Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce s...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 124; no. 1-2; pp. 383 - 411
Main Authors: Saxena, Anureet, Bonami, Pierre, Lee, Jon
Format: Journal Article Conference Proceeding
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.07.2010
Springer
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Y =  x x T . We use the non-convex constraint to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y − x x T with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-010-0371-9