A new exact method for linear bilevel problems with multiple objective functions at the lower level

•Exact method to optimize semivectorial bilevel linear problems.•The method explores efficient extreme solutions of a multiobjective linear problem.•New heuristic procedure for problems where the global optimum is difficult to reach.•The heuristic can lead to distinct final solutions using different...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 303; číslo 1; s. 312 - 327
Hlavní autoři: Alves, Maria João, Henggeler Antunes, Carlos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 16.11.2022
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Exact method to optimize semivectorial bilevel linear problems.•The method explores efficient extreme solutions of a multiobjective linear problem.•New heuristic procedure for problems where the global optimum is difficult to reach.•The heuristic can lead to distinct final solutions using different starting points.•Implementation of an effective multiobjective simplex method. In this paper we consider linear bilevel programming problems with multiple objective functions at the lower level. We propose a general-purpose exact method to compute the optimistic optimal solution, which is based on the search of efficient extreme solutions of an associated multiobjective linear problem with many objective functions. We also explore a heuristic procedure relying on the same principles. Although this procedure cannot ensure the global optimal solution but just a local optimum, it has shown to be quite effective in problems where the global optimum is difficult to obtain within a reasonable timeframe. A computational study is presented to evaluate the performance of the exact method and the heuristic procedure, comparing them with an exact and an approximate method proposed by other authors, using randomly generated instances. Our approach reveals interesting results in problems with few upper-level variables.
AbstractList •Exact method to optimize semivectorial bilevel linear problems.•The method explores efficient extreme solutions of a multiobjective linear problem.•New heuristic procedure for problems where the global optimum is difficult to reach.•The heuristic can lead to distinct final solutions using different starting points.•Implementation of an effective multiobjective simplex method. In this paper we consider linear bilevel programming problems with multiple objective functions at the lower level. We propose a general-purpose exact method to compute the optimistic optimal solution, which is based on the search of efficient extreme solutions of an associated multiobjective linear problem with many objective functions. We also explore a heuristic procedure relying on the same principles. Although this procedure cannot ensure the global optimal solution but just a local optimum, it has shown to be quite effective in problems where the global optimum is difficult to obtain within a reasonable timeframe. A computational study is presented to evaluate the performance of the exact method and the heuristic procedure, comparing them with an exact and an approximate method proposed by other authors, using randomly generated instances. Our approach reveals interesting results in problems with few upper-level variables.
Author Henggeler Antunes, Carlos
Alves, Maria João
Author_xml – sequence: 1
  givenname: Maria João
  orcidid: 0000-0002-2268-0110
  surname: Alves
  fullname: Alves, Maria João
  email: mjalves@fe.uc.pt
  organization: University of Coimbra, CeBER, Faculty of Economics, Portugal
– sequence: 2
  givenname: Carlos
  surname: Henggeler Antunes
  fullname: Henggeler Antunes, Carlos
  email: ch@deec.uc.pt
  organization: Department of Electrical and Computer Engineering, University of Coimbra, Portugal
