Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce s...
Uložené v:
| Vydané v: | Mathematical programming Ročník 124; číslo 1-2; s. 383 - 411 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer-Verlag
01.07.2010
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation
Y
=
x
x
T
. We use the non-convex constraint
to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix
Y
−
x
x
T
with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the
width
of the disjunction. We also use the convex SDP constraint
to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings. |
|---|---|
| AbstractList | This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Y = x x super( )T We use the non-convex constraint Y - x x T <= 0 to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y - x x super( )Twith positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint Y - x x T [sccue] 0 to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings. Issue Title: Series B - Special Issue: Combinatorial Optimization and Integer Programming (ProQuest: Abstract omitted; see image)[PUBLICATION ABSTRACT] This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Y = x x T . We use the non-convex constraint to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y − x x T with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings. |
| Author | Lee, Jon Bonami, Pierre Saxena, Anureet |
| Author_xml | – sequence: 1 givenname: Anureet surname: Saxena fullname: Saxena, Anureet email: asaxena@axiomainc.com organization: Axioma Inc – sequence: 2 givenname: Pierre surname: Bonami fullname: Bonami, Pierre organization: Laboratoire d’Informatique Fondamentale de Marseille, CNRS-Aix Marseille Universités – sequence: 3 givenname: Jon surname: Lee fullname: Lee, Jon organization: IBM T.J. Watson Research Center |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23010685$$DView record in Pascal Francis |
| BookMark | eNp9kUFr3DAQhUVJoZttf0BvphByUjpjSZacW1iSNBDopT0LWZZSB1tKJDts_n21dUohkF5GoPneY2beMTkKMThCPiOcIYD8mhEQJC2FApNI23dkg5w1lDe8OSIbgFpQ0SB8IMc53wMAMqU25Ncuhie3r5Ibzd7MQwy5ir4q7tSunWnYu74awuzuXKoeF9Onwlkzjs9VQfKczBAK8ZDiXTJTPq_cfnahL18-pmkZV9eP5L03Y3afXt4t-Xl1-WP3jd5-v77ZXdxSy6ScqbEK0bfQGyWZF7wDY4VyvhMNQ8lVU7cIPW_RWa68lLzrnABVd6JXSljGtuR09S3zPC4uz3oasnXjaIKLS9YKlWIci_uWfHlF3sclhTKcVlygbCVAgU5eIJPLzj6ZYIesH9IwmfSsa1Yu3ihROLlyNsWck_PaDvOfzQ_3GTWCPuSk15x0KfqQk26LEl8p_5r_T1OvmlzYUHL5N_rbot8cUafO |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1007_s10107_020_01484_3 crossref_primary_10_1111_itor_12293 crossref_primary_10_1016_j_ejor_2016_01_020 crossref_primary_10_1007_s10898_017_0557_2 crossref_primary_10_1007_s10107_023_01965_1 crossref_primary_10_1007_s10107_012_0534_y crossref_primary_10_1287_moor_2021_1132 crossref_primary_10_1287_opre_2023_0308 crossref_primary_10_1007_s10107_014_0799_4 crossref_primary_10_1080_10556788_2014_916287 crossref_primary_10_1137_120878963 crossref_primary_10_1007_s10589_016_9855_8 crossref_primary_10_1016_j_disopt_2021_100661 crossref_primary_10_1007_s10898_023_01286_9 crossref_primary_10_1016_j_ejor_2016_03_033 crossref_primary_10_1137_22M1515562 crossref_primary_10_1007_s10898_016_0436_2 crossref_primary_10_1007_s10898_013_0128_0 crossref_primary_10_1007_s10898_018_0726_y crossref_primary_10_1017_S0962492913000032 crossref_primary_10_1137_130909597 crossref_primary_10_1007_s10898_012_9874_7 crossref_primary_10_1007_s10107_012_0609_9 crossref_primary_10_1007_s10898_020_00975_z crossref_primary_10_3390_su12156253 crossref_primary_10_1016_j_tcs_2024_114910 crossref_primary_10_1016_j_orl_2011_02_002 