A Tree Algorithm for Isotropic Finite Elements on the Sphere

The earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0.4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modeling of geoscientifically relevant data on the sphe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 27; číslo 1; s. 1 - 24
Hlavní autoři: Bauer, Frank, Freeden, Willi, Schreiner, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 01.01.2006
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0.4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modeling of geoscientifically relevant data on the sphere plays an important role. In this paper, we deal with isotropic kernel functions showing a local support (briefly called isotropic finite elements) for reconstructing square-integrable functions on the sphere. An essential tool is the concept of multiresolution analysis by virtue of the spherical up function. Because the up function is built by an infinite convolution product, we do not know an explicit representation of it. However, the tree algorithm for the multiresolution analysis based on the up functions can be formulated by convolutions of isotropic kernels of low-order polynomial structure. For these kernels, we are able to find an explicit representation, so that the tree algorithm can be implemented efficiently.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0163-0563
1532-2467
DOI:10.1080/01630560500538730