas, Jonas, Vavvas (b0800) 2012; 7 Dilsher Singh Dhoot (b0100) 2022; 63 Kalaycı (b0470) 2020; 50 J. Mathias, The Advantages and Disadvantages of Scanning Electron Microscopy (SEM), (2020). https://www.innovatechlabs.com/newsroom/2083/advantages-disadvantages-scanning-electron-microscopy/ (accessed February 10, 2023). Albadr, Tekko, Vora, Ali, Laverty, Donnelly, Thakur (b0350) 2022; 12 Juliszewski, Kadłuczka, Kiełbasa (b0670) 2016; 22 Donnelly, Raj Singh, Woolfson (b0150) 2010; 17 Li, Zeng, Shan, Tong (b0170) 2017; 24 Kim, Grossniklaus, Edelhauser, Prausnitz (b0190) 2014; 55 Saadatkhah, Carillo Garcia, Ackermann, Leclerc, Latifi, Samih, Patience, Chaouki (b0340) 2020; 98 Roy, Garg, Venuganti (b0435) 2022; 612 Willekens, Gijbels, Smits, Schoevaerdts, Blanckaert, Feyen, Reynaerts, Stalmans (b0565) 2021; 99 Thrimawithana, Young, Bunt, Green, Alany (b0785) 2011; 16 Makvandi, Kirkby, Hutton, Shabani, Yiu, Baghbantaraghdari, Jamaledin, Carlotti, Mazzolai, Mattoli, Donnelly (b0325) 2021; 13 Aldawood, Andar, Desai (b0080) 2021; 13 Thakur Singh, Tekko, McAvoy, McMillan, Jones, Donnelly (b0310) 2017; 14 Lee, Ma, You, Kim, Byeon, Jung (b0370) 2015; 9 Halder, Gupta, Kumari, Gupta, Rai (b0235) 2021; 16 AZO Materials, Stainless Steel - Grade 304 (UNS S30400), (2023). https://www.azom.com/properties.aspx?ArticleID=965 (accessed February 6, 2023). Kim, Edelhauser, Prausnitz (b0500) 2014; 55 Bekerman, Gottlieb, Vaiman (b0005) 2014; 2014 A. Than, C. Liu, H. Chang, P.K. Duong, C.M.G. Cheung, C. Xu, X. Wang, Peng. Chen, Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery., Nat Commun. 9 (2018) 1–12. https://doi.org/10.1038/s41467-018-06981-w. Lee, You, Lee, Jung (b0930) 2013; 15 Albadr, Tekko, Vora, Ali, Laverty, Donnelly, Thakur (b0465) 2022; 12 Colter, Williams, Moran, Coats (b0050) 2015; 41 Alimardani, Sadat Abolmaali, Yousefi, Hossein Nowroozzadeh, Mohammad Tamaddon (b0265) 2023; 119 Larrañeta, Moore, Vicente-Pérez, González-Vázquez, Lutton, Woolfson, Donnelly (b0275) 2014; 472 Venkatkrish M. Kasetty; Luke G. Qin; Diego Espinosa-Heidmann; Dennis M. Marcus, Flow Mechanics of Suprachoroidal Injection, (2022). https://www.retinalphysician.com/issues/2022/special-edition-2022/flow-mechanics-of-suprachoroidal-injection#reference-27 (accessed August 10, 2023). Quigley (b0475) 1996; 122 Amarnani, Shende (b0070) 2022; 24 L. de Oliveira Morais, R. de Freitas Dalavia, A. Paula Alcides, F. Quirino Soares, M. Feitoza-Silva, EVALUATION OF HIPODERMIC NEEDLES BRANDS THROUGH THE TEST OF CORROSION RESISTANCE, 2010. Vora, Moffatt, Tekko, Paredes, Volpe-Zanutto, Mishra, Peng, Raj Singh Thakur, Donnelly (b0090) 2021; 159 Ayalasomayajula, Ashton, Kompella (b0445) 2009; 25 Goldstein, Do, Noronha, Kissner, Srivastava, Nguyen (b0560) 2016; 5 Wadstein, Alvarez, López (b0725) 2022; 9 Cholkar, Dasari, Pal, Mitra (b0020) 2013 Tuan-Mahmood, McCrudden, Torrisi, McAlister, Garland, Singh, Donnelly (b0690) 2013; 50 Pawlaczyk, Lelonkiewicz, Wieczorowski (b0740) 2013; 30 Alonso, Meirelles, Yushmanov, Tabak (b0755) 1996; 106 Bok, Zhao, Jeon, Jeong, Lim (b0220) 2020; 10 He, Zhang, Zheng, Li, Qi, Wu, Lu (b0305) 2021; 13 Coudrillier, Tian, Alexander, Myers, Quigley, Nguyen (b0805) 2012; 53 Arshad, Zafar, Zahra, Zaman, Akhtar, Kucuk, Farhan, Chang, Ahmad (b0295) 2021; 29 Kim, Flach, Jampol (b0405) 2010; 55 Becker, Ballin, Louis (b0415) 2015 Clearside Biomedical, Suprachoroidal space, (2021). Thakur Singh, Tekko, McAvoy, McMillan, Jones, Donnelly (b0085) 2017; 14 Ueda, Saito, Murata, Hirano, Bise, Kabashima, Suzuki (b0735) 2019; 9 Jung, Chiang, Grossniklaus, Prausnitz (b0230) 2018; 277 Thakur, Tekko, Al-Shammari, Ali, McCarthy, Donnelly (b0155) 2016; 6 Gilger, Abarca, Salmon, Patel (b0430) 2013; 54 Khandan, Kahook, Rao (b0510) 2016; 223 Patel, Berezovsky, McCarey, Zarnitsyn, Edelhauser, Prausnitz (b0400) 2012; 53 McClements (b0575) 2018; 253 VOA News, Tiny Needles Treat Eye Disease, (2014). Tiny Needles Treat Eye Disease (accessed August 10, 2023). Clearside Biomedical Inc., Suprachoroidal CLS-TA With Intravitreal Aflibercept Versus Aflibercept Alone in Subject With Diabetic Macular Edema (TYBEE), (2021). Suprachoroidal CLS-TA With Intravitreal Aflibercept Versus Aflibercept Alone in Subject With Diabetic Macular Edema (TYBEE) (accessed August 10, 2023). Shields, Shields (b0410) 2006; 17 Chen, Ren, Li, Yao, Chen, Liu, Jiang (b0640) 2018; 65 Kim, Lutz, Wang, Robinson (b0815) 2007; 39 Thakur, Fallows, McMillan, Donnelly, Jones (b0200) 2014; 66 Jiang, Gill, Ghate, McCarey, Patel, Edelhauser, Prausnitz (b0175) 2007; 48 Clearside Biomedical Inc., Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis, (2021). Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis (accessed August 10, 2023). (triamcinolone acetonide injectable suspension) for Suprachoroidal Use for the Treatment of Macular Edema Associated with Uveitis, (2021). https://ir.clearsidebio.com/news-releases/news-release-details/bausch-lomb-and-clearside-biomedical-announce-fda-approval (accessed January 9, 2023). Falavarjani, Nguyen (b0040) 2013; 27 Migalska, Morrow, Garland, Thakur, Woolfson, Donnelly (b0165) 2011; 28 Price, Schmitt, McGuire, Shaw, Trobough (b0680) 1981; 29 Kim, Grossniklaus, Edelhauser, Prausnitz (b0375) 2014; 55 Rohan, Singh, Ichhpujani (b0480) 2020; 12 Penn, Madan, Caldwell, Bartoli, Caldwell, Hartnett (b0355) 2008; 27 Clearside Biomedical, Bausch + Lomb and Clearside Biomedical Announce FDA Approval of XIPERE Gallo (b0665) 2017; 137 Aldawood, Andar, Desai (b0060) 2021; 13 De Martino, Battisti, Napolitano, Palladino, Serpico, Amendola, Martone, De Girolamo, Squillace, Dardano, De Stefano, Dello Iacono (b0630) 2022; 142 Roy, Galigama, Thorat, Mallela, Roy, Garg, Venuganti (b0460) 2019; 572 Ilochonwu, Urtti, Hennink, Vermonden (b0365) 2020; 326 Shaun Ian Retief Lampen; Rahul N. Khurana; David M Brown; Charles Clifton Wykoff, Suprachoroidal Space Alterations after Delivery of Triamcinolone Acetonide: Post-Hoc Analysis of the Phase 1/2 HULK Study of Patients with Diabetic Macular Edema, Invest Ophthalmol Vis Sci. 59 (2018). Alexander, Brown, Danby, Flohr (b0280) 2018; 138 Choi, Cheong, Lee, Lee, Jin, Park (b0790) 2011; 11 Thakur, Tekko, Al-Shammari, Ali, McCarthy, Donnelly (b0245) 2016; 6 Jiang, Moore, Edelhauser, Prausnitz (b0115) 2009; 26 Clearside Biomedical Inc., MAGNOLIA: Extension Study of Patients With Non-infectious Uveitis Who Participated in CLS1001-301, (2021). https://www.clinicaltrials.gov/study/NCT02952001?term=microneedle%20AND%20ocular&page=2&rank=14 (accessed August 10, 2023). Joodaki, Panzer (b0750) 2018; 232 Wei, Edwards, Martin, Huang, Crichton, Kendall (b0810) 2017; 7 Niemiec, Louiselle, Hilton, Dewberry, Zhang, Azeltine, Xu, Singh, Sakthivel, Seal, Liechty, Zgheib (b0765) 2020; 11 Lee, Song, Cho, Kim, Kim, Ryu (b0160) 2018; 80 Wan, Kapik, Wykoff, Henry, Barakat, Shah, Andino, Ciulla (b0655) 2020; 9 Tavakoli, Peynshaert, Lajunen, Devoldere, del Amo, Ruponen, De Smedt, Remaut, Urtti (b0035) 2020; 328 Amer, Chen (b0635) 2020; 20 Ng, Gupta (b0685) 2020; 15 Loizidou, Williams, Barrow, Eaton, McCrory, Evans, Allender (b0920) 2015; 89 Vora, Vavia, Larrañeta, Bell, Donnelly (b0130) 2018; 3 C.G. Krader, FDA approves XIPERE injection for treatment of uveitic macular edema, (2021). https://www.modernretina.com/view/fda-approves-triamcinolone-acetonide-for-suprachoroidal-injection-for-treatment-of-uveitic-macular-edema. Ebrahiminejad, Faraji Rad, Prewett, Davies (b0255) 2022; 13 Rada, Achen, Perry, Fox (b0795) 1997; 38 WHO, World report on vision, 2019. Bhatnagar, Saju, Cheerla, Gade, Garg, Venuganti (b0455) 2018; 8 Huang, Huang, Lin, Lin (b0315) 2017; 2017 U.S Food and Drug Administration, Microneedling Devices, (2020). https://www.fda.gov/medical-devices/aesthetic-cosmetic-devices/microneedling-devices (accessed August 10, 2023). Lutton, Moore, Larrañeta, Ligett, Woolfson, Donnelly (b0940) 2015; 5 R.E. Lutton, J. Moore, E. Larrañeta, S. Ligett, A. David Woolfson, R.F. Donnelly, Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation, (2015). https://doi.org/10.1007/s13346. Baranwal, Agnihotri, McGarry (b0730) 2020; 239 Iriarte, Awosika, Rengifo-Pardo, Ehrlich (b0075) 2017; 10 Weihermann, Lorencini, Brohem, de Carvalho (b0715) 2017; 39 Park, Jo, Cho, Lee, Kim, Ryu, Joo, Kim, Ryu (b0770) 2018; 133 Podoleanu (b0335) 2012; 247 Pieramici, Rabena (b0360) 2008; 22 Galvez-Martin, Martinez-Puig, Soto-Fernández, Romero-Rueda (b0720) 2022; 36 Patel, Lin, Edelhauser, Alimardani (10.1016/j.addr.2023.115082_b0265) 2023; 119 Loizidou (10.1016/j.addr.2023.115082_b0660) 2016; 107 10.1016/j.addr.2023.115082_b0055 Pawlaczyk (10.1016/j.addr.2023.115082_b0740) 2013; 30 Yadav (10.1016/j.addr.2023.115082_b0820) 2018 Jiang (10.1016/j.addr.2023.115082_b0175) 2007; 48 Han (10.1016/j.addr.2023.115082_b0210) 2020; 30 Chen (10.1016/j.addr.2023.115082_b0640) 2018; 65 Cha (10.1016/j.addr.2023.115082_b0745) 2019; 142 Joodaki (10.1016/j.addr.2023.115082_b0750) 2018; 232 Gilger (10.1016/j.addr.2023.115082_b0120) 2020; 39 Aldawood (10.1016/j.addr.2023.115082_b0080) 2021; 13 Ingrole (10.1016/j.addr.2023.115082_b0065) 2021; 267 Vora (10.1016/j.addr.2023.115082_b0090) 2021; 159 Park (10.1016/j.addr.2023.115082_b0885) 2016; 57 Roy (10.1016/j.addr.2023.115082_b0145) 2020; 46 Thakur (10.1016/j.addr.2023.115082_b0200) 2014; 66 Griffin (10.1016/j.addr.2023.115082_b0605) 2017; 46 Nguyen (10.1016/j.addr.2023.115082_b0610) 2019; 6 10.1016/j.addr.2023.115082_b0285 10.1016/j.addr.2023.115082_b0045 10.1016/j.addr.2023.115082_b0320 Chiang (10.1016/j.addr.2023.115082_b0505) 2016; 228 Geroski (10.1016/j.addr.2023.115082_b0775) 2001; 52 Jung (10.1016/j.addr.2023.115082_b0230) 2018; 277 10.1016/j.addr.2023.115082_b0600 Thakur (10.1016/j.addr.2023.115082_b0245) 2016; 6 Thakur Singh (10.1016/j.addr.2023.115082_b0310) 2017; 14 Ciulla (10.1016/j.addr.2023.115082_b0520) 2022; 28 Alonso (10.1016/j.addr.2023.115082_b0755) 1996; 106 Wei (10.1016/j.addr.2023.115082_b0810) 2017; 7 Albadr (10.1016/j.addr.2023.115082_b0350) 2022; 12 Kim (10.1016/j.addr.2023.115082_b0375) 2014; 55 Albadr (10.1016/j.addr.2023.115082_b0465) 2022; 12 Ilochonwu (10.1016/j.addr.2023.115082_b0365) 2020; 326 Bhatnagar (10.1016/j.addr.2023.115082_b0455) 2018; 8 Aldawood (10.1016/j.addr.2023.115082_b0060) 2021; 13 Willekens (10.1016/j.addr.2023.115082_b0565) 2021; 99 Habot-Wilner (10.1016/j.addr.2023.115082_b0525) 2019; 97 Lee (10.1016/j.addr.2023.115082_b0615) 2018; 255 Tavakoli (10.1016/j.addr.2023.115082_b0035) 2020; 328 Donnelly (10.1016/j.addr.2023.115082_b0150) 2010; 17 Larrañeta (10.1016/j.addr.2023.115082_b0275) 2014; 472 Kim (10.1016/j.addr.2023.115082_b0405) 2010; 55 Lynch (10.1016/j.addr.2023.115082_b0760) 2017; 7 10.1016/j.addr.2023.115082_b0110 10.1016/j.addr.2023.115082_b0595 Mandal (10.1016/j.addr.2023.115082_b0015) 2019; 36 Kim (10.1016/j.addr.2023.115082_b0500) 2014; 55 Coudrillier (10.1016/j.addr.2023.115082_b0805) 2012; 53 Huang (10.1016/j.addr.2023.115082_b0315) 2017; 2017 Wan (10.1016/j.addr.2023.115082_b0655) 2020; 9 Saadatkhah (10.1016/j.addr.2023.115082_b0340) 2020; 98 Shields (10.1016/j.addr.2023.115082_b0410) 2006; 17 Li (10.1016/j.addr.2023.115082_b0170) 2017; 24 Consejo (10.1016/j.addr.2023.115082_b0780) 2017; 37 Choi (10.1016/j.addr.2023.115082_b0790) 2011; 11 10.1016/j.addr.2023.115082_b0580 10.1016/j.addr.2023.115082_b0585 Gallo (10.1016/j.addr.2023.115082_b0665) 2017; 137 Juliszewski (10.1016/j.addr.2023.115082_b0670) 2016; 22 Thakur (10.1016/j.addr.2023.115082_b0125) 2014; 66 Gupta (10.1016/j.addr.2023.115082_b0185) 2011; 13 10.1016/j.addr.2023.115082_b0105 Tratta (10.1016/j.addr.2023.115082_b0225) 2014; 88 Patel (10.1016/j.addr.2023.115082_b0400) 2012; 53 Rada (10.1016/j.addr.2023.115082_b0795) 1997; 38 Niemiec (10.1016/j.addr.2023.115082_b0765) 2020; 11 Makvandi (10.1016/j.addr.2023.115082_b0325) 2021; 13 10.1016/j.addr.2023.115082_b0250 Than (10.1016/j.addr.2023.115082_b0450) 2018; 9 Galvez-Martin (10.1016/j.addr.2023.115082_b0720) 2022; 36 Yeh (10.1016/j.addr.2023.115082_b0530) 2020; 127 10.1016/j.addr.2023.115082_b0895 Falavarjani (10.1016/j.addr.2023.115082_b0040) 2013; 27 Wu (10.1016/j.addr.2023.115082_b0095) 2021; 165 10.1016/j.addr.2023.115082_b0010 10.1016/j.addr.2023.115082_b0650 Thrimawithana (10.1016/j.addr.2023.115082_b0785) 2011; 16 Smith (10.1016/j.addr.2023.115082_b0705) 1982; 79 Boote (10.1016/j.addr.2023.115082_b0570) 2020; 74 McClements (10.1016/j.addr.2023.115082_b0575) 2018; 253 Podoleanu (10.1016/j.addr.2023.115082_b0335) 2012; 247 10.1016/j.addr.2023.115082_b0535 De Martino (10.1016/j.addr.2023.115082_b0630) 2022; 142 Roy (10.1016/j.addr.2023.115082_b0435) 2022; 612 Ueda (10.1016/j.addr.2023.115082_b0735) 2019; 9 Wu (10.1016/j.addr.2023.115082_b0135) 2023; 13 Lee (10.1016/j.addr.2023.115082_b0930) 2013; 15 Penn (10.1016/j.addr.2023.115082_b0355) 2008; 27 Park (10.1016/j.addr.2023.115082_b0260) 2005; 104 Goldstein (10.1016/j.addr.2023.115082_b0560) 2016; 5 Colter (10.1016/j.addr.2023.115082_b0050) 2015; 41 Arshad (10.1016/j.addr.2023.115082_b0295) 2021; 29 Xiu (10.1016/j.addr.2023.115082_b0675) 2022; 76 Weihermann (10.1016/j.addr.2023.115082_b0715) 2017; 39 Park (10.1016/j.addr.2023.115082_b0770) 2018; 133 Ebrahiminejad (10.1016/j.addr.2023.115082_b0255) 2022; 13 Jiang (10.1016/j.addr.2023.115082_b0115) 2009; 26 10.1016/j.addr.2023.115082_b0240 Lee (10.1016/j.addr.2023.115082_b0160) 2018; 80 Lutton (10.1016/j.addr.2023.115082_b0940) 2015; 5 Gill (10.1016/j.addr.2023.115082_b0180) 2008; 24 Li (10.1016/j.addr.2023.115082_b0625) 2020; 151 Migalska (10.1016/j.addr.2023.115082_b0165) 2011; 28 Al-Kasasbeh (10.1016/j.addr.2023.115082_b0330) 2020; 10 10.1016/j.addr.2023.115082_b0645 Vora (10.1016/j.addr.2023.115082_b0130) 2018; 3 Halder (10.1016/j.addr.2023.115082_b0235) 2021; 16 Rohan (10.1016/j.addr.2023.115082_b0480) 2020; 12 Quigley (10.1016/j.addr.2023.115082_b0475) 1996; 122 Cholkar (10.1016/j.addr.2023.115082_b0020) 2013 Ayalasomayajula (10.1016/j.addr.2023.115082_b0445) 2009; 25 Dilsher Singh Dhoot (10.1016/j.addr.2023.115082_b0100) 2022; 63 10.1016/j.addr.2023.115082_b0030 He (10.1016/j.addr.2023.115082_b0305) 2021; 13 Price (10.1016/j.addr.2023.115082_b0680) 1981; 29 Vurgese (10.1016/j.addr.2023.115082_b0800) 2012; 7 10.1016/j.addr.2023.115082_b0555 Kaushik (10.1016/j.addr.2023.115082_b0195) 2001 Patel (10.1016/j.addr.2023.115082_b0205) 2011; 28 10.1016/j.addr.2023.115082_b0550 Kim (10.1016/j.addr.2023.115082_b0190) 2014; 55 Wadstein (10.1016/j.addr.2023.115082_b0725) 2022; 9 Thakur Singh (10.1016/j.addr.2023.115082_b0085) 2017; 14 Thakur (10.1016/j.addr.2023.115082_b0155) 2016; 6 Johnson (10.1016/j.addr.2023.115082_b0590) 2016; 11 Becker (10.1016/j.addr.2023.115082_b0415) 2015 Kalaycı (10.1016/j.addr.2023.115082_b0470) 2020; 50 Lee (10.1016/j.addr.2023.115082_b0935) 2013; 2 Bhatnagar (10.1016/j.addr.2023.115082_b0290) 2018; 19 10.1016/j.addr.2023.115082_b0140 Lee (10.1016/j.addr.2023.115082_b0370) 2015; 9 Ng (10.1016/j.addr.2023.115082_b0685) 2020; 15 Alexander (10.1016/j.addr.2023.115082_b0280) 2018; 138 10.1016/j.addr.2023.115082_b0025 10.1016/j.addr.2023.115082_b0300 Gilger (10.1016/j.addr.2023.115082_b0430) 2013; 54 Baranwal (10.1016/j.addr.2023.115082_b0730) 2020; 239 Moiseev (10.1016/j.addr.2023.115082_b0215) 2019; 11 Pieramici (10.1016/j.addr.2023.115082_b0360) 2008; 22 Bok (10.1016/j.addr.2023.115082_b0220) 2020; 10 Singh (10.1016/j.addr.2023.115082_b0700) 2021; 16 Tuan-Mahmood (10.1016/j.addr.2023.115082_b0690) 2013; 50 Kim (10.1016/j.addr.2023.115082_b0815) 2007; 39 10.1016/j.addr.2023.115082_b0540 Roy (10.1016/j.addr.2023.115082_b0460) 2019; 572 Lavik (10.1016/j.addr.2023.115082_b0495) 2011; 25 Bekerman (10.1016/j.addr.2023.115082_b0005) 2014; 2014 Babalola (10.1016/j.addr.2023.115082_b0270) 2014; 306 10.1016/j.addr.2023.115082_b0545 Amarnani (10.1016/j.addr.2023.115082_b0070) 2022; 24 Czekalla (10.1016/j.addr.2023.115082_b0695) 2019; 32 Iriarte (10.1016/j.addr.2023.115082_b0075) 2017; 10 Khandan (10.1016/j.addr.2023.115082_b0510) 2016; 223 Selamat (10.1016/j.addr.2023.115082_b0345) 2021; 26 Amer (10.1016/j.addr.2023.115082_b0635) 2020; 20 Pailler-Mattei (10.1016/j.addr.2023.115082_b0710) 2008; 30 Loizidou (10.1016/j.addr.2023.115082_b0920) 2015; 89 |
| References_xml | – volume: 11 start-page: 6382 year: 2011 end-page: 6388 ident: b0790 article-title: AFM Study for Morphological and Mechanical Properties of Human Scleral Surface publication-title: J. Nanosci. Nanotechnol. – volume: 13 start-page: 629 year: 2022 end-page: 640 ident: b0255 article-title: Fabrication and testing of polymer microneedles for transdermal drug delivery, Beilstein publication-title: Journal of Nanotechnology. – volume: 27 start-page: 331 year: 2008 end-page: 371 ident: b0355 article-title: Vascular endothelial growth factor in eye disease publication-title: Prog. Retin. Eye Res. – volume: 165 start-page: 306 year: 2021 end-page: 318 ident: b0095 article-title: Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye publication-title: Eur. J. Pharm. Biopharm. – reference: National Institute of Biomedical Imaging and Bioengineering, Computational Modeling , (2020). https://www.nibib.nih.gov/science-education/science-topics/computational-modeling (accessed August 15, 2023). – volume: 39 start-page: 241 year: 2017 end-page: 247 ident: b0715 article-title: Elastin structure and its involvement in skin photoageing publication-title: Int. J. Cosmet. Sci. – volume: 14 start-page: 525 year: 2017 end-page: 537 ident: b0085 article-title: Minimally invasive microneedles for ocular drug delivery publication-title: Expert Opin. Drug Deliv. – volume: 159 start-page: 44 year: 2021 end-page: 76 ident: b0090 article-title: Microneedle array systems for long-acting drug delivery publication-title: Eur. J. Pharm. Biopharm. – start-page: 502 year: 2001 end-page: 504 ident: b0195 article-title: Lack of Pain Associated with Microfabricated Microneedles publication-title: Anesth. Analg. – volume: 76 start-page: 103653 year: 2022 ident: b0675 article-title: Drug delivery with dissolving microneedles: skin puncture, its influencing factors and improvement strategies publication-title: J Drug Deliv Sci Technol. – volume: 36 year: 2022 ident: b0720 article-title: In vitro evaluation of anti-aging and regenerative properties of dermatan sulfate for skin care publication-title: FASEB J. – volume: 17 start-page: 187 year: 2010 end-page: 207 ident: b0150 article-title: Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety publication-title: Drug Deliv. – volume: 9 start-page: 27 year: 2020 ident: b0655 article-title: Clinical characterization of suprachoroidal injection procedure utilizing a microinjector across three retinal disorders, Transl Vis publication-title: Sci. Technol. – volume: 80 start-page: 48 year: 2018 end-page: 57 ident: b0160 article-title: Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery publication-title: Acta Biomater. – volume: 38 start-page: 1740 year: 1997 end-page: 1751 ident: b0795 article-title: Proteoglycans in the human sclera: Evidence for the presence of aggrecan publication-title: Invest. Ophthalmol. Vis. Sci. – reference: Clearside Biomedical Inc., Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis, (2021). Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis (accessed August 10, 2023). – volume: 151 start-page: 105361 year: 2020 ident: b0625 article-title: Dissolving Microneedle Arrays with Optimized Needle Geometry for Transcutaneous Immunization publication-title: Eur. J. Pharm. Sci. – volume: 39 start-page: 244 year: 2007 end-page: 254 ident: b0815 article-title: Transport Barriers in Transscleral Drug Delivery for Retinal Diseases publication-title: Ophthalmic Res. – volume: 247 start-page: 209 year: 2012 end-page: 219 ident: b0335 article-title: Optical coherence tomography publication-title: J. Microsc. – reference: A. Than, C. Liu, H. Chang, P.K. Duong, C.M.G. Cheung, C. Xu, X. Wang, Peng. Chen, Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery., Nat Commun. 9 (2018) 1–12. https://doi.org/10.1038/s41467-018-06981-w. – volume: 24 start-page: 585 year: 2008 end-page: 594 ident: b0180 article-title: Effect of microneedle design on pain in human volunteers publication-title: Clin. J. Pain – reference: Shaun Ian Retief Lampen; Rahul N. Khurana; David M Brown; Charles Clifton Wykoff, Suprachoroidal Space Alterations after Delivery of Triamcinolone Acetonide: Post-Hoc Analysis of the Phase 1/2 HULK Study of Patients with Diabetic Macular Edema, Invest Ophthalmol Vis Sci. 59 (2018). – volume: 65 start-page: 283 year: 2018 end-page: 291 ident: b0640 article-title: Rapid fabrication of microneedles using magnetorheological drawing lithography publication-title: Acta Biomater. – reference: C.G. Krader, FDA approves XIPERE injection for treatment of uveitic macular edema, (2021). https://www.modernretina.com/view/fda-approves-triamcinolone-acetonide-for-suprachoroidal-injection-for-treatment-of-uveitic-macular-edema. – volume: 328 start-page: 952 year: 2020 end-page: 961 ident: b0035 article-title: Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface publication-title: J. Control. Release – volume: 9 start-page: 1 year: 2019 end-page: 12 ident: b0735 article-title: Combined multiphoton imaging and biaxial tissue extension for quantitative analysis of geometric fiber organization in human reticular dermis publication-title: Sci. Rep. – volume: 3 start-page: 89 year: 2018 end-page: 101 ident: b0130 article-title: Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug publication-title: J. Interdiscip. Nanomed. – volume: 119 start-page: 485 year: 2023 end-page: 498 ident: b0265 article-title: In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone publication-title: J. Ind. Eng. Chem. – reference: R.E. Lutton, J. Moore, E. Larrañeta, S. Ligett, A. David Woolfson, R.F. Donnelly, Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation, (2015). https://doi.org/10.1007/s13346. – volume: 36 start-page: 36 year: 2019 ident: b0015 article-title: Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease publication-title: Pharm. Res. – volume: 2014 start-page: 1 year: 2014 end-page: 5 ident: b0005 article-title: Variations in Eyeball Diameters of the Healthy Adults publication-title: J. Ophthalmol. – volume: 39 start-page: 362 year: 2020 end-page: 369 ident: b0120 article-title: A Fixed-Depth Microneedle Enhances Reproducibility and Safety for Corneal Gene Therapy publication-title: Cornea – volume: 11 start-page: 1 year: 2020 end-page: 9 ident: b0765 article-title: Nanosilk Increases the Strength of Diabetic Skin and Delivers CNP-miR146a to Improve Wound Healing publication-title: Front. Immunol. – volume: 223 start-page: 15 year: 2016 end-page: 23 ident: b0510 article-title: Fenestrated microneedles for ocular drug delivery publication-title: Sens Actuators B Chem. – volume: 9 start-page: 31 year: 2022 ident: b0725 article-title: Managing Skin Ageing as a Modifiable Disorder — The Clinical Application of Nourella ® Dual Approach Comprising publication-title: Cosmetics – volume: 13 start-page: 2815 year: 2021 ident: b0060 article-title: A comprehensive review of microneedles: Types, materials, processes, characterizations and applications publication-title: Polymers (Basel). – volume: 28 start-page: S243 year: 2022 end-page: S252 ident: b0520 article-title: Microinjection via the Suprachoroidal Space: A Review of a Novel Mode of Administration publication-title: Am. J. Manag. Care – volume: 22 start-page: 279 year: 2016 end-page: 282 ident: b0670 article-title: Determining eyeball surface area directly exposed to the effects of external factors publication-title: Int. J. Occup. Saf. Ergon. – volume: 30 start-page: 599 year: 2008 end-page: 606 ident: b0710 article-title: In vivo measurements of the elastic mechanical properties of human skin by indentation tests publication-title: Med. Eng. Phys. – volume: 10 start-page: 289 year: 2017 end-page: 298 ident: b0075 article-title: Review of applications of microneedling in dermatology publication-title: Clin. Cosmet. Investig. Dermatol. – volume: 55 start-page: 7387 year: 2014 end-page: 7397 ident: b0500 article-title: Targeted delivery of antiglaucoma drugs to the supraciliary space using microneedles publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 142 start-page: 213169 year: 2022 ident: b0630 article-title: Effect of microneedles shape on skin penetration and transdermal drug administration publication-title: Biomaterials Advances. – volume: 104 start-page: 51 year: 2005 end-page: 66 ident: b0260 article-title: Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery publication-title: J. Control. Release – volume: 106 start-page: 1058 year: 1996 end-page: 1063 ident: b0755 article-title: Water increases the fluidity of intercellular membranes of stratum corneum: Correlation with water permeability, elastic, and electrical resistance properties publication-title: J, Invest. Dermatol. – volume: 30 start-page: 1909197 year: 2020 ident: b0210 article-title: 4D Printing of a Bioinspired Microneedle Array with Backward‐Facing Barbs for Enhanced Tissue Adhesion publication-title: Adv. Funct. Mater. – volume: 16 start-page: 062004 year: 2021 ident: b0700 article-title: Mechanical properties of whole-body soft human tissues: A review publication-title: Biomedical Materials (Bristol). – volume: 57 start-page: 5602 year: 2016 end-page: 5610 ident: b0885 article-title: Details of the collagen and elastin architecture in the human limbal conjunctiva, tenon’s capsule and sclera revealed by two-photon excited fluorescence microscopy publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 37 start-page: 263 year: 2017 end-page: 274 ident: b0780 article-title: Scleral changes with accommodation publication-title: Ophthalmic Physiol. Opt. – volume: 612 start-page: 121305 year: 2022 ident: b0435 article-title: Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye publication-title: Int. J. Pharm. – volume: 16 start-page: 558 year: 2021 end-page: 565 ident: b0235 article-title: Rai, Microneedle Array: Applications, Recent Advances, and Clinical Pertinence in Transdermal Drug Delivery publication-title: J. Pharm. Innov. – volume: 28 start-page: 166 year: 2011 end-page: 176 ident: b0205 article-title: Suprachoroidal drug delivery to the back of the eye using hollow microneedles publication-title: Pharm. Res. – volume: 9 start-page: 4433 year: 2018 ident: b0450 article-title: Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery publication-title: Nat. Commun. – volume: 20 start-page: 1 year: 2020 end-page: 7 ident: b0635 article-title: Self-Adhesive Microneedles with Interlocking Features for Sustained Ocular Drug Delivery publication-title: Macromol. Biosci. – reference: J. Mathias, The Advantages and Disadvantages of Scanning Electron Microscopy (SEM), (2020). https://www.innovatechlabs.com/newsroom/2083/advantages-disadvantages-scanning-electron-microscopy/ (accessed February 10, 2023). – volume: 11 start-page: e0162518 year: 2016 ident: b0590 article-title: Single-step fabrication of computationally designed microneedles by continuous liquid interface production publication-title: PLoS One – volume: 306 start-page: 1 year: 2014 end-page: 9 ident: b0270 article-title: Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis publication-title: Arch. Dermatol. Res. – volume: 99 start-page: 90 year: 2021 end-page: 96 ident: b0565 article-title: Phase I trial on robot assisted retinal vein cannulation with ocriplasmin infusion for central retinal vein occlusion publication-title: Acta Ophthalmol. – volume: 5 start-page: 14 year: 2016 ident: b0560 article-title: Suprachoroidal corticosteroid administration: A novel route for local treatment of noninfectious uveitis publication-title: Transl. Vis. Sci. Technol. – volume: 277 start-page: 14 year: 2018 end-page: 22 ident: b0230 article-title: Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle publication-title: J. Control. Release – volume: 255 start-page: 384 year: 2018 end-page: 390 ident: b0615 article-title: A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling publication-title: Sens Actuators B Chem. – reference: AZO Materials, Stainless Steel - Grade 304 (UNS S30400), (2023). https://www.azom.com/properties.aspx?ArticleID=965 (accessed February 6, 2023). – volume: 30 start-page: 302 year: 2013 end-page: 306 ident: b0740 article-title: Age-dependent biomechanical properties of the skin publication-title: Postepy Dermatol Alergol. – volume: 46 start-page: 1114 year: 2020 end-page: 1122 ident: b0145 article-title: Microneedle ocular patch: fabrication, characterization, and ex-vivo evaluation using pilocarpine as model drug publication-title: Drug Dev. Ind. Pharm. – volume: 12 start-page: 931 year: 2022 end-page: 943 ident: b0465 article-title: Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections, Drug Deliv publication-title: Transl. Res. – volume: 107 start-page: 1 year: 2016 end-page: 6 ident: b0660 article-title: Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis publication-title: Eur. J. Pharm. Biopharm. – volume: 52 start-page: 37 year: 2001 end-page: 48 ident: b0775 article-title: Transscleral drug delivery for posterior segment disease publication-title: Adv. Drug Deliv. Rev. – volume: 7 start-page: e29692 year: 2012 ident: b0800 article-title: Scleral thickness in human eyes publication-title: PLoS One – reference: V. Morales-Canton, J. Fromow-Guerra, S.S. Longoria, R.R. Vera, M. Widmann, S. Patel, B. Yerxa, Suprachoroidal microinjection of bevacizumab is well tolerated in human patients, Invest Ophthalmol Vis Sci. 54 (2013) 3299 ARVO Abstract. – reference: WHO, World report on vision, 2019. – volume: 8 start-page: 473 year: 2018 end-page: 483 ident: b0455 article-title: Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles, Drug Deliv publication-title: Transl. Res. – reference: Clearside Biomedical Inc., Suprachoroidal CLS-TA With Intravitreal Aflibercept Versus Aflibercept Alone in Subject With Diabetic Macular Edema (TYBEE), (2021). Suprachoroidal CLS-TA With Intravitreal Aflibercept Versus Aflibercept Alone in Subject With Diabetic Macular Edema (TYBEE) (accessed August 10, 2023). – volume: 7 year: 2017 ident: b0810 article-title: Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: From mice, rats, rabbits, pigs to humans publication-title: Sci. Rep. – reference: L. de Oliveira Morais, R. de Freitas Dalavia, A. Paula Alcides, F. Quirino Soares, M. Feitoza-Silva, EVALUATION OF HIPODERMIC NEEDLES BRANDS THROUGH THE TEST OF CORROSION RESISTANCE, 2010. – volume: 267 start-page: 120491 year: 2021 ident: b0065 article-title: Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity publication-title: Biomaterials – volume: 66 start-page: 584 year: 2014 end-page: 595 ident: b0125 article-title: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery publication-title: J. Pharm. Pharmacol. – volume: 12 start-page: 931 year: 2022 end-page: 943 ident: b0350 article-title: Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections, Drug Deliv publication-title: Transl. Res. – volume: 572 year: 2019 ident: b0460 article-title: Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis publication-title: Int. J. Pharm. – volume: 29 start-page: 414 year: 1981 end-page: 419 ident: b0680 article-title: Transdermal scopolamine in the prevention of motion sickness at sea publication-title: Clin. Pharmacol. Ther. – volume: 9 start-page: 232 year: 2015 end-page: 238 ident: b0370 article-title: Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) antibody via Tower Microneedle publication-title: BioChip J. – reference: U.S Food and Drug Administration, Microneedling Devices, (2020). https://www.fda.gov/medical-devices/aesthetic-cosmetic-devices/microneedling-devices (accessed August 10, 2023). – volume: 48 start-page: 4038 year: 2007 end-page: 4043 ident: b0175 article-title: Coated microneedles for drug delivery to the eye publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 228 start-page: 48 year: 2016 end-page: 57 ident: b0505 article-title: Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma publication-title: J. Control. Release – volume: 89 start-page: 224 year: 2015 end-page: 231 ident: b0920 article-title: Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses publication-title: Eur. J. Pharm. Biopharm. – volume: 26 start-page: 395 year: 2009 end-page: 403 ident: b0115 article-title: Intrascleral Drug Delivery to the Eye Using Hollow Microneedles publication-title: Pharm. Res. – volume: 55 start-page: 108 year: 2010 end-page: 133 ident: b0405 article-title: Nonsteroidal Anti-inflammatory Drugs in Ophthalmology publication-title: Surv. Ophthalmol. – reference: Clearside Biomedical Inc., MAGNOLIA: Extension Study of Patients With Non-infectious Uveitis Who Participated in CLS1001-301, (2021). https://www.clinicaltrials.gov/study/NCT02952001?term=microneedle%20AND%20ocular&page=2&rank=14 (accessed August 10, 2023). – volume: 326 start-page: 419 year: 2020 end-page: 441 ident: b0365 article-title: Intravitreal hydrogels for sustained release of therapeutic proteins publication-title: J. Control. Release – volume: 53 start-page: 4433 year: 2012 ident: b0400 article-title: Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 66 start-page: 584 year: 2014 end-page: 595 ident: b0200 article-title: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery publication-title: J. Pharm. Pharmacol. – reference: C. Boimer, C.M. Birt, Preservative Exposure and Surgical Outcomes in Glaucoma Patients: The PESO Study, J Glaucoma. 22 (2013). https://journals.lww.com/glaucomajournal/Fulltext/2013/12000/Preservative_Exposure_and_Surgical_Outcomes_in.10.aspx. – volume: 13 start-page: 579 year: 2021 ident: b0305 article-title: Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride publication-title: Pharmaceutics. – volume: 137 start-page: 1213 year: 2017 end-page: 1214 ident: b0665 article-title: Human Skin Is the Largest Epithelial Surface for Interaction with Microbes publication-title: J, Invest. Dermatol. – volume: 2017 start-page: 1 year: 2017 end-page: 8 ident: b0315 article-title: A Transdermal Measurement Platform Based on Microfluidics publication-title: J. Chem. – volume: 13 start-page: 2142 year: 2023 end-page: 2158 ident: b0135 article-title: Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye., Drug Deliv publication-title: Transl. Res. – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: b0760 article-title: How aging impacts skin biomechanics: A multiscale study in mice publication-title: Sci. Rep. – volume: 55 start-page: 7376 year: 2014 ident: b0375 article-title: Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 13 start-page: 1 year: 2021 end-page: 34 ident: b0080 article-title: A comprehensive review of microneedles: Types, materials, processes, characterizations and applications publication-title: Polymers (Basel). – volume: 14 start-page: 525 year: 2017 end-page: 537 ident: b0310 article-title: Minimally invasive microneedles for ocular drug delivery publication-title: Expert Opin. Drug Deliv. – reference: Clearside Biomedical, Suprachoroidal space, (2021). – volume: 88 start-page: 116 year: 2014 end-page: 122 ident: b0225 article-title: In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery publication-title: Eur. J. Pharm. Biopharm. – volume: 138 start-page: 2295 year: 2018 end-page: 2300.e1 ident: b0280 article-title: Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool publication-title: J, Invest. Dermatol. – volume: 50 start-page: 288 year: 2020 end-page: 292 ident: b0470 article-title: Causes of blindness in the adult population in somalia publication-title: Turk J Ophthalmol. – volume: 25 start-page: 578 year: 2011 end-page: 586 ident: b0495 article-title: Novel drug delivery systems for glaucoma publication-title: Eye – volume: 26 start-page: 7565 year: 2021 ident: b0345 article-title: Application of the metabolomics approach in food authentication publication-title: Molecules – volume: 55 start-page: 7376 year: 2014 end-page: 7386 ident: b0190 article-title: Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 50 start-page: 623 year: 2013 end-page: 637 ident: b0690 article-title: Microneedles for intradermal and transdermal drug delivery publication-title: Eur. J. Pharm. Sci. – reference: Venkatkrish M. Kasetty; Luke G. Qin; Diego Espinosa-Heidmann; Dennis M. Marcus, Flow Mechanics of Suprachoroidal Injection, (2022). https://www.retinalphysician.com/issues/2022/special-edition-2022/flow-mechanics-of-suprachoroidal-injection#reference-27 (accessed August 10, 2023). – volume: 79 start-page: 93 year: 1982 end-page: 104 ident: b0705 article-title: Structure of the dermal matrix during development and in the adult publication-title: J, Invest. Dermatol. – volume: 98 start-page: 34 year: 2020 end-page: 43 ident: b0340 article-title: Experimental methods in chemical engineering: Thermogravimetric analysis—TGA publication-title: Can. J. Chem. Eng. – volume: 41 start-page: 315 year: 2015 end-page: 324 ident: b0050 article-title: Age-related changes in dynamic moduli of ovine vitreous publication-title: J. Mech. Behav. Biomed. Mater. – reference: Clearside Biomedical, Bausch + Lomb and Clearside Biomedical Announce FDA Approval of XIPERE – volume: 122 start-page: 460 year: 1996 ident: b0475 article-title: Number of people with glaucoma worldwide publication-title: Am. J. Ophthalmol. – reference: Y. LEVIN, Y. YESHURUN, M. HEFETZ, Y. SEFI, G. LAVI, MICRONEEDLE ADAPTER FOR DOSED DRUG DELIVERY DEVICES, 2007. – volume: 19 start-page: 1818 year: 2018 end-page: 1826 ident: b0290 article-title: Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies publication-title: AAPS PharmSciTech – volume: 32 start-page: 142 year: 2019 end-page: 150 ident: b0695 article-title: Noninvasive Determination of Epidermal and Stratum Corneum Thickness in vivo Using Two-Photon Microscopy and Optical Coherence Tomography: Impact of Body Area, Age, and Gender publication-title: Skin Pharmacol. Physiol. – volume: 232 start-page: 323 year: 2018 end-page: 343 ident: b0750 article-title: Skin mechanical properties and modeling: A review publication-title: Proc. Inst. Mech. Eng. H – volume: 24 year: 2022 ident: b0070 article-title: Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system publication-title: Biomed. Microdevices – volume: 10 start-page: 1 year: 2020 end-page: 10 ident: b0220 article-title: Ultrasonically and Iontophoretically Enhanced Drug-Delivery System Based on Dissolving Microneedle Patches publication-title: Sci. Rep. – volume: 6 start-page: 800 year: 2016 end-page: 815 ident: b0245 article-title: Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery, Drug Deliv publication-title: Transl. Res. – volume: 22 start-page: 1330 year: 2008 end-page: 1336 ident: b0360 article-title: Anti-VEGF therapy: Comparison of current and future agents publication-title: Eye – reference: Kevin Ita, Microneedles, Elsevier, 2022. https://doi.org/https://doi.org/10.1016/C2021-0-01278-5. – volume: 15 start-page: 13 year: 2020 end-page: 25 ident: b0685 article-title: Transdermal drug delivery systems in diabetes management: A review, Asian publication-title: J. Pharm. Sci. – reference: A. Alafnan, A.A. Seetharam, T. Hussain, M.S. Gupta, S.M.D. Rizvi, A. Moin, A. Alamri, A. Unnisa, A.M. Awadelkareem, A.E.O. Elkhalifa, P. Jayahanumaiah, M. Khalid, N. Balashanmugam, Development and Characterization of PEGDA Microneedles for Localized Drug Delivery of Gemcitabine to Treat Inflammatory Breast Cancer, Materials. 15 (2022) 1–13. https://doi.org/10.3390/ma15217693. – volume: 17 start-page: 228 year: 2006 end-page: 234 ident: b0410 article-title: Basic understanding of current classification and management of retinoblastoma publication-title: Curr. Opin. Ophthalmol. – start-page: 1 year: 2013 end-page: 36 ident: b0020 article-title: Eye: anatomy, physiology and barriers to drug delivery, Ocular Transporters and Receptors: Their Role in Drug Delivery publication-title: Ocular Transporters and Receptors – volume: 13 year: 2021 ident: b0325 article-title: Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion publication-title: Nanomicro Lett. – volume: 28 start-page: 1919 year: 2011 end-page: 1930 ident: b0165 article-title: Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery publication-title: Pharm. Res. – volume: 46 year: 2017 ident: b0605 article-title: Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction publication-title: J. Otolaryngol. Head Neck Surg. – volume: 2 start-page: 812 year: 2013 end-page: 816 ident: b0935 article-title: Tower Microneedle via reverse drawing lithography for innocuous intravitreal drug delivery publication-title: Adv. Healthc. Mater. – volume: 97 start-page: 460 year: 2019 end-page: 472 ident: b0525 article-title: Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: a targeted approach publication-title: Acta Ophthalmol. – volume: 127 start-page: 948 year: 2020 end-page: 955 ident: b0530 article-title: Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial publication-title: Ophthalmology – reference: G. Honari, H. Maibach, Skin Structure and Function, in: H. Maibach, G. Honari (Eds.), Applied Dermatotoxicology: Clinical Aspects, Academic Press, 2014: pp. 1–10. https://doi.org/https://doi.org/10.1016/B978-0-12-420130-9.00001-3. – volume: 6 year: 2019 ident: b0610 article-title: Biomechanical impact of the sclera on corneal deformation response to an air-puff: A finite-element study publication-title: Front. Bioeng. Biotechnol. – volume: 13 start-page: 451 year: 2011 end-page: 456 ident: b0185 article-title: Rapid Pharmacokinetics of Intradermal Insulin Administered Using Microneedles in Type 1 Diabetes Subjects publication-title: Diabetes Technol. Ther. – reference: (triamcinolone acetonide injectable suspension) for Suprachoroidal Use for the Treatment of Macular Edema Associated with Uveitis, (2021). https://ir.clearsidebio.com/news-releases/news-release-details/bausch-lomb-and-clearside-biomedical-announce-fda-approval (accessed January 9, 2023). – reference: L. Remington, Cornea and Sclera, in: 2012. – reference: VOA News, Tiny Needles Treat Eye Disease, (2014). Tiny Needles Treat Eye Disease (accessed August 10, 2023). – volume: 10 start-page: 690 year: 2020 end-page: 705 ident: b0330 article-title: Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches, Drug Deliv publication-title: Transl. Res. – volume: 29 start-page: 60 year: 2021 end-page: 68 ident: b0295 article-title: Fabrication and characterisation of self-applicating heparin sodium microneedle patches publication-title: J. Drug Target. – volume: 16 start-page: 270 year: 2011 end-page: 277 ident: b0785 article-title: Drug delivery to the posterior segment of the eye publication-title: Drug Discov. Today – reference: Clearside Biomedical Inc., Suprachoroidal Injection of CLS-TA Alone or With Aflibercept in Subjects With Diabetic Macular Edema (HULK), (2021). Suprachoroidal Injection of CLS-TA Alone or With Aflibercept in Subjects With Diabetic Macular Edema (HULK) (accessed August 10, 2023). – start-page: 1 year: 2015 end-page: 4 ident: b0415 publication-title: Glaucoma and corticosteriod provocative testing – volume: 15 start-page: 841 year: 2013 end-page: 848 ident: b0930 article-title: Tower microneedle minimizes vitreal reflux in intravitreal injection publication-title: Biomed. Microdevices – volume: 472 start-page: 65 year: 2014 end-page: 73 ident: b0275 article-title: A proposed model membrane and test method for microneedle insertion studies publication-title: Int. J. Pharm. – volume: 239 year: 2020 ident: b0730 article-title: The influence of fibre alignment on the fracture toughness of anisotropic soft tissue publication-title: Eng. Fract. Mech. – volume: 142 start-page: 170 year: 2019 end-page: 180 ident: b0745 article-title: Noninvasive determination of fiber orientation and tracking 2-dimensional deformation of human skin utilizing spatially resolved reflectance of infrared light measurement in vivo publication-title: Measurement (Lond). – volume: 27 start-page: 787 year: 2013 end-page: 794 ident: b0040 article-title: Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature publication-title: Eye (Basingstoke). – volume: 11 year: 2019 ident: b0215 article-title: Penetration enhancers in ocular drug delivery publication-title: Pharmaceutics. – volume: 63 year: 2022 ident: b0100 article-title: Suprachoroidal Delivery of RGX-314 for Diabetic Retinopathy: The Phase II ALTITUDE publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 6 start-page: 800 year: 2016 end-page: 815 ident: b0155 article-title: Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery publication-title: Drug Deliv. and Transl. Res. – volume: 74 year: 2020 ident: b0570 article-title: Scleral structure and biomechanics publication-title: Prog. Retin. Eye Res. – volume: 53 start-page: 1714 year: 2012 end-page: 1728 ident: b0805 article-title: Biomechanics of the human posterior sclera: Age- and glaucoma-related changes measured using inflation testing publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 12 start-page: 1 year: 2020 end-page: 17 ident: b0480 publication-title: Sahil Thakur, Promising therapeutic drug delivery systems for glaucoma: a comprehensive review, Ther Adv Vaccines. – volume: 133 start-page: 31 year: 2018 end-page: 41 ident: b0770 article-title: Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye publication-title: Eur. J. Pharm. Biopharm. – volume: 54 start-page: 2483 year: 2013 end-page: 2492 ident: b0430 article-title: Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 24 year: 2017 ident: b0170 article-title: Microneedle Patches as Drug and Vaccine Delivery Platform publication-title: Curr. Med. Chem. – volume: 25 start-page: 97 year: 2009 end-page: 103 ident: b0445 article-title: Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-α-induced angiogenesis in chick chorioallantoic membrane (CAM) publication-title: J. Ocul. Pharmacol. Ther. – volume: 5 start-page: 313 year: 2015 end-page: 331 ident: b0940 article-title: Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation publication-title: Drug Deliv Translational Research – volume: 253 start-page: 1 year: 2018 end-page: 22 ident: b0575 article-title: Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review publication-title: Adv. Colloid Interface Sci. – start-page: 51 year: 2018 end-page: 67 ident: b0820 article-title: Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers publication-title: Drug Delivery for the Retina and Posterior Segment Disease – volume: 28 start-page: 1919 year: 2011 ident: 10.1016/j.addr.2023.115082_b0165 article-title: Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery publication-title: Pharm. Res. doi: 10.1007/s11095-011-0419-4 – volume: 74 year: 2020 ident: 10.1016/j.addr.2023.115082_b0570 article-title: Scleral structure and biomechanics publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2019.100773 – volume: 9 start-page: 31 year: 2022 ident: 10.1016/j.addr.2023.115082_b0725 article-title: Managing Skin Ageing as a Modifiable Disorder — The Clinical Application of Nourella ® Dual Approach Comprising publication-title: Cosmetics doi: 10.3390/cosmetics9020031 – volume: 50 start-page: 623 year: 2013 ident: 10.1016/j.addr.2023.115082_b0690 article-title: Microneedles for intradermal and transdermal drug delivery publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2013.05.005 – volume: 48 start-page: 4038 year: 2007 ident: 10.1016/j.addr.2023.115082_b0175 article-title: Coated microneedles for drug delivery to the eye publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.07-0066 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.addr.2023.115082_b0480 publication-title: Sahil Thakur, Promising therapeutic drug delivery systems for glaucoma: a comprehensive review, Ther Adv Vaccines. – volume: 7 year: 2017 ident: 10.1016/j.addr.2023.115082_b0810 article-title: Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: From mice, rats, rabbits, pigs to humans publication-title: Sci. Rep. doi: 10.1038/s41598-017-15830-7 – volume: 37 start-page: 263 year: 2017 ident: 10.1016/j.addr.2023.115082_b0780 article-title: Scleral changes with accommodation publication-title: Ophthalmic Physiol. Opt. doi: 10.1111/opo.12377 – volume: 572 year: 2019 ident: 10.1016/j.addr.2023.115082_b0460 article-title: Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118808 – start-page: 1 year: 2013 ident: 10.1016/j.addr.2023.115082_b0020 article-title: Eye: anatomy, physiology and barriers to drug delivery, Ocular Transporters and Receptors: Their Role in Drug Delivery – ident: 10.1016/j.addr.2023.115082_b0105 – volume: 9 start-page: 232 year: 2015 ident: 10.1016/j.addr.2023.115082_b0370 article-title: Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) antibody via Tower Microneedle publication-title: BioChip J. doi: 10.1007/s13206-015-9305-9 – ident: 10.1016/j.addr.2023.115082_b0045 – volume: 24 issue: 22 year: 2017 ident: 10.1016/j.addr.2023.115082_b0170 article-title: Microneedle Patches as Drug and Vaccine Delivery Platform publication-title: Curr. Med. Chem. doi: 10.2174/0929867324666170526124053 – ident: 10.1016/j.addr.2023.115082_b0320 – volume: 27 start-page: 787 year: 2013 ident: 10.1016/j.addr.2023.115082_b0040 article-title: Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature publication-title: Eye (Basingstoke). – ident: 10.1016/j.addr.2023.115082_b0535 – volume: 6 year: 2019 ident: 10.1016/j.addr.2023.115082_b0610 article-title: Biomechanical impact of the sclera on corneal deformation response to an air-puff: A finite-element study publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2018.00210 – volume: 165 start-page: 306 year: 2021 ident: 10.1016/j.addr.2023.115082_b0095 article-title: Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2021.05.022 – volume: 326 start-page: 419 year: 2020 ident: 10.1016/j.addr.2023.115082_b0365 article-title: Intravitreal hydrogels for sustained release of therapeutic proteins publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.07.031 – volume: 612 start-page: 121305 year: 2022 ident: 10.1016/j.addr.2023.115082_b0435 article-title: Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.121305 – volume: 328 start-page: 952 year: 2020 ident: 10.1016/j.addr.2023.115082_b0035 article-title: Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.10.028 – volume: 39 start-page: 241 year: 2017 ident: 10.1016/j.addr.2023.115082_b0715 article-title: Elastin structure and its involvement in skin photoageing publication-title: Int. J. Cosmet. Sci. doi: 10.1111/ics.12372 – volume: 106 start-page: 1058 year: 1996 ident: 10.1016/j.addr.2023.115082_b0755 article-title: Water increases the fluidity of intercellular membranes of stratum corneum: Correlation with water permeability, elastic, and electrical resistance properties publication-title: J, Invest. Dermatol. doi: 10.1111/1523-1747.ep12338682 – volume: 7 start-page: e29692 issue: 1 year: 2012 ident: 10.1016/j.addr.2023.115082_b0800 article-title: Scleral thickness in human eyes publication-title: PLoS One doi: 10.1371/journal.pone.0029692 – volume: 38 start-page: 1740 year: 1997 ident: 10.1016/j.addr.2023.115082_b0795 article-title: Proteoglycans in the human sclera: Evidence for the presence of aggrecan publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 39 start-page: 244 year: 2007 ident: 10.1016/j.addr.2023.115082_b0815 article-title: Transport Barriers in Transscleral Drug Delivery for Retinal Diseases publication-title: Ophthalmic Res. doi: 10.1159/000108117 – volume: 255 start-page: 384 year: 2018 ident: 10.1016/j.addr.2023.115082_b0615 article-title: A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling publication-title: Sens Actuators B Chem. doi: 10.1016/j.snb.2017.08.030 – volume: 142 start-page: 213169 year: 2022 ident: 10.1016/j.addr.2023.115082_b0630 article-title: Effect of microneedles shape on skin penetration and transdermal drug administration publication-title: Biomaterials Advances. doi: 10.1016/j.bioadv.2022.213169 – volume: 66 start-page: 584 issue: 4 year: 2014 ident: 10.1016/j.addr.2023.115082_b0200 article-title: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.12152 – volume: 15 start-page: 13 year: 2020 ident: 10.1016/j.addr.2023.115082_b0685 article-title: Transdermal drug delivery systems in diabetes management: A review, Asian publication-title: J. Pharm. Sci. – volume: 142 start-page: 170 year: 2019 ident: 10.1016/j.addr.2023.115082_b0745 article-title: Noninvasive determination of fiber orientation and tracking 2-dimensional deformation of human skin utilizing spatially resolved reflectance of infrared light measurement in vivo publication-title: Measurement (Lond). doi: 10.1016/j.measurement.2019.04.065 – volume: 25 start-page: 578 year: 2011 ident: 10.1016/j.addr.2023.115082_b0495 article-title: Novel drug delivery systems for glaucoma publication-title: Eye doi: 10.1038/eye.2011.82 – volume: 9 start-page: 4433 year: 2018 ident: 10.1016/j.addr.2023.115082_b0450 article-title: Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery publication-title: Nat. Commun. doi: 10.1038/s41467-018-06981-w – volume: 88 start-page: 116 year: 2014 ident: 10.1016/j.addr.2023.115082_b0225 article-title: In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2014.04.018 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.addr.2023.115082_b0760 article-title: How aging impacts skin biomechanics: A multiscale study in mice publication-title: Sci. Rep. doi: 10.1038/s41598-017-13150-4 – volume: 55 start-page: 7376 year: 2014 ident: 10.1016/j.addr.2023.115082_b0190 article-title: Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.14-15257 – ident: 10.1016/j.addr.2023.115082_b0285 doi: 10.1016/B978-0-12-420130-9.00001-3 – volume: 119 start-page: 485 year: 2023 ident: 10.1016/j.addr.2023.115082_b0265 article-title: In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2022.11.072 – ident: 10.1016/j.addr.2023.115082_b0555 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.addr.2023.115082_b0080 article-title: A comprehensive review of microneedles: Types, materials, processes, characterizations and applications publication-title: Polymers (Basel). doi: 10.3390/polym13162815 – volume: 5 start-page: 14 issue: 6 year: 2016 ident: 10.1016/j.addr.2023.115082_b0560 article-title: Suprachoroidal corticosteroid administration: A novel route for local treatment of noninfectious uveitis publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.5.6.14 – ident: 10.1016/j.addr.2023.115082_b0650 – volume: 151 start-page: 105361 year: 2020 ident: 10.1016/j.addr.2023.115082_b0625 article-title: Dissolving Microneedle Arrays with Optimized Needle Geometry for Transcutaneous Immunization publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2020.105361 – volume: 223 start-page: 15 year: 2016 ident: 10.1016/j.addr.2023.115082_b0510 article-title: Fenestrated microneedles for ocular drug delivery publication-title: Sens Actuators B Chem. doi: 10.1016/j.snb.2015.09.071 – volume: 41 start-page: 315 year: 2015 ident: 10.1016/j.addr.2023.115082_b0050 article-title: Age-related changes in dynamic moduli of ovine vitreous publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2014.09.004 – volume: 19 start-page: 1818 year: 2018 ident: 10.1016/j.addr.2023.115082_b0290 article-title: Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies publication-title: AAPS PharmSciTech doi: 10.1208/s12249-018-1004-5 – ident: 10.1016/j.addr.2023.115082_b0300 doi: 10.3390/ma15217693 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.addr.2023.115082_b0220 article-title: Ultrasonically and Iontophoretically Enhanced Drug-Delivery System Based on Dissolving Microneedle Patches publication-title: Sci. Rep. doi: 10.1038/s41598-020-58822-w – volume: 16 start-page: 558 issue: 3 year: 2021 ident: 10.1016/j.addr.2023.115082_b0235 article-title: Rai, Microneedle Array: Applications, Recent Advances, and Clinical Pertinence in Transdermal Drug Delivery publication-title: J. Pharm. Innov. doi: 10.1007/s12247-020-09460-2 – volume: 16 start-page: 062004 issue: 6 year: 2021 ident: 10.1016/j.addr.2023.115082_b0700 article-title: Mechanical properties of whole-body soft human tissues: A review publication-title: Biomedical Materials (Bristol). doi: 10.1088/1748-605X/ac2b7a – volume: 27 start-page: 331 year: 2008 ident: 10.1016/j.addr.2023.115082_b0355 article-title: Vascular endothelial growth factor in eye disease publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2008.05.001 – volume: 55 start-page: 7387 year: 2014 ident: 10.1016/j.addr.2023.115082_b0500 article-title: Targeted delivery of antiglaucoma drugs to the supraciliary space using microneedles publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.14-14651 – volume: 20 start-page: 1 year: 2020 ident: 10.1016/j.addr.2023.115082_b0635 article-title: Self-Adhesive Microneedles with Interlocking Features for Sustained Ocular Drug Delivery publication-title: Macromol. Biosci. doi: 10.1002/mabi.202000089 – volume: 25 start-page: 97 year: 2009 ident: 10.1016/j.addr.2023.115082_b0445 article-title: Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-α-induced angiogenesis in chick chorioallantoic membrane (CAM) publication-title: J. Ocul. Pharmacol. Ther. doi: 10.1089/jop.2008.0090 – volume: 14 start-page: 525 issue: 4 year: 2017 ident: 10.1016/j.addr.2023.115082_b0310 article-title: Minimally invasive microneedles for ocular drug delivery publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2016.1218460 – ident: 10.1016/j.addr.2023.115082_b0600 – ident: 10.1016/j.addr.2023.115082_b0025 doi: 10.1016/B978-1-4377-1926-0.10002-5 – ident: 10.1016/j.addr.2023.115082_b0030 doi: 10.1097/IJG.0b013e31825af67d – volume: 89 start-page: 224 year: 2015 ident: 10.1016/j.addr.2023.115082_b0920 article-title: Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2014.11.023 – volume: 36 start-page: 36 year: 2019 ident: 10.1016/j.addr.2023.115082_b0015 article-title: Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease publication-title: Pharm. Res. doi: 10.1007/s11095-018-2556-5 – volume: 28 start-page: S243 year: 2022 ident: 10.1016/j.addr.2023.115082_b0520 article-title: Microinjection via the Suprachoroidal Space: A Review of a Novel Mode of Administration publication-title: Am. J. Manag. Care doi: 10.37765/ajmc.2022.89270 – ident: 10.1016/j.addr.2023.115082_b0540 – ident: 10.1016/j.addr.2023.115082_b0110 – start-page: 1 year: 2015 ident: 10.1016/j.addr.2023.115082_b0415 publication-title: Glaucoma and corticosteriod provocative testing – volume: 11 start-page: 6382 year: 2011 ident: 10.1016/j.addr.2023.115082_b0790 article-title: AFM Study for Morphological and Mechanical Properties of Human Scleral Surface publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.4499 – volume: 98 start-page: 34 year: 2020 ident: 10.1016/j.addr.2023.115082_b0340 article-title: Experimental methods in chemical engineering: Thermogravimetric analysis—TGA publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23673 – volume: 267 start-page: 120491 year: 2021 ident: 10.1016/j.addr.2023.115082_b0065 article-title: Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120491 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.addr.2023.115082_b0735 article-title: Combined multiphoton imaging and biaxial tissue extension for quantitative analysis of geometric fiber organization in human reticular dermis publication-title: Sci. Rep. doi: 10.1038/s41598-019-47213-5 – volume: 65 start-page: 283 year: 2018 ident: 10.1016/j.addr.2023.115082_b0640 article-title: Rapid fabrication of microneedles using magnetorheological drawing lithography publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.10.030 – volume: 30 start-page: 1909197 issue: 11 year: 2020 ident: 10.1016/j.addr.2023.115082_b0210 article-title: 4D Printing of a Bioinspired Microneedle Array with Backward‐Facing Barbs for Enhanced Tissue Adhesion publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909197 – volume: 79 start-page: 93 year: 1982 ident: 10.1016/j.addr.2023.115082_b0705 article-title: Structure of the dermal matrix during development and in the adult publication-title: J, Invest. Dermatol. doi: 10.1038/jid.1982.19 – ident: 10.1016/j.addr.2023.115082_b0140 doi: 10.1038/s41467-018-06981-w – volume: 30 start-page: 599 year: 2008 ident: 10.1016/j.addr.2023.115082_b0710 article-title: In vivo measurements of the elastic mechanical properties of human skin by indentation tests publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2007.06.011 – volume: 137 start-page: 1213 year: 2017 ident: 10.1016/j.addr.2023.115082_b0665 article-title: Human Skin Is the Largest Epithelial Surface for Interaction with Microbes publication-title: J, Invest. Dermatol. doi: 10.1016/j.jid.2016.11.045 – volume: 50 start-page: 288 year: 2020 ident: 10.1016/j.addr.2023.115082_b0470 article-title: Causes of blindness in the adult population in somalia publication-title: Turk J Ophthalmol. doi: 10.4274/tjo.galenos.2020.82504 – ident: 10.1016/j.addr.2023.115082_b0240 doi: 10.1016/C2021-0-01278-5 – ident: 10.1016/j.addr.2023.115082_b0585 – ident: 10.1016/j.addr.2023.115082_b0645 – volume: 13 start-page: 451 issue: 4 year: 2011 ident: 10.1016/j.addr.2023.115082_b0185 article-title: Rapid Pharmacokinetics of Intradermal Insulin Administered Using Microneedles in Type 1 Diabetes Subjects publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2010.0204 – volume: 17 start-page: 228 year: 2006 ident: 10.1016/j.addr.2023.115082_b0410 article-title: Basic understanding of current classification and management of retinoblastoma publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/01.icu.0000193079.55240.18 – volume: 54 start-page: 2483 year: 2013 ident: 10.1016/j.addr.2023.115082_b0430 article-title: Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-11747 – volume: 17 start-page: 187 year: 2010 ident: 10.1016/j.addr.2023.115082_b0150 article-title: Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety publication-title: Drug Deliv. doi: 10.3109/10717541003667798 – volume: 3 start-page: 89 issue: 2 year: 2018 ident: 10.1016/j.addr.2023.115082_b0130 article-title: Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug publication-title: J. Interdiscip. Nanomed. doi: 10.1002/jin2.41 – volume: 138 start-page: 2295 year: 2018 ident: 10.1016/j.addr.2023.115082_b0280 article-title: Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool publication-title: J, Invest. Dermatol. doi: 10.1016/j.jid.2018.09.001 – volume: 472 start-page: 65 year: 2014 ident: 10.1016/j.addr.2023.115082_b0275 article-title: A proposed model membrane and test method for microneedle insertion studies publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.05.042 – volume: 232 start-page: 323 year: 2018 ident: 10.1016/j.addr.2023.115082_b0750 article-title: Skin mechanical properties and modeling: A review publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411918759801 – volume: 26 start-page: 7565 issue: 24 year: 2021 ident: 10.1016/j.addr.2023.115082_b0345 article-title: Application of the metabolomics approach in food authentication publication-title: Molecules doi: 10.3390/molecules26247565 – volume: 10 start-page: 289 year: 2017 ident: 10.1016/j.addr.2023.115082_b0075 article-title: Review of applications of microneedling in dermatology publication-title: Clin. Cosmet. Investig. Dermatol. doi: 10.2147/CCID.S142450 – ident: 10.1016/j.addr.2023.115082_b0895 – volume: 22 start-page: 279 year: 2016 ident: 10.1016/j.addr.2023.115082_b0670 article-title: Determining eyeball surface area directly exposed to the effects of external factors publication-title: Int. J. Occup. Saf. Ergon. doi: 10.1080/10803548.2015.1136110 – volume: 46 year: 2017 ident: 10.1016/j.addr.2023.115082_b0605 article-title: Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction publication-title: J. Otolaryngol. Head Neck Surg. doi: 10.1186/s40463-017-0210-6 – ident: 10.1016/j.addr.2023.115082_b0545 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.addr.2023.115082_b0005 article-title: Variations in Eyeball Diameters of the Healthy Adults publication-title: J. Ophthalmol. doi: 10.1155/2014/503645 – ident: 10.1016/j.addr.2023.115082_b0580 – volume: 13 start-page: 629 year: 2022 ident: 10.1016/j.addr.2023.115082_b0255 article-title: Fabrication and testing of polymer microneedles for transdermal drug delivery, Beilstein publication-title: Journal of Nanotechnology. – volume: 8 start-page: 473 year: 2018 ident: 10.1016/j.addr.2023.115082_b0455 article-title: Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles, Drug Deliv publication-title: Transl. Res. – volume: 39 start-page: 362 year: 2020 ident: 10.1016/j.addr.2023.115082_b0120 article-title: A Fixed-Depth Microneedle Enhances Reproducibility and Safety for Corneal Gene Therapy publication-title: Cornea doi: 10.1097/ICO.0000000000002182 – volume: 104 start-page: 51 year: 2005 ident: 10.1016/j.addr.2023.115082_b0260 article-title: Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2005.02.002 – volume: 63 year: 2022 ident: 10.1016/j.addr.2023.115082_b0100 article-title: Suprachoroidal Delivery of RGX-314 for Diabetic Retinopathy: The Phase II ALTITUDETM Study publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 15 start-page: 841 year: 2013 ident: 10.1016/j.addr.2023.115082_b0930 article-title: Tower microneedle minimizes vitreal reflux in intravitreal injection publication-title: Biomed. Microdevices doi: 10.1007/s10544-013-9771-y – volume: 10 start-page: 690 year: 2020 ident: 10.1016/j.addr.2023.115082_b0330 article-title: Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches, Drug Deliv publication-title: Transl. Res. – volume: 239 year: 2020 ident: 10.1016/j.addr.2023.115082_b0730 article-title: The influence of fibre alignment on the fracture toughness of anisotropic soft tissue publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107289 – volume: 247 start-page: 209 year: 2012 ident: 10.1016/j.addr.2023.115082_b0335 article-title: Optical coherence tomography publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2012.03619.x – volume: 277 start-page: 14 year: 2018 ident: 10.1016/j.addr.2023.115082_b0230 article-title: Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.03.001 – ident: 10.1016/j.addr.2023.115082_b0055 – ident: 10.1016/j.addr.2023.115082_b0250 doi: 10.1007/s13346-015-0237-z – volume: 99 start-page: 90 year: 2021 ident: 10.1016/j.addr.2023.115082_b0565 article-title: Phase I trial on robot assisted retinal vein cannulation with ocriplasmin infusion for central retinal vein occlusion publication-title: Acta Ophthalmol. doi: 10.1111/aos.14480 – volume: 97 start-page: 460 year: 2019 ident: 10.1016/j.addr.2023.115082_b0525 article-title: Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: a targeted approach publication-title: Acta Ophthalmol. doi: 10.1111/aos.14042 – start-page: 51 year: 2018 ident: 10.1016/j.addr.2023.115082_b0820 article-title: Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers – volume: 107 start-page: 1 year: 2016 ident: 10.1016/j.addr.2023.115082_b0660 article-title: Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2016.06.023 – volume: 127 start-page: 948 issue: 7 year: 2020 ident: 10.1016/j.addr.2023.115082_b0530 article-title: Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial publication-title: Ophthalmology doi: 10.1016/j.ophtha.2020.01.006 – volume: 13 start-page: 579 issue: 4 year: 2021 ident: 10.1016/j.addr.2023.115082_b0305 article-title: Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics13040579 – volume: 53 start-page: 4433 issue: 8 year: 2012 ident: 10.1016/j.addr.2023.115082_b0400 article-title: Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.12-9872 – volume: 52 start-page: 37 year: 2001 ident: 10.1016/j.addr.2023.115082_b0775 article-title: Transscleral drug delivery for posterior segment disease publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(01)00193-4 – volume: 30 start-page: 302 year: 2013 ident: 10.1016/j.addr.2023.115082_b0740 article-title: Age-dependent biomechanical properties of the skin publication-title: Postepy Dermatol Alergol. doi: 10.5114/pdia.2013.38359 – volume: 122 start-page: 460 year: 1996 ident: 10.1016/j.addr.2023.115082_b0475 article-title: Number of people with glaucoma worldwide publication-title: Am. J. Ophthalmol. doi: 10.1016/S0002-9394(14)72088-4 – volume: 12 start-page: 931 issue: 4 year: 2022 ident: 10.1016/j.addr.2023.115082_b0350 article-title: Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections, Drug Deliv publication-title: Transl. Res. – volume: 11 year: 2019 ident: 10.1016/j.addr.2023.115082_b0215 article-title: Penetration enhancers in ocular drug delivery publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics11070321 – volume: 53 start-page: 1714 year: 2012 ident: 10.1016/j.addr.2023.115082_b0805 article-title: Biomechanics of the human posterior sclera: Age- and glaucoma-related changes measured using inflation testing publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.11-8009 – volume: 228 start-page: 48 year: 2016 ident: 10.1016/j.addr.2023.115082_b0505 article-title: Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.02.041 – volume: 5 start-page: 313 year: 2015 ident: 10.1016/j.addr.2023.115082_b0940 article-title: Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation publication-title: Drug Deliv Translational Research doi: 10.1007/s13346-015-0237-z – volume: 24 year: 2022 ident: 10.1016/j.addr.2023.115082_b0070 article-title: Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system publication-title: Biomed. Microdevices doi: 10.1007/s10544-021-00604-w – volume: 159 start-page: 44 year: 2021 ident: 10.1016/j.addr.2023.115082_b0090 article-title: Microneedle array systems for long-acting drug delivery publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2020.12.006 – ident: 10.1016/j.addr.2023.115082_b0010 – volume: 13 start-page: 2815 year: 2021 ident: 10.1016/j.addr.2023.115082_b0060 article-title: A comprehensive review of microneedles: Types, materials, processes, characterizations and applications publication-title: Polymers (Basel). doi: 10.3390/polym13162815 – volume: 57 start-page: 5602 year: 2016 ident: 10.1016/j.addr.2023.115082_b0885 article-title: Details of the collagen and elastin architecture in the human limbal conjunctiva, tenon’s capsule and sclera revealed by two-photon excited fluorescence microscopy publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-19706 – volume: 16 start-page: 270 year: 2011 ident: 10.1016/j.addr.2023.115082_b0785 article-title: Drug delivery to the posterior segment of the eye publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2010.12.004 – volume: 13 start-page: 2142 issue: 8 year: 2023 ident: 10.1016/j.addr.2023.115082_b0135 article-title: Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye., Drug Deliv publication-title: Transl. Res. – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.addr.2023.115082_b0315 article-title: A Transdermal Measurement Platform Based on Microfluidics publication-title: J. Chem. – volume: 46 start-page: 1114 year: 2020 ident: 10.1016/j.addr.2023.115082_b0145 article-title: Microneedle ocular patch: fabrication, characterization, and ex-vivo evaluation using pilocarpine as model drug publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2020.1776317 – volume: 12 start-page: 931 year: 2022 ident: 10.1016/j.addr.2023.115082_b0465 article-title: Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections, Drug Deliv publication-title: Transl. Res. – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.addr.2023.115082_b0765 article-title: Nanosilk Increases the Strength of Diabetic Skin and Delivers CNP-miR146a to Improve Wound Healing publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.590285 – volume: 9 start-page: 27 issue: 11 year: 2020 ident: 10.1016/j.addr.2023.115082_b0655 article-title: Clinical characterization of suprachoroidal injection procedure utilizing a microinjector across three retinal disorders, Transl Vis publication-title: Sci. Technol. – volume: 28 start-page: 166 year: 2011 ident: 10.1016/j.addr.2023.115082_b0205 article-title: Suprachoroidal drug delivery to the back of the eye using hollow microneedles publication-title: Pharm. Res. doi: 10.1007/s11095-010-0271-y – volume: 14 start-page: 525 year: 2017 ident: 10.1016/j.addr.2023.115082_b0085 article-title: Minimally invasive microneedles for ocular drug delivery publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2016.1218460 – volume: 32 start-page: 142 year: 2019 ident: 10.1016/j.addr.2023.115082_b0695 article-title: Noninvasive Determination of Epidermal and Stratum Corneum Thickness in vivo Using Two-Photon Microscopy and Optical Coherence Tomography: Impact of Body Area, Age, and Gender publication-title: Skin Pharmacol. Physiol. doi: 10.1159/000497475 – volume: 2 start-page: 812 year: 2013 ident: 10.1016/j.addr.2023.115082_b0935 article-title: Tower Microneedle via reverse drawing lithography for innocuous intravitreal drug delivery publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201200239 – volume: 13 year: 2021 ident: 10.1016/j.addr.2023.115082_b0325 article-title: Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion publication-title: Nanomicro Lett. – volume: 22 start-page: 1330 year: 2008 ident: 10.1016/j.addr.2023.115082_b0360 article-title: Anti-VEGF therapy: Comparison of current and future agents publication-title: Eye doi: 10.1038/eye.2008.88 – volume: 55 start-page: 108 year: 2010 ident: 10.1016/j.addr.2023.115082_b0405 article-title: Nonsteroidal Anti-inflammatory Drugs in Ophthalmology publication-title: Surv. Ophthalmol. doi: 10.1016/j.survophthal.2009.07.005 – volume: 29 start-page: 60 issue: 1 year: 2021 ident: 10.1016/j.addr.2023.115082_b0295 article-title: Fabrication and characterisation of self-applicating heparin sodium microneedle patches publication-title: J. Drug Target. doi: 10.1080/1061186X.2020.1795180 – volume: 11 start-page: e0162518 issue: 9 year: 2016 ident: 10.1016/j.addr.2023.115082_b0590 article-title: Single-step fabrication of computationally designed microneedles by continuous liquid interface production publication-title: PLoS One doi: 10.1371/journal.pone.0162518 – volume: 24 start-page: 585 issue: 7 year: 2008 ident: 10.1016/j.addr.2023.115082_b0180 article-title: Effect of microneedle design on pain in human volunteers publication-title: Clin. J. Pain doi: 10.1097/AJP.0b013e31816778f9 – start-page: 502 year: 2001 ident: 10.1016/j.addr.2023.115082_b0195 article-title: Lack of Pain Associated with Microfabricated Microneedles publication-title: Anesth. Analg. doi: 10.1213/00000539-200102000-00041 – volume: 55 start-page: 7376 issue: 11 year: 2014 ident: 10.1016/j.addr.2023.115082_b0375 article-title: Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.14-15257 – volume: 133 start-page: 31 year: 2018 ident: 10.1016/j.addr.2023.115082_b0770 article-title: Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.09.021 – volume: 6 start-page: 800 issue: 6 year: 2016 ident: 10.1016/j.addr.2023.115082_b0155 article-title: Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery publication-title: Drug Deliv. and Transl. Res. doi: 10.1007/s13346-016-0332-9 – ident: 10.1016/j.addr.2023.115082_b0550 – volume: 6 start-page: 800 year: 2016 ident: 10.1016/j.addr.2023.115082_b0245 article-title: Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery, Drug Deliv publication-title: Transl. Res. – volume: 306 start-page: 1 year: 2014 ident: 10.1016/j.addr.2023.115082_b0270 article-title: Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis publication-title: Arch. Dermatol. Res. doi: 10.1007/s00403-013-1417-7 – volume: 66 start-page: 584 year: 2014 ident: 10.1016/j.addr.2023.115082_b0125 article-title: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.12152 – volume: 26 start-page: 395 year: 2009 ident: 10.1016/j.addr.2023.115082_b0115 article-title: Intrascleral Drug Delivery to the Eye Using Hollow Microneedles publication-title: Pharm. Res. doi: 10.1007/s11095-008-9756-3 – volume: 80 start-page: 48 year: 2018 ident: 10.1016/j.addr.2023.115082_b0160 article-title: Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.09.039 – volume: 29 start-page: 414 issue: 3 year: 1981 ident: 10.1016/j.addr.2023.115082_b0680 article-title: Transdermal scopolamine in the prevention of motion sickness at sea publication-title: Clin. Pharmacol. Ther. doi: 10.1038/clpt.1981.57 – volume: 36 year: 2022 ident: 10.1016/j.addr.2023.115082_b0720 article-title: In vitro evaluation of anti-aging and regenerative properties of dermatan sulfate for skin care publication-title: FASEB J. doi: 10.1096/fasebj.2022.36.S1.L7681 – ident: 10.1016/j.addr.2023.115082_b0595 – volume: 76 start-page: 103653 year: 2022 ident: 10.1016/j.addr.2023.115082_b0675 article-title: Drug delivery with dissolving microneedles: skin puncture, its influencing factors and improvement strategies publication-title: J Drug Deliv Sci Technol. doi: 10.1016/j.jddst.2022.103653 – volume: 253 start-page: 1 year: 2018 ident: 10.1016/j.addr.2023.115082_b0575 article-title: Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2018.02.002 |
| SSID | ssj0012760 |
| Score | 2.6573653 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases,... In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115082 |
| SubjectTerms | Computational modelling Hollow microneedle Microneedle Ocular Solid microneedle |
| Title | Microneedles for advanced ocular drug delivery |
| URI | https://dx.doi.org/10.1016/j.addr.2023.115082 https://www.proquest.com/docview/2863298006 |
| Volume | 201 |
| WOSCitedRecordID | wos001081403600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-8294 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012760 issn: 0169-409X databaseCode: AIEXJ dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBhIvCAaI8TEFCe2la5XadWw_VmgIGEyVVlDfIscfrGuUVk2L1v-ec-wkWycmQOIliiKfE_l3Od_5vhB6J_u2b4kGzS3hzkChtisVy-B3JxILmmGT2KrZBDs745OJGIUW92XVToAVBb-6Eov_CjU8A7Bd6uxfwN1MCg_gHkCHK8AO1z8C_qsLsStgU8pN6WMkazf_3Mec6uX6R0eb3EVk3HDqDuuBN0aE7JZG926jPk9dTdYGsWl5sfTOIwNb3GzmYrcbmlDd9_ximi9mMm_2gu9zT_PFmQMVSee0d_0kArcxbeF47FaKjD-xTATwQNUvtxG52JPdEt_-JOGyB0LX1WrFpOcUVt-daKss9rmb2M0LNlTslKodtIcZFSDZ9oafTiafG18SZlWuePMhIXXKR_ltv-l36snWRl1pH-PH6FEwG6Khh_sJumeKffTANxLd7KOjka9AvjmOxm1CXXkcHUWjtjb55inqXeeOCLgjqrkj8twROeyjGvtn6NuHk_H7j93QMqOrCGOrbqYoZSBVGRcqJlQmJpaEc9DJLMXECiO5VjFnWDNtuUioJgOrGMh5KbFlhjxHuwV8xQsUYUsHSmU45hq0Vsl4rIXMXD8BY_tcDw5Qv16pVIV68q6tSZ7WgYOXqVvd1K1u6lf3AHUamoWvpnLnaFoDkAZ90Ot5KfDLnXRva7RSEJbOAyYLM1-XKeYJwQJspOTlP879Cj1sWf812l0t1-YNuq9-rqbl8hDtsAk_DAz4C_wJkIg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microneedles+for+advanced+ocular+drug+delivery&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Glover%2C+Katie&rft.au=Mishra%2C+Deepakkumar&rft.au=Gade%2C+Shilpkala&rft.au=Vora%2C+Lalitkumar+K.&rft.date=2023-10-01&rft.pub=Elsevier+B.V&rft.issn=0169-409X&rft.volume=201&rft_id=info:doi/10.1016%2Fj.addr.2023.115082&rft.externalDocID=S0169409X23003976 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon |