Boundary Problems for Harmonic Functions and Norm Estimates for Inverses of Singular Integrals in Two Dimensions

In this paper, we establish sharp well-posedness results for tangential derivative problems for the Laplacian with data in L p , 1 < p < ∞, on curvilinear polygons. Furthermore, we produce norm estimates/formulas for inverses of singular integral operators relevant for the Dirichlet, Neumann,...

Full description

Saved in:
Bibliographic Details
Published in:Numerical functional analysis and optimization Vol. 26; no. 7-8; pp. 851 - 878
Main Author: Mitrea, Irina
Format: Journal Article
Language:English
Published: Taylor & Francis Group 01.10.2005
Subjects:
ISSN:0163-0563, 1532-2467
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we establish sharp well-posedness results for tangential derivative problems for the Laplacian with data in L p , 1 < p < ∞, on curvilinear polygons. Furthermore, we produce norm estimates/formulas for inverses of singular integral operators relevant for the Dirichlet, Neumann, tangential derivative, and transmission boundary value problems associated with the Laplacian in a distinguished subclass of Lipschitz domains in two dimensions. Our approach relies on Calderón-Zygmund theory and Mellin transform techniques.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0163-0563
1532-2467
DOI:10.1080/01630560500431076