BookMark eNp9kMtqwzAQRUVJoWnaH-hKP2BXkm0pgW5C6AsC3bRrIcsjIiNbQVKS9u8rk666CFyY2ZzLzLlFs9GPgNADJSUllD_2JfQ-lIwwVpKcWlyhOV0KVvAlJzM0J5UQBWNU3KDbGHtCCG1oM0d6jUc4YfhWOuEB0s532PiAnR1BBdxaB0dweB9862CI-GTTDg8Hl-zeAfZtDzrZI2BzGPPix4hVwmkH2PkT5JqJvkPXRrkI939zgb5enj83b8X24_V9s94WOh-XipYKSqBuDeFaNBVVUCvVtV3DmGYrxSuulDKsabu6WtJK8040ZsWBqkbUzKyqBWLnXh18jAGM3Ac7qPAjKZGTJtnLSZOcNEmSU4sMLf9B2iY1vZKCsu4y-nRGIT91tBBk1BZGDZ0NWYvsvL2E_wK_a4eo
CitedBy_id crossref_primary_10_1080_23302674_2024_2337442
crossref_primary_10_3390_su14159474
Cites_doi 10.1023/A:1008215702611
10.1287/opre.28.3.785
10.1007/s12351-019-00534-9
10.1016/j.apm.2015.04.041
10.1016/0377-2217(90)90010-9
10.1109/TEVC.2017.2712906
10.1016/j.ejor.2008.06.026
10.1186/1029-242X-2014-164
10.1007/978-3-030-11482-4_10
10.1007/BF00933152
10.1016/j.cor.2017.12.014
10.1287/mnsc.30.8.1004
10.1007/BF01580111
10.1057/jors.1977.147
10.1007/s10107-016-1061-z
10.1016/j.ejor.2016.02.039
10.2298/FIL1408619Z
10.1016/j.ejor.2008.10.003
10.1016/j.omega.2010.02.002
10.1007/s10957-006-9150-4
10.1007/s12190-010-0430-7
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ejor.2022.02.047
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 327
ExternalDocumentID 10_1016_j_ejor_2022_02_047
S0377221722001680
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
ID FETCH-LOGICAL-c377t-b1710e4bf06c7531ae4aadbd522c29a636aaaf25bd43813c6d75f96e1a5742f93
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000813468200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 07:19:38 EST 2025
Tue Nov 18 22:37:51 EST 2025
Fri Feb 23 02:39:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multiobjective simplex method
Linear bilevel optimization
Multiple objective programming
Semivectorial bilevel problem
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-b1710e4bf06c7531ae4aadbd522c29a636aaaf25bd43813c6d75f96e1a5742f93
ORCID 0000-0002-2268-0110
OpenAccessLink https://dx.doi.org/10.1016/j.ejor.2022.02.047
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_ejor_2022_02_047
crossref_citationtrail_10_1016_j_ejor_2022_02_047
elsevier_sciencedirect_doi_10_1016_j_ejor_2022_02_047
PublicationCentury 2000
PublicationDate 2022-11-16
PublicationDateYYYYMMDD 2022-11-16
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-16
  day: 16
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bonnel, Morgan (bib0013) 2006; 131
Alves, Antunes, Carrasqueira (bib0002) 2015
Dempe (bib0016) 2002
Alves, Antunes, Costa (bib0003) 2019
Ankhili, Mansouri (bib0007) 2009; 197
Zionts, Wallenius (bib0031) 1980; 28
Antunes, Alves, Clímaco (bib0008) 2016
Ren, Wang (bib0024) 2016; 40
Evans, Steuer (bib0019) 1973; 5
Alves, Antunes, Costa (bib0004) 2021; 21
Löhne, Weißing (bib0022) 2017; 260
Schechter, Steuer (bib0026) 2005; 30
Zheng, Chen, Cao (bib0029) 2014; 28
Zheng, Wan (bib0030) 2011; 37
Bialas, Karwan (bib0011) 1984; 30
Bonnel (bib0012) 2006; 2
Benson (bib0010) 1998; 13
Fülöp (bib0020) 1993
Alves, Dempe, Júdice (bib0006) 2012; 61
Benson (bib0009) 1978; 26
Rudloff, Ulus, Vanderbei (bib0025) 2017; 163
Sinha, Malo, Deb (bib0027) 2018; 22
Alves, Antunes (bib0001) 2018; 92
Dempe, Mehlitz (bib0017) 2020; 69
Steuer (bib0028) 1986
Dauer, Liu (bib0015) 1990; 46
Lv, Wan (bib0023) 2014; 2014
Ehrgott (bib0018) 2005
Isermann (bib0021) 1977; 28
Alves, Costa (bib0005) 2009; 198
Calvete, Galé (bib0014) 2011; 39
Alves (10.1016/j.ejor.2022.02.047_bib0002) 2015
Ren (10.1016/j.ejor.2022.02.047_bib0024) 2016; 40
Dauer (10.1016/j.ejor.2022.02.047_bib0015) 1990; 46
Lv (10.1016/j.ejor.2022.02.047_bib0023) 2014; 2014
Bialas (10.1016/j.ejor.2022.02.047_bib0011) 1984; 30
Benson (10.1016/j.ejor.2022.02.047_bib0010) 1998; 13
Dempe (10.1016/j.ejor.2022.02.047_bib0017) 2020; 69
Sinha (10.1016/j.ejor.2022.02.047_bib0027) 2018; 22
Bonnel (10.1016/j.ejor.2022.02.047_bib0012) 2006; 2
Alves (10.1016/j.ejor.2022.02.047_bib0004) 2021; 21
Antunes (10.1016/j.ejor.2022.02.047_bib0008) 2016
Alves (10.1016/j.ejor.2022.02.047_bib0001) 2018; 92
Zheng (10.1016/j.ejor.2022.02.047_bib0029) 2014; 28
Calvete (10.1016/j.ejor.2022.02.047_bib0014) 2011; 39
Alves (10.1016/j.ejor.2022.02.047_bib0006) 2012; 61
Zheng (10.1016/j.ejor.2022.02.047_bib0030) 2011; 37
Zionts (10.1016/j.ejor.2022.02.047_bib0031) 1980; 28
Evans (10.1016/j.ejor.2022.02.047_bib0019) 1973; 5
Ankhili (10.1016/j.ejor.2022.02.047_bib0007) 2009; 197
Fülöp (10.1016/j.ejor.2022.02.047_bib0020) 1993
Isermann (10.1016/j.ejor.2022.02.047_bib0021) 1977; 28
Steuer (10.1016/j.ejor.2022.02.047_bib0028) 1986
Schechter (10.1016/j.ejor.2022.02.047_bib0026) 2005; 30
Dempe (10.1016/j.ejor.2022.02.047_bib0016) 2002
Rudloff (10.1016/j.ejor.2022.02.047_bib0025) 2017; 163
Ehrgott (10.1016/j.ejor.2022.02.047_bib0018) 2005
Benson (10.1016/j.ejor.2022.02.047_bib0009) 1978; 26
Bonnel (10.1016/j.ejor.2022.02.047_bib0013) 2006; 131
Löhne (10.1016/j.ejor.2022.02.047_bib0022) 2017; 260
Alves (10.1016/j.ejor.2022.02.047_bib0005) 2009; 198
Alves (10.1016/j.ejor.2022.02.047_bib0003) 2019
References_xml – volume: 26
  start-page: 569
  year: 1978
  end-page: 580
  ident: bib0009
  article-title: Existence of efficient solutions for vector maximization problems
  publication-title: Journal of Optimization Theory and Applications
– start-page: 599
  year: 2015
  end-page: 606
  ident: bib0002
  article-title: A PSO approach to semivectorial bilevel programming: Pessimistic, optimistic and deceiving solutions
  publication-title: Proceedings of the genetic and evolutionary computation conference (GECCO 2015)
– year: 2005
  ident: bib0018
  article-title: Multicriteria optimization
– volume: 61
  start-page: 335
  year: 2012
  end-page: 358
  ident: bib0006
  article-title: Computing the Pareto frontier of a bi-objective bi-level linear problem using a multiobjective mixed-integer programming algorithm
  publication-title: Optimization. Taylor & Francis
– volume: 197
  start-page: 36
  year: 2009
  end-page: 41
  ident: bib0007
  article-title: An exact penalty on bilevel programs with linear vector optimization lower level
  publication-title: European Journal of Operational Research
– year: 1993
  ident: bib0020
  article-title: On the equivalence between a linear bilevel programming problem and linear optimization over the efficient set
– year: 2002
  ident: bib0016
  article-title: Foundations of bilevel programming
– volume: 40
  start-page: 135
  year: 2016
  end-page: 149
  ident: bib0024
  article-title: A novel penalty function method for semivectorial bilevel programming problem
  publication-title: Applied Mathematical Modelling
– volume: 28
  start-page: 711
  year: 1977
  end-page: 725
  ident: bib0021
  article-title: The enumeration of the set of all efficient solutions for a linear multiple objective program
  publication-title: Operational Research Quarterly. Palgrave Macmillan Journals
– volume: 2014
  start-page: 164
  year: 2014
  ident: bib0023
  article-title: A solution method for the optimistic linear semivectorial bilevel optimization problem
  publication-title: Journal of Inequalities and Applications
– volume: 37
  start-page: 207
  year: 2011
  end-page: 219
  ident: bib0030
  article-title: A solution method for semivectorial bilevel programming problem via penalty method
  publication-title: Journal of Applied Mathematics and Computing
– volume: 30
  start-page: 351
  year: 2005
  end-page: 359
  ident: bib0026
  article-title: A correction to the connectedness of the Evans-Steuer algorithm of multiple objective linear programming
  publication-title: Foundations of Computing and Decision Sciences
– volume: 30
  start-page: 1004
  year: 1984
  end-page: 1020
  ident: bib0011
  article-title: Two-level linear programming
  publication-title: Management Science
– year: 1986
  ident: bib0028
  article-title: Multiple criteria optimization: Theory, computation, and application
– volume: 46
  start-page: 350
  year: 1990
  end-page: 357
  ident: bib0015
  article-title: Solving multiple objective linear programs in objective space
  publication-title: European Journal of Operational Research
– volume: 39
  start-page: 33
  year: 2011
  end-page: 40
  ident: bib0014
  article-title: On linear bilevel problems with multiple objectives at the lower level
  publication-title: Omega
– volume: 21
  start-page: 2593
  year: 2021
  end-page: 2626
  ident: bib0004
  article-title: New concepts and an algorithm for multiobjective bilevel programming: Optimistic, pessimistic and moderate solutions
  publication-title: Operational Research
– volume: 131
  start-page: 365
  year: 2006
  end-page: 382
  ident: bib0013
  article-title: Semivectorial bilevel optimization problem: Penalty approach
  publication-title: Journal of Optimization Theory and Applications
– volume: 22
  start-page: 276
  year: 2018
  end-page: 295
  ident: bib0027
  article-title: A review on bilevel optimization: From classical to evolutionary approaches and applications
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 28
  start-page: 1619
  year: 2014
  end-page: 1627
  ident: bib0029
  article-title: A global solution method for semivectorial bilevel programming problem
  publication-title: Filomat
– volume: 92
  start-page: 130
  year: 2018
  end-page: 144
  ident: bib0001
  article-title: A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing
  publication-title: Computers and Operations Research
– volume: 163
  start-page: 213
  year: 2017
  end-page: 242
  ident: bib0025
  article-title: A parametric simplex algorithm for linear vector optimization problems
  publication-title: Mathematical Programming
– volume: 28
  start-page: 785
  year: 1980
  end-page: 793
  ident: bib0031
  article-title: Identifying efficient vectors: Some theory and computational results
  publication-title: Operations Research
– volume: 260
  start-page: 807
  year: 2017
  end-page: 813
  ident: bib0022
  article-title: The vector linear program solver bensolve – notes on theoretical background
  publication-title: European Journal of Operational Research
– year: 2016
  ident: bib0008
  article-title: Multiobjective linear and integer programming
– volume: 13
  start-page: 1
  year: 1998
  end-page: 24
  ident: bib0010
  article-title: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem
  publication-title: Journal of Global Optimization
– volume: 2
  start-page: 447
  year: 2006
  end-page: 468
  ident: bib0012
  article-title: Optimality conditions for the semivectorial bilevel optimization problem
  publication-title: Pacific Journal of Optimization
– volume: 198
  start-page: 637
  year: 2009
  end-page: 646
  ident: bib0005
  article-title: An exact method for computing the nadir values in multiple objective linear programming
  publication-title: European Journal of Operational Research Elsevier
– start-page: 267
  year: 2019
  end-page: 293
  ident: bib0003
  article-title: Multiobjective bilevel programming: Concepts and perspectives of development
  publication-title: New perspectives in multiple criteria decision making: Innovative applications and case studies
– volume: 69
  start-page: 657
  year: 2020
  end-page: 679
  ident: bib0017
  article-title: Semivectorial bilevel programming versus scalar bilevel programming
  publication-title: Optimization. Taylor & Francis
– volume: 5
  start-page: 54
  year: 1973
  end-page: 72
  ident: bib0019
  article-title: A revised simplex method for linear multiple objective programs
  publication-title: Mathematical Programming
– volume: 13
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.ejor.2022.02.047_bib0010
  article-title: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008215702611
– volume: 28
  start-page: 785
  issue: 3–part–ii
  year: 1980
  ident: 10.1016/j.ejor.2022.02.047_bib0031
  article-title: Identifying efficient vectors: Some theory and computational results
  publication-title: Operations Research
  doi: 10.1287/opre.28.3.785
– volume: 21
  start-page: 2593
  issue: 4
  year: 2021
  ident: 10.1016/j.ejor.2022.02.047_bib0004
  article-title: New concepts and an algorithm for multiobjective bilevel programming: Optimistic, pessimistic and moderate solutions
  publication-title: Operational Research
  doi: 10.1007/s12351-019-00534-9
– volume: 40
  start-page: 135
  issue: 1
  year: 2016
  ident: 10.1016/j.ejor.2022.02.047_bib0024
  article-title: A novel penalty function method for semivectorial bilevel programming problem
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2015.04.041
– volume: 30
  start-page: 351
  issue: 4
  year: 2005
  ident: 10.1016/j.ejor.2022.02.047_bib0026
  article-title: A correction to the connectedness of the Evans-Steuer algorithm of multiple objective linear programming
  publication-title: Foundations of Computing and Decision Sciences
– volume: 46
  start-page: 350
  issue: 3
  year: 1990
  ident: 10.1016/j.ejor.2022.02.047_bib0015
  article-title: Solving multiple objective linear programs in objective space
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(90)90010-9
– year: 2002
  ident: 10.1016/j.ejor.2022.02.047_bib0016
– volume: 22
  start-page: 276
  issue: 2
  year: 2018
  ident: 10.1016/j.ejor.2022.02.047_bib0027
  article-title: A review on bilevel optimization: From classical to evolutionary approaches and applications
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2712906
– volume: 197
  start-page: 36
  issue: 1
  year: 2009
  ident: 10.1016/j.ejor.2022.02.047_bib0007
  article-title: An exact penalty on bilevel programs with linear vector optimization lower level
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.06.026
– volume: 2
  start-page: 447
  issue: 3
  year: 2006
  ident: 10.1016/j.ejor.2022.02.047_bib0012
  article-title: Optimality conditions for the semivectorial bilevel optimization problem
  publication-title: Pacific Journal of Optimization
– start-page: 599
  year: 2015
  ident: 10.1016/j.ejor.2022.02.047_bib0002
  article-title: A PSO approach to semivectorial bilevel programming: Pessimistic, optimistic and deceiving solutions
– volume: 2014
  start-page: 164
  issue: 1
  year: 2014
  ident: 10.1016/j.ejor.2022.02.047_bib0023
  article-title: A solution method for the optimistic linear semivectorial bilevel optimization problem
  publication-title: Journal of Inequalities and Applications
  doi: 10.1186/1029-242X-2014-164
– start-page: 267
  year: 2019
  ident: 10.1016/j.ejor.2022.02.047_bib0003
  article-title: Multiobjective bilevel programming: Concepts and perspectives of development
  doi: 10.1007/978-3-030-11482-4_10
– volume: 61
  start-page: 335
  issue: 3
  year: 2012
  ident: 10.1016/j.ejor.2022.02.047_bib0006
  article-title: Computing the Pareto frontier of a bi-objective bi-level linear problem using a multiobjective mixed-integer programming algorithm
  publication-title: Optimization. Taylor & Francis
– volume: 26
  start-page: 569
  issue: 4
  year: 1978
  ident: 10.1016/j.ejor.2022.02.047_bib0009
  article-title: Existence of efficient solutions for vector maximization problems
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/BF00933152
– volume: 92
  start-page: 130
  year: 2018
  ident: 10.1016/j.ejor.2022.02.047_bib0001
  article-title: A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2017.12.014
– volume: 30
  start-page: 1004
  issue: 8
  year: 1984
  ident: 10.1016/j.ejor.2022.02.047_bib0011
  article-title: Two-level linear programming
  publication-title: Management Science
  doi: 10.1287/mnsc.30.8.1004
– volume: 5
  start-page: 54
  issue: 1
  year: 1973
  ident: 10.1016/j.ejor.2022.02.047_bib0019
  article-title: A revised simplex method for linear multiple objective programs
  publication-title: Mathematical Programming
  doi: 10.1007/BF01580111
– volume: 28
  start-page: 711
  issue: 3
  year: 1977
  ident: 10.1016/j.ejor.2022.02.047_bib0021
  article-title: The enumeration of the set of all efficient solutions for a linear multiple objective program
  publication-title: Operational Research Quarterly. Palgrave Macmillan Journals
  doi: 10.1057/jors.1977.147
– year: 1986
  ident: 10.1016/j.ejor.2022.02.047_bib0028
– volume: 163
  start-page: 213
  issue: 1
  year: 2017
  ident: 10.1016/j.ejor.2022.02.047_bib0025
  article-title: A parametric simplex algorithm for linear vector optimization problems
