Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 124; číslo 1-2; s. 383 - 411
Hlavní autori: Saxena, Anureet, Bonami, Pierre, Lee, Jon
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.07.2010
Springer
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Y =  x x T . We use the non-convex constraint to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y − x x T with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.
AbstractList This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Y = x x super( )T We use the non-convex constraint Y - x x T <= 0 to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y - x x super( )Twith positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint Y - x x T [sccue] 0 to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.
Issue Title: Series B - Special Issue: Combinatorial Optimization and Integer Programming (ProQuest: Abstract omitted; see image)[PUBLICATION ABSTRACT]
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Y =  x x T . We use the non-convex constraint to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y − x x T with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.
Author Lee, Jon
Bonami, Pierre
Saxena, Anureet
Author_xml – sequence: 1
  givenname: Anureet
  surname: Saxena
  fullname: Saxena, Anureet
  email: asaxena@axiomainc.com
  organization: Axioma Inc
– sequence: 2
  givenname: Pierre
  surname: Bonami
  fullname: Bonami, Pierre
  organization: Laboratoire d’Informatique Fondamentale de Marseille, CNRS-Aix Marseille Universités
– sequence: 3
  givenname: Jon
  surname: Lee
  fullname: Lee, Jon
  organization: IBM T.J. Watson Research Center
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23010685$$DView record in Pascal Francis
BookMark eNp9kUFr3DAQhUVJoZttf0BvphByUjpjSZacW1iSNBDopT0LWZZSB1tKJDts_n21dUohkF5GoPneY2beMTkKMThCPiOcIYD8mhEQJC2FApNI23dkg5w1lDe8OSIbgFpQ0SB8IMc53wMAMqU25Ncuhie3r5Ibzd7MQwy5ir4q7tSunWnYu74awuzuXKoeF9Onwlkzjs9VQfKczBAK8ZDiXTJTPq_cfnahL18-pmkZV9eP5L03Y3afXt4t-Xl1-WP3jd5-v77ZXdxSy6ScqbEK0bfQGyWZF7wDY4VyvhMNQ8lVU7cIPW_RWa68lLzrnABVd6JXSljGtuR09S3zPC4uz3oasnXjaIKLS9YKlWIci_uWfHlF3sclhTKcVlygbCVAgU5eIJPLzj6ZYIesH9IwmfSsa1Yu3ihROLlyNsWck_PaDvOfzQ_3GTWCPuSk15x0KfqQk26LEl8p_5r_T1OvmlzYUHL5N_rbot8cUafO
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s10107_020_01484_3
crossref_primary_10_1111_itor_12293
crossref_primary_10_1016_j_ejor_2016_01_020
crossref_primary_10_1007_s10898_017_0557_2
crossref_primary_10_1007_s10107_023_01965_1
crossref_primary_10_1007_s10107_012_0534_y
crossref_primary_10_1287_moor_2021_1132
crossref_primary_10_1287_opre_2023_0308
crossref_primary_10_1007_s10107_014_0799_4
crossref_primary_10_1080_10556788_2014_916287
crossref_primary_10_1137_120878963
crossref_primary_10_1007_s10589_016_9855_8
crossref_primary_10_1016_j_disopt_2021_100661
crossref_primary_10_1007_s10898_023_01286_9
crossref_primary_10_1016_j_ejor_2016_03_033
crossref_primary_10_1137_22M1515562
crossref_primary_10_1007_s10898_016_0436_2
crossref_primary_10_1007_s10898_013_0128_0
crossref_primary_10_1007_s10898_018_0726_y
crossref_primary_10_1017_S0962492913000032
crossref_primary_10_1137_130909597
crossref_primary_10_1007_s10898_012_9874_7
crossref_primary_10_1007_s10107_012_0609_9
crossref_primary_10_1007_s10898_020_00975_z
crossref_primary_10_3390_su12156253
crossref_primary_10_1016_j_tcs_2024_114910
crossref_primary_10_1016_j_orl_2011_02_002
crossref_primary_10_1016_j_cor_2014_09_008
crossref_primary_10_1007_s10589_010_9368_9
crossref_primary_10_1007_s13675_016_0079_6
crossref_primary_10_1007_s10589_021_00289_0
crossref_primary_10_1137_21M1399956
crossref_primary_10_1007_s10796_024_10492_z
crossref_primary_10_1007_s10957_022_02064_5
crossref_primary_10_1007_s10107_012_0555_6
crossref_primary_10_1016_j_ejor_2015_12_018