crossref_primary_10_1016_j_cor_2014_09_008 crossref_primary_10_1007_s10589_010_9368_9 crossref_primary_10_1007_s13675_016_0079_6 crossref_primary_10_1007_s10589_021_00289_0 crossref_primary_10_1137_21M1399956 crossref_primary_10_1007_s10796_024_10492_z crossref_primary_10_1007_s10957_022_02064_5 crossref_primary_10_1007_s10107_012_0555_6 crossref_primary_10_1016_j_ejor_2015_12_018 crossref_primary_10_1016_j_orl_2011_12_004 crossref_primary_10_1007_s10898_014_0166_2 crossref_primary_10_1007_s10589_014_9690_8 crossref_primary_10_1016_j_sorms_2012_08_001 crossref_primary_10_1007_s12532_018_0142_9 crossref_primary_10_1007_s11590_018_1283_5 crossref_primary_10_1007_s10957_018_1416_0 crossref_primary_10_1007_s10898_010_9644_3 crossref_primary_10_1007_s40305_015_0082_2 crossref_primary_10_1007_s11075_020_01065_7 crossref_primary_10_1007_s10898_018_0612_7 crossref_primary_10_1016_j_disopt_2014_08_002 crossref_primary_10_1137_120878495 |
| Cites_doi | 10.1007/s10107-006-0080-6 10.1007/s10107-003-0467-6 10.1007/s10107-004-0550-7 10.1023/A:1013819515732 10.1007/s10107-004-0559-y 10.1080/10556780108805819 10.1007/BF01585184 10.1145/227683.227684 10.1287/opre.21.1.221 10.1007/s101070050103 10.1016/0167-6377(92)90037-4 10.1016/j.disopt.2006.10.011 10.1007/3-540-59408-6_46 10.1007/BF01587096 10.1016/0024-3795(95)00271-R 10.1007/s10898-008-9372-0 10.1007/BF00121658 10.1080/10556789908805766 10.1007/s10107-006-0054-8 10.1007/BF01581273 10.1007/BF01580665 10.1007/s10479-006-0100-1 10.1007/s10107-006-0049-5 10.1016/S0098-1354(01)00732-3 10.1016/S0166-218X(98)00136-X 10.1007/3-540-45586-8_2 10.1007/978-3-540-68891-4_2 10.1007/978-1-4757-3532-1 10.1137/0617031 10.1007/s10107-004-0549-0 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | Springer and Mathematical Programming Society 2010 2015 INIST-CNRS Springer and Mathematical Optimization Society 2010 |
| Copyright_xml | – notice: Springer and Mathematical Programming Society 2010 – notice: 2015 INIST-CNRS – notice: Springer and Mathematical Optimization Society 2010 |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-010-0371-9 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Applied Sciences |
| EISSN | 1436-4646 |
| EndPage | 411 |
| ExternalDocumentID | 2242370551 23010685 10_1007_s10107_010_0371_9 |
| Genre | Feature |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB IQODW 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c377t-ac811f90da873f54b0ac58efb563174862910d491ec48f774bbe5082b5d885c33 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280154400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Sun Nov 09 14:32:46 EST 2025 Thu Sep 25 00:45:37 EDT 2025 Mon Jul 21 09:12:58 EDT 2025 Sat Nov 29 05:49:01 EST 2025 Tue Nov 18 22:24:15 EST 2025 Fri Feb 21 02:32:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | global optimization 90C26 Nonconvex programming Non convex programming Eigenvector Constraint satisfaction Global optimum Mixed integer programming Quadratic programming Modeling Cutting plane method Convex programming Cut generation Integer programming Disjunction Disjunctive programming Eigenvalue problem Convexity Non convex analysis |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MeetingName | Combinatorial Optimization and Integer Programming |
| MergedId | FETCHMERGED-LOGICAL-c377t-ac811f90da873f54b0ac58efb563174862910d491ec48f774bbe5082b5d885c33 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 845179700 |
| PQPubID | 25307 |
| PageCount | 29 |
| ParticipantIDs | proquest_miscellaneous_818834187 proquest_journals_845179700 pascalfrancis_primary_23010685 crossref_citationtrail_10_1007_s10107_010_0371_9 crossref_primary_10_1007_s10107_010_0371_9 springer_journals_10_1007_s10107_010_0371_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-07-01 |
| PublicationDateYYYYMMDD | 2010-07-01 |
| PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2010 |
| Publisher | Springer-Verlag Springer Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
| References | LaurentM.PoljakS.On the facial structure of the set of correlation matricesSIAM J. Matrix Anal. Appl.19961735305470855.1501110.1137/06170311397243 SenS.Relaxations for probabilistically constrained programs with discrete random variablesOper. Res. Lett.199211281860765.9007110.1016/0167-6377(92)90037-41167427 Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: extended formulations. IBM Research Report RC24621, 08/2008. Available on Optimization Online BonamiP.BieglerL.T.ConnA.R.CornuéjolsG.GrossmannI.E.LairdC.D.LeeJ.LodiA.MargotF.SawayaN.WächterA.An algorithmic framework for convex mixed-integer nonlinear programsDiscrete Optim.200851862041151.9002810.1016/j.disopt.2006.10.0112408416 Fletcher, R., Leyffer, S.: User Manual for FilterSQP. Numerical Analysis Report NA/181, Dundee University (1998) LaurentM.PoljakS.On a positive semidefinite relaxation of the cut polytope. Special issue honoring Miroslav Fiedler and Vlastimil PtkLinear Algebra Appl.1995223/22443946110.1016/0024-3795(95)00271-R1340705 BalasE.Disjunctive programming: properties of the convex hull of feasible pointsDiscrete Appl. Math.1998891–33440921.9011810.1016/S0166-218X(98)00136-X1663099 SheraliH.D.AdamsW.P.A reformulation-linearization technique for solving discrete and continuous nonconvex problems1998BostonKluwer JeroslowR.G.There cannot be any algorithm for integer programming with quadratic constraintsOper. Res.19732112212240257.9002910.1287/opre.21.1.221354007 WächterA.BieglerL.T.On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programmingMath. Program.2006106125571134.9054210.1007/s10107-004-0559-y2195616 PENNON, http://www.penopt.com KimS.KojimaM.Second order cone programming relaxation of nonconvex quadratic optimization problemsOptim. Methods Softw.2001152012041109.9032710.1080/105567801088058191892585 StubbsR.MehrotraS.A branch-and-cut method for 0–1 mixed convex programmingMath. Program.1999865155320946.9005410.1007/s1010700501031733745 Saxena, A., Bonami, P., Lee, J.: Disjunctive cuts for non-convex mixed integer quadratically constrained problems. In: Lodi, A., Panconesi, A., Rinaldi, G., (eds.) Integer programming and combinatorial optimization (Bertinoro, 2008), Lecture Notes in Computer Science, vol. 5035, pp. 17–33. Springer, Heidelberg (2008) Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: projected formulations. IBM Research Report RC24695, 11/2008. Available on Optimization Online TawarmalaniM.SahinidisN.V.Global optimization of mixed integer nonlinear programs: A theoretical and computational studyMath. Program.20049935635911062.9004110.1007/s10107-003-0467-62051712 VandenbusscheD.NemhauserG.L.A polyhedral study of nonconvex quadratic programs with box constraintsMath. Program.200510235315571137.9000910.1007/s10107-004-0549-02136226 DelormeC.PoljakS.Laplacian eigenvalues and the maximum cut problemMath. Program. Ser. A199362355757410.1007/BF015851841251892 BalasE.CeriaS.CornuéjolsG.A lift-and-project cutting plane algorithm for mixed 0–1 programsMath. Program.1993581–329532410.1007/BF01581273 Anstreicher, K.M.: Semidefinite Programming versus the Reformulation-Linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming. Pre-print, Optimization Online, May 2007 BalasE.TamaJ.TindJ.Sequential convexification in reverse convex and disjunctive programmingMath. Program.1989441–33373500683.9006310.1007/BF015870961028227 Balas, E.: Projection and lifting in combinatorial optimization. In: Juenger, M., Naddef, D. (eds.) Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions, Lecture Notes in Computer Science, vol. 2241, pp. 26–56. Springer (2001) MatsuiT.NP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.199691131190868.9011110.1007/BF001216581411603 VandenbusscheD.NemhauserG.L.A branch-and-cut algorithm for nonconvex quadratic programs with box constraintsMath. Program.200510235595751137.9001010.1007/s10107-004-0550-72136227 GoemansM.X.WilliamsonD.P.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995426111511450885.6808810.1145/227683.2276841412228 BurerS.VandenbusscheD.A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxationsMath. Program.200811332592821135.9003410.1007/s10107-006-0080-62375483 FischettiM.LodiA.Optimizing over the first Chvátal closureMath. Program.200711013200514505010.1007/s10107-006-0054-82306128 LeeS.GrossmannI.E.A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systemsComput. Chem. Eng.2001251675169710.1016/S0098-1354(01)00732-3 TawarmalaniM.SahinidisN.V.Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications2002BostonKluwer1031.90022 Saxena, A., Goyal, V., Lejeune, M.: MIP reformulations of the probabilistic set covering problem. Math. Program. (to appear) SheraliH.D.FraticelliB.M.P.Enhancing RLT relaxations via a new class of semidefinite cutsJ. Glob. Optim.2002222332611045.9004410.1023/A:10138195157321878144 CornuéjolsG.Revival of the Gomory cuts in the 1990’sAnn. Oper. Res.20071491636610.1007/s10479-006-0100-12313362 SturmJ.F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911–1262565310.1080/105567899088057661778433 Helmberg, C., Poljak, S., Rendl, F., Wolkowicz, H.: Combining semidefinite and polyhedral relaxations for integer programs. Integer programming and combinatorial optimization (Copenhagen, 1995), Lecture Notes in Comput. Sci., 920, pp. 124–134. Springer, Berlin (1995) BalasE.SaxenaA.Optimizing over the split closureMath. Program.200811322192401135.9003010.1007/s10107-006-0049-52375481 McCormickG.P.Computability of global solutions to factorable nonconvex programs: part I Convex underestimating problemsMath. Program.19761011471750349.9010010.1007/BF01580665469281 GLOBALLib, www.gamsworld.org/global/globallib/globalstat.htm R.G. Jeroslow (371_CR16) 1973; 21 A. Wächter (371_CR37) 2006; 106 E. Balas (371_CR2) 1998; 89 H.D. Sherali (371_CR29) 1998 E. Balas (371_CR3) 1993; 58 H.D. Sherali (371_CR30) 2002; 22 371_CR12 371_CR13 D. Vandenbussche (371_CR35) 2005; 102 371_CR15 C. Delorme (371_CR10) 1993; 62 M.X. Goemans (371_CR14) 1995; 42 M. Fischetti (371_CR11) 2007; 110 G. Cornuéjols (371_CR9) 2007; 149 T. Matsui (371_CR21) 1996; 9 M. Laurent (371_CR18) 1995; 223/224 R. Stubbs (371_CR31) 1999; 86 J.F. Sturm (371_CR32) 1999; 11–12 E. Balas (371_CR6) 1989; 44 M. Laurent (371_CR19) 1996; 17 M. Tawarmalani (371_CR34) 2004; 99 371_CR4 S. Burer (371_CR8) 2008; 113 371_CR1 E. Balas (371_CR5) 2008; 113 371_CR23 371_CR24 G.P. McCormick (371_CR22) 1976; 10 371_CR27 371_CR25 371_CR26 S. Sen (371_CR28) 1992; 11 P. Bonami (371_CR7) 2008; 5 S. Kim (371_CR17) 2001; 15 S. Lee (371_CR20) 2001; 25 M. Tawarmalani (371_CR33) 2002 D. Vandenbussche (371_CR36) 2005; 102 |