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-016-1061-z
– volume: 260
  start-page: 807
  issue: 3
  year: 2017
  ident: 10.1016/j.ejor.2022.02.047_bib0022
  article-title: The vector linear program solver bensolve – notes on theoretical background
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.02.039
– volume: 28
  start-page: 1619
  issue: 8
  year: 2014
  ident: 10.1016/j.ejor.2022.02.047_bib0029
  article-title: A global solution method for semivectorial bilevel programming problem
  publication-title: Filomat
  doi: 10.2298/FIL1408619Z
– volume: 198
  start-page: 637
  issue: 2
  year: 2009
  ident: 10.1016/j.ejor.2022.02.047_bib0005
  article-title: An exact method for computing the nadir values in multiple objective linear programming
  publication-title: European Journal of Operational Research Elsevier
  doi: 10.1016/j.ejor.2008.10.003
– year: 2005
  ident: 10.1016/j.ejor.2022.02.047_bib0018
– year: 1993
  ident: 10.1016/j.ejor.2022.02.047_bib0020
– volume: 39
  start-page: 33
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2022.02.047_bib0014
  article-title: On linear bilevel problems with multiple objectives at the lower level
  publication-title: Omega
  doi: 10.1016/j.omega.2010.02.002
– volume: 131
  start-page: 365
  issue: 3
  year: 2006
  ident: 10.1016/j.ejor.2022.02.047_bib0013
  article-title: Semivectorial bilevel optimization problem: Penalty approach
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-006-9150-4
– volume: 69
  start-page: 657
  issue: 4
  year: 2020
  ident: 10.1016/j.ejor.2022.02.047_bib0017
  article-title: Semivectorial bilevel programming versus scalar bilevel programming
  publication-title: Optimization. Taylor & Francis
– year: 2016
  ident: 10.1016/j.ejor.2022.02.047_bib0008
– volume: 37
  start-page: 207
  issue: 1–2
  year: 2011
  ident: 10.1016/j.ejor.2022.02.047_bib0030
  article-title: A solution method for semivectorial bilevel programming problem via penalty method
  publication-title: Journal of Applied Mathematics and Computing
  doi: 10.1007/s12190-010-0430-7
SSID ssj0001515
Score 2.4214404
Snippet •Exact method to optimize semivectorial bilevel linear problems.•The method explores efficient extreme solutions of a multiobjective linear problem.•New...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 312
SubjectTerms Linear bilevel optimization
Multiobjective simplex method
Multiple objective programming
Semivectorial bilevel problem
Title A new exact method for linear bilevel problems with multiple objective functions at the lower level
URI https://dx.doi.org/10.1016/j.ejor.2022.02.047
Volume 303
WOSCitedRecordID wos000813468200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTSntoY9tStIXOvRmXGw9raMJKW2goYcU9mZk2Q5djB3czbJ_ov85I0tyXk1oDoXFLMKSdz2fZ0bjmW8Q-pSUYHQSk8XCKLtB4TJWuuFxRpislFCEN2xsNiGPj7PlUv2Yzf6EWphNK7su227V2X8VNYyBsG3p7APEPS0KA_AdhA5HEDsc_0nwue0SHtVbW_zo-kOPqYTWndRDVIIW2NRt5BvJ-OK2Ka2wL1dOA0bW4LksOVfuGLW2n1o0zr4znO9dWxgYQpDRswlNUee83TjN9B126To66sdX9bS_DMp2p6dgCwfLa3DuGwkc6KHtr0UoYHObut7TkyKjUsaEuBrNoHVpQm_By-lQ6vOqnTmmjjrglqZ3QYfV53rVW1pXQkbqVcfeeZ1W-4a5m5IQQ37bqrBrFHaNIoEPk4_QDpFcZXO0k387XB5Npt16f-NrKf-HfBWWSxi8-Uv-7ulc8V5OXqLnftuBcweXV2hWdwv0JFQ9LNCL0N0De2W_QM-uUFW-RibHACs8wgo7WGGAFXawwh5WOMAKW1jhACs8wQpPsMJ6jQFWeIQVHmfvop9fDk8Ovsa-QUds4A6s4zIF_7RmZZMIA9veVNdM66qswKc3RGlBhda6IbysLJEcNaKSvFGiTjWXjDSKvkHzru_qPYS1qqiiymTMMMZsk4NMNIpp0fCaN5XYR2m4mYXx7PW2iUpb3C3GfRRNc84cd8u9Z_Mgo8J7n86rLABy98x7-6CrvENPLx-R92i-Hs7rD-ix2ax__R4-erxdAEHMqKk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+exact+method+for+linear+bilevel+problems+with+multiple+objective+functions+at+the+lower+level&rft.jtitle=European+journal+of+operational+research&rft.au=Alves%2C+Maria+Jo%C3%A3o&rft.au=Henggeler+Antunes%2C+Carlos&rft.date=2022-11-16&rft.issn=0377-2217&rft.volume=303&rft.issue=1&rft.spage=312&rft.epage=327&rft_id=info:doi/10.1016%2Fj.ejor.2022.02.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2022_02_047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon