On 3-stage geometric explicit Runge–Kutta method for singular autonomous initial value problems in ordinary differential equations

There has been considerable efforts to increase the efficiency of explicit Runge–Kutta (ERK) methods over the years. However, this always lead to increase in the number of terms of the Taylors’ series incremental function. In this work, a 3-stage geometric explicit Runge–Kutta method for solving aut...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computing Ročník 92; číslo 3; s. 243 - 263
Hlavní autor: Akanbi, Moses Adebowale
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.07.2011
Springer
Springer Nature B.V
Témata:
ISSN:0010-485X, 1436-5057
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:There has been considerable efforts to increase the efficiency of explicit Runge–Kutta (ERK) methods over the years. However, this always lead to increase in the number of terms of the Taylors’ series incremental function. In this work, a 3-stage geometric explicit Runge–Kutta method for solving autonomous initial value problems in ordinary differential equations is derived and implemented. The computational results show that the method is stable, efficient and accurate. We also compared this method with some other conventional methods.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0010-485X
1436-5057
DOI:10.1007/s00607-010-0139-3