crossref_primary_10_1016_j_orl_2011_12_004
crossref_primary_10_1007_s10898_014_0166_2
crossref_primary_10_1007_s10589_014_9690_8
crossref_primary_10_1016_j_sorms_2012_08_001
crossref_primary_10_1007_s12532_018_0142_9
crossref_primary_10_1007_s11590_018_1283_5
crossref_primary_10_1007_s10957_018_1416_0
crossref_primary_10_1007_s10898_010_9644_3
crossref_primary_10_1007_s40305_015_0082_2
crossref_primary_10_1007_s11075_020_01065_7
crossref_primary_10_1007_s10898_018_0612_7
crossref_primary_10_1016_j_disopt_2014_08_002
crossref_primary_10_1137_120878495
Cites_doi 10.1007/s10107-006-0080-6
10.1007/s10107-003-0467-6
10.1007/s10107-004-0550-7
10.1023/A:1013819515732
10.1007/s10107-004-0559-y
10.1080/10556780108805819
10.1007/BF01585184
10.1145/227683.227684
10.1287/opre.21.1.221
10.1007/s101070050103
10.1016/0167-6377(92)90037-4
10.1016/j.disopt.2006.10.011
10.1007/3-540-59408-6_46
10.1007/BF01587096
10.1016/0024-3795(95)00271-R
10.1007/s10898-008-9372-0
10.1007/BF00121658
10.1080/10556789908805766
10.1007/s10107-006-0054-8
10.1007/BF01581273
10.1007/BF01580665
10.1007/s10479-006-0100-1
10.1007/s10107-006-0049-5
10.1016/S0098-1354(01)00732-3
10.1016/S0166-218X(98)00136-X
10.1007/3-540-45586-8_2
10.1007/978-3-540-68891-4_2
10.1007/978-1-4757-3532-1
10.1137/0617031
10.1007/s10107-004-0549-0
ContentType Journal Article
Conference Proceeding
Copyright Springer and Mathematical Programming Society 2010
2015 INIST-CNRS
Springer and Mathematical Optimization Society 2010
Copyright_xml – notice: Springer and Mathematical Programming Society 2010
– notice: 2015 INIST-CNRS
– notice: Springer and Mathematical Optimization Society 2010
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-010-0371-9
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
EISSN 1436-4646
EndPage 411
ExternalDocumentID 2242370551
23010685
10_1007_s10107_010_0371_9
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c377t-ac811f90da873f54b0ac58efb563174862910d491ec48f774bbe5082b5d885c33
IEDL.DBID K7-
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280154400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sun Nov 09 14:32:46 EST 2025
Thu Sep 25 00:45:37 EDT 2025
Mon Jul 21 09:12:58 EDT 2025
Sat Nov 29 05:49:01 EST 2025
Tue Nov 18 22:24:15 EST 2025
Fri Feb 21 02:32:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords global optimization
90C26 Nonconvex programming
Non convex programming
Eigenvector
Constraint satisfaction
Global optimum
Mixed integer programming
Quadratic programming
Modeling
Cutting plane method
Convex programming
Cut generation
Integer programming
Disjunction
Disjunctive programming
Eigenvalue problem
Convexity
Non convex analysis
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MeetingName Combinatorial Optimization and Integer Programming
MergedId FETCHMERGED-LOGICAL-c377t-ac811f90da873f54b0ac58efb563174862910d491ec48f774bbe5082b5d885c33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 845179700
PQPubID 25307
PageCount 29
ParticipantIDs proquest_miscellaneous_818834187
proquest_journals_845179700
pascalfrancis_primary_23010685
crossref_citationtrail_10_1007_s10107_010_0371_9
crossref_primary_10_1007_s10107_010_0371_9
springer_journals_10_1007_s10107_010_0371_9
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2010
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References LaurentM.PoljakS.On the facial structure of the set of correlation matricesSIAM J. Matrix Anal. Appl.19961735305470855.1501110.1137/06170311397243
SenS.Relaxations for probabilistically constrained programs with discrete random variablesOper. Res. Lett.199211281860765.9007110.1016/0167-6377(92)90037-41167427
Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: extended formulations. IBM Research Report RC24621, 08/2008. Available on Optimization Online
BonamiP.BieglerL.T.ConnA.R.CornuéjolsG.GrossmannI.E.LairdC.D.LeeJ.LodiA.MargotF.SawayaN.WächterA.An algorithmic framework for convex mixed-integer nonlinear programsDiscrete Optim.200851862041151.9002810.1016/j.disopt.2006.10.0112408416
Fletcher, R., Leyffer, S.: User Manual for FilterSQP. Numerical Analysis Report NA/181, Dundee University (1998)
LaurentM.PoljakS.On a positive semidefinite relaxation of the cut polytope. Special issue honoring Miroslav Fiedler and Vlastimil PtkLinear Algebra Appl.1995223/22443946110.1016/0024-3795(95)00271-R1340705
BalasE.Disjunctive programming: properties of the convex hull of feasible pointsDiscrete Appl. Math.1998891–33440921.9011810.1016/S0166-218X(98)00136-X1663099
SheraliH.D.AdamsW.P.A reformulation-linearization technique for solving discrete and continuous nonconvex problems1998BostonKluwer
JeroslowR.G.There cannot be any algorithm for integer programming with quadratic constraintsOper. Res.19732112212240257.9002910.1287/opre.21.1.221354007
WächterA.BieglerL.T.On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programmingMath. Program.2006106125571134.9054210.1007/s10107-004-0559-y2195616
PENNON, http://www.penopt.com
KimS.KojimaM.Second order cone programming relaxation of nonconvex quadratic optimization problemsOptim. Methods Softw.2001152012041109.9032710.1080/105567801088058191892585
StubbsR.MehrotraS.A branch-and-cut method for 0–1 mixed convex programmingMath. Program.1999865155320946.9005410.1007/s1010700501031733745
Saxena, A., Bonami, P., Lee, J.: Disjunctive cuts for non-convex mixed integer quadratically constrained problems. In: Lodi, A., Panconesi, A., Rinaldi, G., (eds.) Integer programming and combinatorial optimization (Bertinoro, 2008), Lecture Notes in Computer Science, vol. 5035, pp. 17–33. Springer, Heidelberg (2008)
Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: projected formulations. IBM Research Report RC24695, 11/2008. Available on Optimization Online
TawarmalaniM.SahinidisN.V.Global optimization of mixed integer nonlinear programs: A theoretical and computational studyMath. Program.20049935635911062.9004110.1007/s10107-003-0467-62051712
VandenbusscheD.NemhauserG.L.A polyhedral study of nonconvex quadratic programs with box constraintsMath. Program.200510235315571137.9000910.1007/s10107-004-0549-02136226
DelormeC.PoljakS.Laplacian eigenvalues and the maximum cut problemMath. Program. Ser. A199362355757410.1007/BF015851841251892
BalasE.CeriaS.CornuéjolsG.A lift-and-project cutting plane algorithm for mixed 0–1 programsMath. Program.1993581–329532410.1007/BF01581273
Anstreicher, K.M.: Semidefinite Programming versus the Reformulation-Linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming. Pre-print, Optimization Online, May 2007
BalasE.TamaJ.TindJ.Sequential convexification in reverse convex and disjunctive programmingMath. Program.1989441–33373500683.9006310.1007/BF015870961028227
Balas, E.: Projection and lifting in combinatorial optimization. In: Juenger, M., Naddef, D. (eds.) Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions, Lecture Notes in Computer Science, vol. 2241, pp. 26–56. Springer (2001)
MatsuiT.NP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.199691131190868.9011110.1007/BF001216581411603
VandenbusscheD.NemhauserG.L.A branch-and-cut algorithm for nonconvex quadratic programs with box constraintsMath. Program.200510235595751137.9001010.1007/s10107-004-0550-72136227
GoemansM.X.WilliamsonD.P.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995426111511450885.6808810.1145/227683.2276841412228
BurerS.VandenbusscheD.A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxationsMath. Program.200811332592821135.9003410.1007/s10107-006-0080-62375483
FischettiM.LodiA.Optimizing over the first Chvátal closureMath. Program.200711013200514505010.1007/s10107-006-0054-82306128
LeeS.GrossmannI.E.A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systemsComput. Chem. Eng.2001251675169710.1016/S0098-1354(01)00732-3
TawarmalaniM.SahinidisN.V.Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications2002BostonKluwer1031.90022
Saxena, A., Goyal, V., Lejeune, M.: MIP reformulations of the probabilistic set covering problem. Math. Program. (to appear)
SheraliH.D.FraticelliB.M.P.Enhancing RLT relaxations via a new class of semidefinite cutsJ. Glob. Optim.2002222332611045.9004410.1023/A:10138195157321878144
CornuéjolsG.Revival of the Gomory cuts in the 1990’sAnn. Oper. Res.20071491636610.1007/s10479-006-0100-12313362
SturmJ.F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911–1262565310.1080/105567899088057661778433
Helmberg, C., Poljak, S., Rendl, F., Wolkowicz, H.: Combining semidefinite and polyhedral relaxations for integer programs. Integer programming and combinatorial optimization (Copenhagen, 1995), Lecture Notes in Comput. Sci., 920, pp. 124–134. Springer, Berlin (1995)
BalasE.SaxenaA.Optimizing over the split closureMath. Program.200811322192401135.9003010.1007/s10107-006-0049-52375481
McCormickG.P.Computability of global solutions to factorable nonconvex programs: part I Convex underestimating problemsMath. Program.19761011471750349.9010010.1007/BF01580665469281
GLOBALLib, www.gamsworld.org/global/globallib/globalstat.htm
R.G. Jeroslow (371_CR16) 1973; 21
A. Wächter (371_CR37) 2006; 106
E. Balas (371_CR2) 1998; 89
H.D. Sherali (371_CR29) 1998
E. Balas (371_CR3) 1993; 58
H.D. Sherali (371_CR30) 2002; 22
371_CR12
371_CR13
D. Vandenbussche (371_CR35) 2005; 102
371_CR15
C. Delorme (371_CR10) 1993; 62
M.X. Goemans (371_CR14) 1995; 42
M. Fischetti (371_CR11) 2007; 110
G. Cornuéjols (371_CR9) 2007; 149
T. Matsui (371_CR21) 1996; 9
M. Laurent (371_CR18) 1995; 223/224
R. Stubbs (371_CR31) 1999; 86
J.F. Sturm (371_CR32) 1999; 11–12
E. Balas (371_CR6) 1989; 44
M. Laurent (371_CR19) 1996; 17
M. Tawarmalani (371_CR34) 2004; 99
371_CR4
S. Burer (371_CR8) 2008; 113
371_CR1
E. Balas (371_CR5) 2008; 113
371_CR23
371_CR24
G.P. McCormick (371_CR22) 1976; 10
371_CR27
371_CR25
371_CR26
S. Sen (371_CR28) 1992; 11
P. Bonami (371_CR7) 2008; 5
S. Kim (371_CR17) 2001; 15
S. Lee (371_CR20) 2001; 25
M. Tawarmalani (371_CR33) 2002
D. Vandenbussche (371_CR36) 2005; 102
References_xml – reference: Helmberg, C., Poljak, S., Rendl, F., Wolkowicz, H.: Combining semidefinite and polyhedral relaxations for integer programs. Integer programming and combinatorial optimization (Copenhagen, 1995), Lecture Notes in Comput. Sci., 920, pp. 124–134. Springer, Berlin (1995)
– reference: PENNON, http://www.penopt.com
– reference: FischettiM.LodiA.Optimizing over the first Chvátal closureMath. Program.200711013200514505010.1007/s10107-006-0054-82306128
– reference: Saxena, A., Bonami, P., Lee, J.: Disjunctive cuts for non-convex mixed integer quadratically constrained problems. In: Lodi, A., Panconesi, A., Rinaldi, G., (eds.) Integer programming and combinatorial optimization (Bertinoro, 2008), Lecture Notes in Computer Science, vol. 5035, pp. 17–33. Springer, Heidelberg (2008)
– reference: Balas, E.: Projection and lifting in combinatorial optimization. In: Juenger, M., Naddef, D. (eds.) Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions, Lecture Notes in Computer Science, vol. 2241, pp. 26–56. Springer (2001)
– reference: BalasE.Disjunctive programming: properties of the convex hull of feasible pointsDiscrete Appl. Math.1998891–33440921.9011810.1016/S0166-218X(98)00136-X1663099
– reference: BalasE.SaxenaA.Optimizing over the split closureMath. Program.200811322192401135.9003010.1007/s10107-006-0049-52375481
– reference: Anstreicher, K.M.: Semidefinite Programming versus the Reformulation-Linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming. Pre-print, Optimization Online, May 2007
– reference: BalasE.TamaJ.TindJ.Sequential convexification in reverse convex and disjunctive programmingMath. Program.1989441–33373500683.9006310.1007/BF015870961028227
– reference: BurerS.VandenbusscheD.A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxationsMath. Program.200811332592821135.9003410.1007/s10107-006-0080-62375483
– reference: Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: extended formulations. IBM Research Report RC24621, 08/2008. Available on Optimization Online
– reference: GoemansM.X.WilliamsonD.P.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995426111511450885.6808810.1145/227683.2276841412228
– reference: SturmJ.F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911–1262565310.1080/105567899088057661778433
– reference: Saxena, A., Bonami, P., Lee, J.: Convex relaxations of mixed integer quadratically constrained programs: projected formulations. IBM Research Report RC24695, 11/2008. Available on Optimization Online
– reference: StubbsR.MehrotraS.A branch-and-cut method for 0–1 mixed convex programmingMath. Program.1999865155320946.9005410.1007/s1010700501031733745
– reference: DelormeC.PoljakS.Laplacian eigenvalues and the maximum cut problemMath. Program. Ser. A199362355757410.1007/BF015851841251892
– reference: LaurentM.PoljakS.On the facial structure of the set of correlation matricesSIAM J. Matrix Anal. Appl.19961735305470855.1501110.1137/06170311397243
– reference: Fletcher, R., Leyffer, S.: User Manual for FilterSQP. Numerical Analysis Report NA/181, Dundee University (1998)
– reference: McCormickG.P.Computability of global solutions to factorable nonconvex programs: part I Convex underestimating problemsMath. Program.19761011471750349.9010010.1007/BF01580665469281
– reference: SheraliH.D.FraticelliB.M.P.Enhancing RLT relaxations via a new class of semidefinite cutsJ. Glob. Optim.2002222332611045.9004410.1023/A:10138195157321878144
– reference: BonamiP.BieglerL.T.ConnA.R.CornuéjolsG.GrossmannI.E.LairdC.D.LeeJ.LodiA.MargotF.SawayaN.WächterA.An algorithmic framework for convex mixed-integer nonlinear programsDiscrete Optim.200851862041151.9002810.1016/j.disopt.2006.10.0112408416
– reference: VandenbusscheD.NemhauserG.L.A branch-and-cut algorithm for nonconvex quadratic programs with box constraintsMath. Program.200510235595751137.9001010.1007/s10107-004-0550-72136227
– reference: SenS.Relaxations for probabilistically constrained programs with discrete random variablesOper. Res. Lett.199211281860765.9007110.1016/0167-6377(92)90037-41167427
– reference: BalasE.CeriaS.CornuéjolsG.A lift-and-project cutting plane algorithm for mixed 0–1 programsMath. Program.1993581–329532410.1007/BF01581273
– reference: LaurentM.PoljakS.On a positive semidefinite relaxation of the cut polytope. Special issue honoring Miroslav Fiedler and Vlastimil PtkLinear Algebra Appl.1995223/22443946110.1016/0024-3795(95)00271-R1340705
– reference: TawarmalaniM.SahinidisN.V.Global optimization of mixed integer nonlinear programs: A theoretical and computational studyMath. Program.20049935635911062.9004110.1007/s10107-003-0467-62051712
– reference: CornuéjolsG.Revival of the Gomory cuts in the 1990’sAnn. Oper. Res.20071491636610.1007/s10479-006-0100-12313362
– reference: JeroslowR.G.There cannot be any algorithm for integer programming with quadratic constraintsOper. Res.19732112212240257.9002910.1287/opre.21.1.221354007
– reference: SheraliH.D.AdamsW.P.A reformulation-linearization technique for solving discrete and continuous nonconvex problems1998BostonKluwer
– reference: MatsuiT.NP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.199691131190868.9011110.1007/BF001216581411603
– reference: Saxena, A., Goyal, V., Lejeune, M.: MIP reformulations of the probabilistic set covering problem. Math. Program. (to appear)
– reference: TawarmalaniM.SahinidisN.V.Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications2002BostonKluwer1031.90022
– reference: LeeS.GrossmannI.E.A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systemsComput. Chem. Eng.2001251675169710.1016/S0098-1354(01)00732-3
– reference: VandenbusscheD.NemhauserG.L.A polyhedral study of nonconvex quadratic programs with box constraintsMath. Program.200510235315571137.9000910.1007/s10107-004-0549-02136226
– reference: WächterA.BieglerL.T.On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programmingMath. Program.2006106125571134.9054210.1007/s10107-004-0559-y2195616
– reference: KimS.KojimaM.Second order cone programming relaxation of nonconvex quadratic optimization problemsOptim. Methods Softw.2001152012041109.9032710.1080/105567801088058191892585
– reference: GLOBALLib, www.gamsworld.org/global/globallib/globalstat.htm
– volume: 113
  start-page: 259
  issue: 3
  year: 2008
  ident: 371_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0080-6
– volume: 99
  start-page: 563
  issue: 3
  year: 2004
  ident: 371_CR34
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0467-6
– volume: 102
  start-page: 559
  issue: 3
  year: 2005
  ident: 371_CR36
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0550-7
– volume: 22
  start-page: 233
  year: 2002
  ident: 371_CR30
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1013819515732
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 371_CR37
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– ident: 371_CR13
– volume: 15
  start-page: 201
  year: 2001
  ident: 371_CR17
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780108805819
– volume: 62
  start-page: 557
  issue: 3
  year: 1993
  ident: 371_CR10
  publication-title: Math. Program. Ser. A
  doi: 10.1007/BF01585184
– volume: 42
  start-page: 1115
  issue: 6
  year: 1995
  ident: 371_CR14
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: 21
  start-page: 221
  issue: 1
  year: 1973
  ident: 371_CR16
  publication-title: Oper. Res.
  doi: 10.1287/opre.21.1.221
– volume: 86
  start-page: 515
  year: 1999
  ident: 371_CR31
  publication-title: Math. Program.
  doi: 10.1007/s101070050103
– volume: 11
  start-page: 81
  issue: 2
  year: 1992
  ident: 371_CR28
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(92)90037-4
– volume: 5
  start-page: 186
  year: 2008
  ident: 371_CR7
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2006.10.011
– ident: 371_CR15
  doi: 10.1007/3-540-59408-6_46
– ident: 371_CR27
– volume: 44
  start-page: 337
  issue: 1–3
  year: 1989
  ident: 371_CR6
  publication-title: Math. Program.
  doi: 10.1007/BF01587096
– volume: 223/224
  start-page: 439
  year: 1995
  ident: 371_CR18
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(95)00271-R
– ident: 371_CR23
– ident: 371_CR25
– ident: 371_CR1
  doi: 10.1007/s10898-008-9372-0
– volume: 9
  start-page: 113
  year: 1996
  ident: 371_CR21
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF00121658
– volume: 11–12
  start-page: 625
  year: 1999
  ident: 371_CR32
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805766
– volume: 110
  start-page: 3
  issue: 1
  year: 2007
  ident: 371_CR11
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0054-8
– volume: 58
  start-page: 295
  issue: 1–3
  year: 1993
  ident: 371_CR3
  publication-title: Math. Program.
  doi: 10.1007/BF01581273
– ident: 371_CR12
– volume: 10
  start-page: 147
  issue: 1
  year: 1976
  ident: 371_CR22
  publication-title: Math. Program.
  doi: 10.1007/BF01580665
– volume: 149
  start-page: 63
  issue: 1
  year: 2007
  ident: 371_CR9
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-006-0100-1
– volume: 113
  start-page: 219
  issue: 2
  year: 2008
  ident: 371_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0049-5
– volume: 25
  start-page: 1675
  year: 2001
  ident: 371_CR20
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(01)00732-3
– volume: 89
  start-page: 3
  issue: 1–3
  year: 1998
  ident: 371_CR2
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(98)00136-X
– ident: 371_CR4
  doi: 10.1007/3-540-45586-8_2
– ident: 371_CR24
  doi: 10.1007/978-3-540-68891-4_2
– volume-title: Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications
  year: 2002
  ident: 371_CR33
  doi: 10.1007/978-1-4757-3532-1
– volume: 17
  start-page: 530
  issue: 3
  year: 1996
  ident: 371_CR19
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0617031
– ident: 371_CR26
– volume: 102
  start-page: 531
  issue: 3
  year: 2005
  ident: 371_CR35
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0549-0
– volume-title: A reformulation-linearization technique for solving discrete and continuous nonconvex problems
  year: 1998
  ident: 371_CR29
SSID ssj0001388
Score 2.199465
Snippet This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP...
Issue Title: Series B - Special Issue: Combinatorial Optimization and Integer Programming (ProQuest: Abstract omitted; see image)[PUBLICATION ABSTRACT]
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 383
SubjectTerms Applied sciences
Approximation
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Constraints
Cutting
Eigenvalues
Eigenvectors
Exact sciences and technology
Full Length Paper
Inequality
Linear equations
Linear programming
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mixed integer
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Optimization
Programming
Theoretical
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HRTxLdYXOXhSAu02bVJvIooHFfGFt9I8igtrV7e7sv57J33trqigl0LpJEyTmeSbzGQG4MBo3MZD7VITcUUZmgw0YpGkXCofrQnPsOLA7fGSX1-Lp6foprrHndfR7rVLslipxy67eUWYpEttmjkaTcMs7nbCauPt3WOz_Hq-EHWdVgsOalfmd11MbEaLr0mO45KWBS0mEOcXJ2mx95wv_4vrFViqoCY5KWVjFaZMtgYLYwkI8e2qydqar8PzqQ1BHxJ7v2VYnuSRbkqybkZV-eWlPTSaFCkmTI-8DRJtBQh_p_NBlEWatuAEUlRRX_kxqQ_ZiQXHVamwfAMezs_uTy9oVYmBKp_zPk2U8Lw0cnUiuJ8GTLqJCoRJZRAi_mBoFSHq0CzyjGIiRUQppUHk15KBFiJQvr8JM8is2QIS6FAHTPmhKzULBU9avmppe_qEyCWUgQNuPSWxqtKUW-Y78SjBsh3SGB-xHdI4cuCwafJa5uj4jXh_Yp6bFmiLoXkskIGdeuLjSp_zWDCbyoy7rgOk-YqKaL0rSWa6AyTxhEBIILgDR7UojDr4kZ_tP1HvwHwZvmBFahdm-r2B2YM59d5v5739QhE-AcJMAh4
  priority: 102
  providerName: Springer Nature
Title Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
URI https://link.springer.com/article/10.1007/s10107-010-0371-9
https://www.proquest.com/docview/845179700
https://www.proquest.com/docview/818834187
Volume 124
WOSCitedRecordID wos000280154400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database (NC LIVE)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQcQ4hutDCo_8ASysBMndnhBUG1CglXVBmPwEsUfEZO2tmtaVP577vI1isReeDkpip1ccmf7d-fzHcCL4HEZT73gIdOOKzQZeKYyy7V1MVoTMqja4XbySY_H5vQ0m7SxOVUbVtnNifVE7WeOfOSvjaJkUlqIt_NLTkWjaHO1raCxBTsyiiSp-UfN-4lYxsZ0FVsJJnSbms3JOVnHXApOOet4trEs3ZkXFf6hsiltsYE9_9ourVehg3v_yf99uNvCT_au0ZcHcCNMH8LtP5IS4tVhn8m1egQ_RhSWvmZ05mXdePfYrGTT2ZS75s7F2Tp4VqedCAt2uSo8KRV-2Pkv5gh9UhEKbNFGglVvWOd4ZwSY2_Jh1WP4crD_efSBt9UZuIu1XvLCGSnLTPjC6LhMlBWFS0wobZIiJlFoKSES8SqTwSlTIsq0NiAajGzijUlcHD-BbWQ27AJLfOoT5eJUWK9So4sodpEnjxSimdQmAxCdcHLXpi4n5s_zq6TLJM8cSU7yzLMBvOy7zJu8Hdc1Hm5IvO-B9hmazAYZ2OuEmrdjvMp7iQ6A9XdxcNKOSzENsxU2kcYgTDB6AK86xbl6wD_5eXrt6_bgVhPCQPr7DLaXi1V4Djfdz-VZtRjClv76bQg77_fHk6NhPSCQHooR0WhCVB8jnSTfkR4dn_wGXF8ThA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NGxJMiO-JMhh-gBeQhZM4sYOEECpMm9ZWPAy0t5DYjjZpa7umHd0fxf_IXRJnFIm97YGXSFWcxkl-vvvdh-8AXjmLajyxgrtUGS7RZOCpTAuuChOhNRE4WTvcvg_UaKSPjtKva_DL74WhtEovE2tBbSeGfOTvtKRiUkqIj9NzTk2jKLjqO2g0qDhwlz_RYqs-7H_Gz_s6DHe_HPb3eNtUgJtIqTnPjQ6CMhU21yoqY1mI3MTalUWcoCqVSPBRgVqZBs5IXSI5KgqHJCYsYqt1bMj_iRJ_A58qIjkwFP1O8AeR1r5DLNESH0RtduoFdY6n4FQjj6cravDuNK_wi5RNK40VrvtXeLbWerv3_7P39QDutfSafWrWw0NYc-NHsPlH0UX8Newq1VaP4bhPafdLRnt6lo33kk1KNp6MuWnOnJ0snWV1WQ03Y-eL3NKiwRd5eskMsWtqsoEj2ky36j3zgQVGBkHbHq16At9u5MG3YB0n654Ci21iY2miRBRWJlrlYWRCSx43ZGtJEfdAeDBkpi3NTpM_za6KShN-MjxkhJ8s7cGb7pJpU5fkusE7KwjrrkD7MxCJxglsexBlrQyrsg5BPWDdWRQ-FFHKx26ywCGB1kiDtOrBWw_Uqz_453yeXXu7l3B773A4yAb7o4NtuNOka9DaeQ7r89nCvYBb5mJ-Us126uXH4MdN4_c3TM5n1A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqCpQBS0PsaVQH3oCWSQbJ3a4VbQrELBCaou4RfEjAgmyy2a32v57ZvKCrShSxSVSFNsa2-P4m_H4G4AvzuI2HlmPu1gaLtBk4LGINZfaBGhN-E6UDrfLM9nvq6ur-KLOc1o00e7NkWR1p4FYmvLxwdBmB08uvvllyKTHiXKOx_OwKChnEJnrPy7bX7EfKNXkbCWg0BxrPtfEzMb0bpgWOEZZldxiBn3-dWBa7kO91Vf34D2s1BCUfa105gPMuXwNlp8QE-LbecvmWqzD9RGFpk8Z3XuZVh4-NshYPsi5qb7c3UydZSX1hBux-0lqSbGwa7d_mCEESokosEQdDVYcssb5zgg01ynEig341fv-8-iY1xkauAmkHPPUKN_PYs-mSgZZKLSXmlC5TIcR4hKB1hKiESti3xmhMkSaWjtEhF0dWqVCEwSbsIDCui1goY1sKEwQedqKSMm0G5iuJa8UIppIhx3wmulJTE1fTsLfJo_EyzSkCT4SGtIk7sBeW2VYcXe8VHh3Zs7bGmijodmsUIDtRgmSep0XiRJEcSY9rwOs_YoLlE5d0twNJljEVwqhgpId2G_U4rGBf8rz8b9Kf4a3F996ydlJ_3QblqoIB9KuT7AwHk3cDrwxv8c3xWi3XB8PBW0N5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Mathematical+programming&rft.atitle=Convex+relaxations+of+non-convex+mixed+integer+quadratically+constrained+programs%3A+extended+formulations&rft.au=SAXENA%2C+Anureet&rft.au=BONAMI%2C+Pierre&rft.au=LEE%2C+Jon&rft.date=2010-07-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=124&rft.issue=1-2&rft.spage=383&rft.epage=411&rft_id=info:doi/10.1007%2Fs10107-010-0371-9&rft.externalDBID=n%2Fa&rft.externalDocID=23010685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon