On 3-stage geometric explicit Runge–Kutta method for singular autonomous initial value problems in ordinary differential equations

There has been considerable efforts to increase the efficiency of explicit Runge–Kutta (ERK) methods over the years. However, this always lead to increase in the number of terms of the Taylors’ series incremental function. In this work, a 3-stage geometric explicit Runge–Kutta method for solving aut...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computing Ročník 92; číslo 3; s. 243 - 263
Hlavný autor: Akanbi, Moses Adebowale
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vienna Springer Vienna 01.07.2011
Springer
Springer Nature B.V
Predmet:
ISSN:0010-485X, 1436-5057
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:There has been considerable efforts to increase the efficiency of explicit Runge–Kutta (ERK) methods over the years. However, this always lead to increase in the number of terms of the Taylors’ series incremental function. In this work, a 3-stage geometric explicit Runge–Kutta method for solving autonomous initial value problems in ordinary differential equations is derived and implemented. The computational results show that the method is stable, efficient and accurate. We also compared this method with some other conventional methods.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0010-485X
1436-5057
DOI:10.1007/s00607-010-0139-3