| References_xml | – reference: Helmberg, C., Poljak, S., Rendl, F., Wolkowicz, H.: Combining semidefinite and polyhedral relaxations for integer programs. Integer programming and combinatorial optimization (Copenhagen, 1995), Lecture Notes in Comput. Sci., 920, pp. 124–134. Springer, Berlin (1995) – reference: PENNON, http://www.penopt.com – reference: FischettiM.LodiA.Optimizing over the first Chvátal closureMath. Program.200711013200514505010.1007/s10107-006-0054-82306128 – reference: Saxena, A., Bonami, P., Lee, J.: Disjunctive cuts for non-convex mixed integer quadratically constrained problems. In: Lodi, A., Panconesi, A., Rinaldi, G., (eds.) Integer programming and combinatorial optimization (Bertinoro, 2008), Lecture Notes in Computer Science, vol. 5035, pp. 17–33. Springer, Heidelberg (2008) – reference: Balas, E.: Projection and lifting in combinatorial optimization. In: Juenger, M., Naddef, D. (eds.) Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions, Lecture Notes in Computer Science, vol. 2241, pp. 26–56. Springer (2001) – reference: BalasE.Disjunctive programming: properties of the convex hull of feasible pointsDiscrete Appl. Math.1998891–33440921.9011810.1016/S0166-218X(98)00136-X1663099 – reference: BalasE.SaxenaA.Optimizing over the split closureMath. Program.200811322192401135.9003010.1007/s10107-006-0049-52375481 – reference: Anstreicher, K.M.: Semidefinite Programming versus the Reformulation-Linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming. Pre-print, Optimization Online, May 2007 – reference: BalasE.TamaJ.TindJ.Sequential convexification in reverse convex and disjunctive programmingMath. Program.1989441–33373500683.9006310.1007/BF015870961028227 – reference: BurerS.VandenbusscheD.A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxationsMath. Program.200811332592821135.9003410.1007/s10107-006-0080-62375483 – reference: Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: extended formulations. IBM Research Report RC24621, 08/2008. Available on Optimization Online – reference: GoemansM.X.WilliamsonD.P.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995426111511450885.6808810.1145/227683.2276841412228 – reference: SturmJ.F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911–1262565310.1080/105567899088057661778433 – reference: Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: projected formulations. IBM Research Report RC24695, 11/2008. Available on Optimization Online – reference: StubbsR.MehrotraS.A branch-and-cut method for 0–1 mixed convex programmingMath. Program.1999865155320946.9005410.1007/s1010700501031733745 – reference: DelormeC.PoljakS.Laplacian eigenvalues and the maximum cut problemMath. Program. Ser. A199362355757410.1007/BF015851841251892 – reference: LaurentM.PoljakS.On the facial structure of the set of correlation matricesSIAM J. Matrix Anal. Appl.19961735305470855.1501110.1137/06170311397243 – reference: Fletcher, R., Leyffer, S.: User Manual for FilterSQP. Numerical Analysis Report NA/181, Dundee University (1998) – reference: McCormickG.P.Computability of global solutions to factorable nonconvex programs: part I Convex underestimating problemsMath. Program.19761011471750349.9010010.1007/BF01580665469281 – reference: SheraliH.D.FraticelliB.M.P.Enhancing RLT relaxations via a new class of semidefinite cutsJ. Glob. Optim.2002222332611045.9004410.1023/A:10138195157321878144 – reference: BonamiP.BieglerL.T.ConnA.R.CornuéjolsG.GrossmannI.E.LairdC.D.LeeJ.LodiA.MargotF.SawayaN.WächterA.An algorithmic framework for convex mixed-integer nonlinear programsDiscrete Optim.200851862041151.9002810.1016/j.disopt.2006.10.0112408416 – reference: VandenbusscheD.NemhauserG.L.A branch-and-cut algorithm for nonconvex quadratic programs with box constraintsMath. Program.200510235595751137.9001010.1007/s10107-004-0550-72136227 – reference: SenS.Relaxations for probabilistically constrained programs with discrete random variablesOper. Res. Lett.199211281860765.9007110.1016/0167-6377(92)90037-41167427 – reference: BalasE.CeriaS.CornuéjolsG.A lift-and-project cutting plane algorithm for mixed 0–1 programsMath. Program.1993581–329532410.1007/BF01581273 – reference: LaurentM.PoljakS.On a positive semidefinite relaxation of the cut polytope. Special issue honoring Miroslav Fiedler and Vlastimil PtkLinear Algebra Appl.1995223/22443946110.1016/0024-3795(95)00271-R1340705 – reference: TawarmalaniM.SahinidisN.V.Global optimization of mixed integer nonlinear programs: A theoretical and computational studyMath. Program.20049935635911062.9004110.1007/s10107-003-0467-62051712 – reference: CornuéjolsG.Revival of the Gomory cuts in the 1990’sAnn. Oper. Res.20071491636610.1007/s10479-006-0100-12313362 – reference: JeroslowR.G.There cannot be any algorithm for integer programming with quadratic constraintsOper. Res.19732112212240257.9002910.1287/opre.21.1.221354007 – reference: SheraliH.D.AdamsW.P.A reformulation-linearization technique for solving discrete and continuous nonconvex problems1998BostonKluwer – reference: MatsuiT.NP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.199691131190868.9011110.1007/BF001216581411603 – reference: Saxena, A., Goyal, V., Lejeune, M.: MIP reformulations of the probabilistic set covering problem. Math. Program. (to appear) – reference: TawarmalaniM.SahinidisN.V.Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications2002BostonKluwer1031.90022 – reference: LeeS.GrossmannI.E.A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systemsComput. Chem. Eng.2001251675169710.1016/S0098-1354(01)00732-3 – reference: VandenbusscheD.NemhauserG.L.A polyhedral study of nonconvex quadratic programs with box constraintsMath. Program.200510235315571137.9000910.1007/s10107-004-0549-02136226 – reference: WächterA.BieglerL.T.On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programmingMath. Program.2006106125571134.9054210.1007/s10107-004-0559-y2195616 – reference: KimS.KojimaM.Second order cone programming relaxation of nonconvex quadratic optimization problemsOptim. Methods Softw.2001152012041109.9032710.1080/105567801088058191892585 – reference: GLOBALLib, www.gamsworld.org/global/globallib/globalstat.htm – volume: 113 start-page: 259 issue: 3 year: 2008 ident: 371_CR8 publication-title: Math. Program. doi: 10.1007/s10107-006-0080-6 – volume: 99 start-page: 563 issue: 3 year: 2004 ident: 371_CR34 publication-title: Math. Program. doi: 10.1007/s10107-003-0467-6 – volume: 102 start-page: 559 issue: 3 year: 2005 ident: 371_CR36 publication-title: Math. Program. doi: 10.1007/s10107-004-0550-7 – volume: 22 start-page: 233 year: 2002 ident: 371_CR30 publication-title: J. Glob. Optim. doi: 10.1023/A:1013819515732 – volume: 106 start-page: 25 issue: 1 year: 2006 ident: 371_CR37 publication-title: Math. Program. doi: 10.1007/s10107-004-0559-y – ident: 371_CR13 – volume: 15 start-page: 201 year: 2001 ident: 371_CR17 publication-title: Optim. Methods Softw. doi: 10.1080/10556780108805819 – volume: 62 start-page: 557 issue: 3 year: 1993 ident: 371_CR10 publication-title: Math. Program. Ser. A doi: 10.1007/BF01585184 – volume: 42 start-page: 1115 issue: 6 year: 1995 ident: 371_CR14 publication-title: J. ACM doi: 10.1145/227683.227684 – volume: 21 start-page: 221 issue: 1 year: 1973 ident: 371_CR16 publication-title: Oper. Res. doi: 10.1287/opre.21.1.221 – volume: 86 start-page: 515 year: 1999 ident: 371_CR31 publication-title: Math. Program. doi: 10.1007/s101070050103 – volume: 11 start-page: 81 issue: 2 year: 1992 ident: 371_CR28 publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(92)90037-4 – volume: 5 start-page: 186 year: 2008 ident: 371_CR7 publication-title: Discrete Optim. doi: 10.1016/j.disopt.2006.10.011 – ident: 371_CR15 doi: 10.1007/3-540-59408-6_46 – ident: 371_CR27 – volume: 44 start-page: 337 issue: 1–3 year: 1989 ident: 371_CR6 publication-title: Math. Program. doi: 10.1007/BF01587096 – volume: 223/224 start-page: 439 year: 1995 ident: 371_CR18 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(95)00271-R – ident: 371_CR23 – ident: 371_CR25 – ident: 371_CR1 doi: 10.1007/s10898-008-9372-0 – volume: 9 start-page: 113 year: 1996 ident: 371_CR21 publication-title: J. Glob. Optim. doi: 10.1007/BF00121658 – volume: 11–12 start-page: 625 year: 1999 ident: 371_CR32 publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805766 – volume: 110 start-page: 3 issue: 1 year: 2007 ident: 371_CR11 publication-title: Math. Program. doi: 10.1007/s10107-006-0054-8 – volume: 58 start-page: 295 issue: 1–3 year: 1993 ident: 371_CR3 publication-title: Math. Program. doi: 10.1007/BF01581273 – ident: 371_CR12 – volume: 10 start-page: 147 issue: 1 year: 1976 ident: 371_CR22 publication-title: Math. Program. doi: 10.1007/BF01580665 – volume: 149 start-page: 63 issue: 1 year: 2007 ident: 371_CR9 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-006-0100-1 – volume: 113 start-page: 219 issue: 2 year: 2008 ident: 371_CR5 publication-title: Math. Program. doi: 10.1007/s10107-006-0049-5 – volume: 25 start-page: 1675 year: 2001 ident: 371_CR20 publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(01)00732-3 – volume: 89 start-page: 3 issue: 1–3 year: 1998 ident: 371_CR2 publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(98)00136-X – ident: 371_CR4 doi: 10.1007/3-540-45586-8_2 – ident: 371_CR24 doi: 10.1007/978-3-540-68891-4_2 – volume-title: Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications year: 2002 ident: 371_CR33 doi: 10.1007/978-1-4757-3532-1 – volume: 17 start-page: 530 issue: 3 year: 1996 ident: 371_CR19 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/0617031 – ident: 371_CR26 – volume: 102 start-page: 531 issue: 3 year: 2005 ident: 371_CR35 publication-title: Math. Program. doi: 10.1007/s10107-004-0549-0 – volume-title: A reformulation-linearization technique for solving discrete and continuous nonconvex problems year: 1998 ident: 371_CR29 |
| SSID | ssj0001388 |
| Score | 2.199465 |
| Snippet | This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP... Issue Title: Series B - Special Issue: Combinatorial Optimization and Integer Programming (ProQuest: Abstract omitted; see image)[PUBLICATION ABSTRACT] |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 383 |
| SubjectTerms | Applied sciences Approximation Calculus of Variations and Optimal Control; Optimization Combinatorics Constraints Cutting Eigenvalues Eigenvectors Exact sciences and technology Full Length Paper Inequality Linear equations Linear programming Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Mixed integer Numerical Analysis Operational research and scientific management Operational research. Management science Optimization Programming Theoretical |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HRTxLdYXOXhSAu02bVJvIooHFfGFt9I8igtrV7e7sv57J33trqigl0LpJEyTmeSbzGQG4MBo3MZD7VITcUUZmgw0YpGkXCofrQnPsOLA7fGSX1-Lp6foprrHndfR7rVLslipxy67eUWYpEttmjkaTcMs7nbCauPt3WOz_Hq-EHWdVgsOalfmd11MbEaLr0mO45KWBS0mEOcXJ2mx95wv_4vrFViqoCY5KWVjFaZMtgYLYwkI8e2qydqar8PzqQ1BHxJ7v2VYnuSRbkqybkZV-eWlPTSaFCkmTI-8DRJtBQh_p_NBlEWatuAEUlRRX_kxqQ_ZiQXHVamwfAMezs_uTy9oVYmBKp_zPk2U8Lw0cnUiuJ8GTLqJCoRJZRAi_mBoFSHq0CzyjGIiRUQppUHk15KBFiJQvr8JM8is2QIS6FAHTPmhKzULBU9avmppe_qEyCWUgQNuPSWxqtKUW-Y78SjBsh3SGB-xHdI4cuCwafJa5uj4jXh_Yp6bFmiLoXkskIGdeuLjSp_zWDCbyoy7rgOk-YqKaL0rSWa6AyTxhEBIILgDR7UojDr4kZ_tP1HvwHwZvmBFahdm-r2B2YM59d5v5739QhE-AcJMAh4 priority: 102 providerName: Springer Nature |
| Title | Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations |
| URI | https://link.springer.com/article/10.1007/s10107-010-0371-9 https://www.proquest.com/docview/845179700 https://www.proquest.com/docview/818834187 |
| Volume | 124 |
| WOSCitedRecordID | wos000280154400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Science Database (NC LIVE) customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQcQ4hutDCo_8ASysBMndnhBUG1CglXVBmPwEsUfEZO2tmtaVP577vI1isReeDkpip1ccmf7d-fzHcCL4HEZT73gIdOOKzQZeKYyy7V1MVoTMqja4XbySY_H5vQ0m7SxOVUbVtnNifVE7WeOfOSvjaJkUlqIt_NLTkWjaHO1raCxBTsyiiSp-UfN-4lYxsZ0FVsJJnSbms3JOVnHXApOOet4trEs3ZkXFf6hsiltsYE9_9ourVehg3v_yf99uNvCT_au0ZcHcCNMH8LtP5IS4tVhn8m1egQ_RhSWvmZ05mXdePfYrGTT2ZS75s7F2Tp4VqedCAt2uSo8KRV-2Pkv5gh9UhEKbNFGglVvWOd4ZwSY2_Jh1WP4crD_efSBt9UZuIu1XvLCGSnLTPjC6LhMlBWFS0wobZIiJlFoKSES8SqTwSlTIsq0NiAajGzijUlcHD-BbWQ27AJLfOoT5eJUWK9So4sodpEnjxSimdQmAxCdcHLXpi4n5s_zq6TLJM8cSU7yzLMBvOy7zJu8Hdc1Hm5IvO-B9hmazAYZ2OuEmrdjvMp7iQ6A9XdxcNKOSzENsxU2kcYgTDB6AK86xbl6wD_5eXrt6_bgVhPCQPr7DLaXi1V4Djfdz-VZtRjClv76bQg77_fHk6NhPSCQHooR0WhCVB8jnSTfkR4dn_wGXF8ThA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NGxJMiO-JMhh-gBeQhZM4sYOEECpMm9ZWPAy0t5DYjjZpa7umHd0fxf_IXRJnFIm97YGXSFWcxkl-vvvdh-8AXjmLajyxgrtUGS7RZOCpTAuuChOhNRE4WTvcvg_UaKSPjtKva_DL74WhtEovE2tBbSeGfOTvtKRiUkqIj9NzTk2jKLjqO2g0qDhwlz_RYqs-7H_Gz_s6DHe_HPb3eNtUgJtIqTnPjQ6CMhU21yoqY1mI3MTalUWcoCqVSPBRgVqZBs5IXSI5KgqHJCYsYqt1bMj_iRJ_A58qIjkwFP1O8AeR1r5DLNESH0RtduoFdY6n4FQjj6cravDuNK_wi5RNK40VrvtXeLbWerv3_7P39QDutfSafWrWw0NYc-NHsPlH0UX8Newq1VaP4bhPafdLRnt6lo33kk1KNp6MuWnOnJ0snWV1WQ03Y-eL3NKiwRd5eskMsWtqsoEj2ky36j3zgQVGBkHbHq16At9u5MG3YB0n654Ci21iY2miRBRWJlrlYWRCSx43ZGtJEfdAeDBkpi3NTpM_za6KShN-MjxkhJ8s7cGb7pJpU5fkusE7KwjrrkD7MxCJxglsexBlrQyrsg5BPWDdWRQ-FFHKx26ywCGB1kiDtOrBWw_Uqz_453yeXXu7l3B773A4yAb7o4NtuNOka9DaeQ7r89nCvYBb5mJ-Us126uXH4MdN4_c3TM5n1A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqCpQBS0PsaVQH3oCWSQbJ3a4VbQrELBCaou4RfEjAgmyy2a32v57ZvKCrShSxSVSFNsa2-P4m_H4G4AvzuI2HlmPu1gaLtBk4LGINZfaBGhN-E6UDrfLM9nvq6ur-KLOc1o00e7NkWR1p4FYmvLxwdBmB08uvvllyKTHiXKOx_OwKChnEJnrPy7bX7EfKNXkbCWg0BxrPtfEzMb0bpgWOEZZldxiBn3-dWBa7kO91Vf34D2s1BCUfa105gPMuXwNlp8QE-LbecvmWqzD9RGFpk8Z3XuZVh4-NshYPsi5qb7c3UydZSX1hBux-0lqSbGwa7d_mCEESokosEQdDVYcssb5zgg01ynEig341fv-8-iY1xkauAmkHPPUKN_PYs-mSgZZKLSXmlC5TIcR4hKB1hKiESti3xmhMkSaWjtEhF0dWqVCEwSbsIDCui1goY1sKEwQedqKSMm0G5iuJa8UIppIhx3wmulJTE1fTsLfJo_EyzSkCT4SGtIk7sBeW2VYcXe8VHh3Zs7bGmijodmsUIDtRgmSep0XiRJEcSY9rwOs_YoLlE5d0twNJljEVwqhgpId2G_U4rGBf8rz8b9Kf4a3F996ydlJ_3QblqoIB9KuT7AwHk3cDrwxv8c3xWi3XB8PBW0N5g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Mathematical+programming&rft.atitle=Convex+relaxations+of+non-convex+mixed+integer+quadratically+constrained+programs%3A+extended+formulations&rft.au=SAXENA%2C+Anureet&rft.au=BONAMI%2C+Pierre&rft.au=LEE%2C+Jon&rft.date=2010-07-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=124&rft.issue=1-2&rft.spage=383&rft.epage=411&rft_id=info:doi/10.1007%2Fs10107-010-0371-9&rft.externalDBID=n%2Fa&rft.externalDocID=23010685 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |