Operando UV–Vis diffuse reflectance spectroscopy insights into the methane dehydroaromatization reaction over Mo/H-ZSM-5 catalysts
[Display omitted] •Operando UV–Vis diffuse reflectance spectroscopy and chemometrics could distinguish the reaction phases of the methane dehydroaromatization process.•Upon activation in CO, the spectral component for the activation phase was removed.•During the active period, typical hydrocarbon po...
Uloženo v:
| Vydáno v: | Journal of catalysis Ročník 436; s. 115619 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2024
|
| Témata: | |
| ISSN: | 0021-9517 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Operando UV–Vis diffuse reflectance spectroscopy and chemometrics could distinguish the reaction phases of the methane dehydroaromatization process.•Upon activation in CO, the spectral component for the activation phase was removed.•During the active period, typical hydrocarbon pool intermediates could be observed.•Deactivation is governed by the built-up of polyaromatic coke species.•Catalyst preparation only impacts the dispersion of the molybdenum active phase, but not the spectral components.
Methane Dehydroaromatization (MDA) is proposed as a possible way to valorize stranded natural gas, e.g., arising during crude oil drilling. In this study, we used operando UV–Vis Diffuse Reflectance Spectroscopy (DRS) in combination with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to distinguish the MDA reaction phases of activation, induction, and deactivation. We identified three spectral components, which describe these distinct reaction phases. When the catalyst was activated in CO, two spectral components alone sufficiently described the operando UV–Vis DRS data. We further found that the preparation method of the Mo/ZSM-5 catalyst has little influence on the observed spectral features. However, the different preparation methods impact the dispersion of Mo, resulting in faster deactivation for the catalyst with more Mo-clusters compared to the catalyst with a higher Mo dispersion. This study shows that operando UV–Vis DRS in combination with the MCR-ALS methodology is a powerful analytical tool to disentangle and study the three MDA reaction phases. |
|---|---|
| AbstractList | [Display omitted]
•Operando UV–Vis diffuse reflectance spectroscopy and chemometrics could distinguish the reaction phases of the methane dehydroaromatization process.•Upon activation in CO, the spectral component for the activation phase was removed.•During the active period, typical hydrocarbon pool intermediates could be observed.•Deactivation is governed by the built-up of polyaromatic coke species.•Catalyst preparation only impacts the dispersion of the molybdenum active phase, but not the spectral components.
Methane Dehydroaromatization (MDA) is proposed as a possible way to valorize stranded natural gas, e.g., arising during crude oil drilling. In this study, we used operando UV–Vis Diffuse Reflectance Spectroscopy (DRS) in combination with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to distinguish the MDA reaction phases of activation, induction, and deactivation. We identified three spectral components, which describe these distinct reaction phases. When the catalyst was activated in CO, two spectral components alone sufficiently described the operando UV–Vis DRS data. We further found that the preparation method of the Mo/ZSM-5 catalyst has little influence on the observed spectral features. However, the different preparation methods impact the dispersion of Mo, resulting in faster deactivation for the catalyst with more Mo-clusters compared to the catalyst with a higher Mo dispersion. This study shows that operando UV–Vis DRS in combination with the MCR-ALS methodology is a powerful analytical tool to disentangle and study the three MDA reaction phases. Methane Dehydroaromatization (MDA) is proposed as a possible way to valorize stranded natural gas, e.g., arising during crude oil drilling. In this study, we used operando UV–Vis Diffuse Reflectance Spectroscopy (DRS) in combination with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to distinguish the MDA reaction phases of activation, induction, and deactivation. We identified three spectral components, which describe these distinct reaction phases. When the catalyst was activated in CO, two spectral components alone sufficiently described the operando UV–Vis DRS data. We further found that the preparation method of the Mo/ZSM-5 catalyst has little influence on the observed spectral features. However, the different preparation methods impact the dispersion of Mo, resulting in faster deactivation for the catalyst with more Mo-clusters compared to the catalyst with a higher Mo dispersion. This study shows that operando UV–Vis DRS in combination with the MCR-ALS methodology is a powerful analytical tool to disentangle and study the three MDA reaction phases. |
| ArticleNumber | 115619 |
| Author | Haben, Sebastian Weckhuysen, Bert M. Kromwijk, Josepha J.G. Vollmer, Ina |
| Author_xml | – sequence: 1 givenname: Sebastian surname: Haben fullname: Haben, Sebastian – sequence: 2 givenname: Josepha J.G. orcidid: 0000-0002-1677-871X surname: Kromwijk fullname: Kromwijk, Josepha J.G. – sequence: 3 givenname: Ina surname: Vollmer fullname: Vollmer, Ina – sequence: 4 givenname: Bert M. orcidid: 0000-0001-5245-1426 surname: Weckhuysen fullname: Weckhuysen, Bert M. email: b.m.weckhuysen@uu.nl |
| BookMark | eNp9kL9OwzAQxj2ABBRegMkjS4L_NLEjsSAEFAnUAdqBxXKdC3WVxsF2K5WJgTfgDXkSXMrEwHC6T7r7Tvf9jtBe5zpA6JSSnBJani_yhdExZ4QNc0qLklZ76JAQRrOqoOIAHYWwICRNCnmIPsY9eN3VDk-mX--fUxtwbZtmFQB7aFowUXcGcOiT8i4Y12-w7YJ9mceQRHQ4zgEvIc51B7iG-ab2Tnu31NG-pXJduqPNj3Br8PjBnY-y58eHrMDpS91uQgzHaL_RbYCT3z5Ak5vrp6tRdj--vbu6vM8MFyJmVcPKsmFElDPKJTeCc1HLmSxkxQifFbpIYwpUsmHTcKK1oEyKkkhWzQStOB-gs93d3rvXFYSoljYYaNv0u1sFxWnBS8FYRdKq3K2alDokFMrY-JMnem1bRYnawlYLtYWttrDVDnaysj_W3tul9pv_TRc7E6T8awteBWMhoa-tT-hV7ex_9m9UgJ6k |
| CitedBy_id | crossref_primary_10_1021_acscatal_4c07228 |
| Cites_doi | 10.1039/C7CY02459B 10.1007/BF00806100 10.1021/acscatal.8b02491 10.1021/acscatal.2c04962 10.1007/BF00805576 10.3390/app11125465 10.1002/anie.202017074 10.1021/jacs.9b09710 10.1006/jcat.1998.2011 10.1006/jcat.1997.1478 10.1039/D2QI00694D 10.1007/BF00767368 10.1002/anie.201103657 10.1039/C8SC01263F 10.1016/j.ijggc.2016.02.010 10.1016/j.apcatb.2015.04.052 10.1039/C5CY02140E 10.1021/acs.chemrev.6b00715 10.1021/ja01236a048 10.1007/s10708-008-9207-z 10.1002/anie.201902730 10.1021/acscatal.1c01422 10.1139/a00-005 10.1038/nprot.2015.008 10.1016/S1872-2067(14)60301-6 10.1007/s10562-007-9346-8 10.1006/jcat.1998.2010 10.1002/cctc.201800880 10.1016/j.apcata.2018.03.023 10.1023/A:1019087313679 10.1021/acscatal.6b03677 10.1021/cs500722m 10.1063/1.1723870 10.1016/j.jcat.2019.01.013 10.1016/j.apcata.2019.01.022 10.1039/D0CS01016B 10.1002/anie.201711098 10.1006/jcat.1995.1279 10.1007/BF00813680 10.1016/j.micromeso.2007.05.028 10.1016/bs.acat.2015.10.001 10.1038/s41557-018-0081-0 10.1002/anie.201601357 10.1021/ja01269a023 10.1021/acscatal.9b02213 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jcat.2024.115619 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| ExternalDocumentID | 10_1016_j_jcat_2024_115619 S0021951724003324 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XPP YQT ZMT ZU3 ~02 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c377t-9f266f2076b1383c7337d8b8589203b5a566f1e1824ff30aa7128760829b71933 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001265274300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9517 |
| IngestDate | Thu Oct 02 12:14:09 EDT 2025 Sat Nov 29 05:01:39 EST 2025 Tue Nov 18 21:32:33 EST 2025 Sat Sep 28 16:11:08 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Operando UV–Vis diffuse reflectance spectroscopy Methane dehydroaromatization Reaction phases Mo/HZSM-5 Coke deposition |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c377t-9f266f2076b1383c7337d8b8589203b5a566f1e1824ff30aa7128760829b71933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5245-1426 0000-0002-1677-871X |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jcat.2024.115619 |
| PQID | 3153672290 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153672290 crossref_citationtrail_10_1016_j_jcat_2024_115619 crossref_primary_10_1016_j_jcat_2024_115619 elsevier_sciencedirect_doi_10_1016_j_jcat_2024_115619 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of catalysis |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Li, Vollmer, Liu, Gascon, Pidko (b0100) 2019; 9 Vollmer, Kosinov, Szécsényi, Li, Yarulina, Abou-Hamad, Gurinov, Ould-Chikh, Aguilar-Tapia, Hazemann, Pidko, Hensen, Kapteijn, Gascon (b0230) 2019; 370 Kosinov, Uslamin, Meng, Parastaev, Liu, Hensen (b0210) 2019; 58 Kindzierski (b0020) 2000; 8 Liu, Oza, Drozhzhin, Van Den Bosch, Meng, Van De Poll, Hensen, Kosinov (b0075) 2023; 13 Weckhuysen, Wang, Rosynek, Lunsford (b0055) 1998; 175 Xu, Liu, Wang, Xie, Guo (b0125) 1995; 30 Weckhuysen, Wang, Rosynek, Lunsford (b0050) 1998; 175 Kosinov, Uslamin, Coumans, Wijpkema, Rohling, Hensen (b0130) 2018; 8 Vogt, Whiting, Chowdhury, Weckhuysen (b0035) 2015; 58 Kosinov, Lexandra, Wijpkema, Uslamin, Rohling, Coumans, Mezari, Parastaev, Poryvaev, Fedin, Pidko, Hensen (b0135) 2018; 57 Vollmer, Yarulina, Kapteijn, Gascon (b0065) 2019; 11 Yarulina, Goetze, Gücüyener, Van Thiel, Dikhtiarenko, Ruiz-Martinez, Weckhuysen, Gascon, Kapteijn (b0225) 2014; 6 Rahman, Sridhar, Khatib (b0085) 2018; 558 Solymosi, Szöke, Cserényi (b0095) 1996; 39 Goetze, Meirer, Yarulina, Gascon, Kapteijn, Ruiz-Martínez, Weckhuysen (b0175) 2017; 7 Brunauer, Emmett, Teller (b0195) 1938; 60 Chen, Wang, Yu, Gu, Lyu, Tian, Fu, Liu (b0160) 2022; 9 Jiang, Huang, Reddy Marthala, Ooi, Weitkamp, M. (b0185) 2007; 105 Vollmer, Van Der Linden, Ould-Chikh, Aguilar-Tapia, Yarulina, Abou-Hamad, Sneider, Olivos Suarez, Hazemann, Kapteijn, Gascon (b0080) 2018; 9 Vollmer, Mondal, Yarulina, Abou-Hamad, Kapteijn, Gascon (b0155) 2019; 574 Tempelman, Hensen (b0150) 2015; 176–177 Schwach, Pan, Bao (b0040) 2017; 117 Vollmer, Ould-chikh, Aguilar-tapia, Li, Pidko, Hazemann, Kapteijn, Gascon (b0190) 2019; 141 Olsbye, Svelle, Bjrgen, Beato, Janssens, Joensen, Bordiga, Lillerud (b0140) 2012; 51 Dung, Bombom, Agusomu (b0015) 2008; 73 Wang, Tao, Xie, Xu, Huang, Xu (b0060) 1993; 21 Harkins, Jura (b0205) 1944; 66 Chen, Lin, Xu, Li, Zhang (b0115) 1995; 157 Goetze, Weckhuysen (b0220) 2018; 8 Soltanieh, Zohrabian, Gholipour, Kalnay (b0010) 2016; 49 Gao, Qi, Wang, Wang, Li, Hung, Gan, Xu, Deng (b0145) 2021; 60 Li, Shoinkhorova, Gascon, Ruiz-Martinez (b0240) 2021; 11 BP, Statistical Review of World Energy, 2021. Solymosi, Cserényi, Szöke, Bánsági, Oszkó (b0120) 1997; 165 Jura, Harkins (b0200) 1943; 11 Kiani, Sourav, Tang, Baltrusaitis, Wachs (b0070) 2021; 50 Jiang, Wang, Cui, Xu (b0110) 1999; 57 World Bank, Report on Small-scale Technologies for Utilization of Associated Gas, 2022. https://documents1.worldbank.org/curated/en/305891644478108245/pdf/Report-on-Small-scale-Technologies-for-Utilization-of-Associated-Gas.pdf. Kosinov, Hensen (b0045) 2020; 32 Tempelman, Zhu, Hensen (b0170) 2015; 36 Wulfers, Jentoft (b0180) 2014; 4 World Bank, Global Gas Flaring Tracking Report 2023, 2023. https://www.worldbank.org/en/programs/gasflaringreduction/publication/2023-global-gas-flaring-tracker-report (Accessed October 9, 2023). Yarulina, De Wispelaere, Bailleul, Goetze, Radersma, Abou-Hamad, Vollmer, Goesten, Mezari, Hensen, Martínez-Espín, Morten, Mitchell, Perez-Ramirez, Olsbye, Weckhuysen, Van Speybroeck, Kapteijn, Gascon (b0235) 2018; 10 Sun, Yao, Shen, Lin (b0165) 2008; 122 Solymosi, Erdöhelyi, Szöke (b0090) 1995; 32 Portilla, Llopis, Moliner, Martinez (b0245) 2021; 11 Lezcano-González, Oord, Rovezzi, Glatzel, Botchway, Weckhuysen, Beale (b0105) 2016; 55 Felten, Hall, Jaumot, Tauler, De Juan, Gorzsás (b0215) 2015; 10 Brunauer (10.1016/j.jcat.2024.115619_b0195) 1938; 60 Vollmer (10.1016/j.jcat.2024.115619_b0155) 2019; 574 Weckhuysen (10.1016/j.jcat.2024.115619_b0055) 1998; 175 Harkins (10.1016/j.jcat.2024.115619_b0205) 1944; 66 Schwach (10.1016/j.jcat.2024.115619_b0040) 2017; 117 Sun (10.1016/j.jcat.2024.115619_b0165) 2008; 122 Tempelman (10.1016/j.jcat.2024.115619_b0170) 2015; 36 10.1016/j.jcat.2024.115619_b0005 Vogt (10.1016/j.jcat.2024.115619_b0035) 2015; 58 Kiani (10.1016/j.jcat.2024.115619_b0070) 2021; 50 Wulfers (10.1016/j.jcat.2024.115619_b0180) 2014; 4 Jiang (10.1016/j.jcat.2024.115619_b0110) 1999; 57 Li (10.1016/j.jcat.2024.115619_b0240) 2021; 11 Kosinov (10.1016/j.jcat.2024.115619_b0045) 2020; 32 Yarulina (10.1016/j.jcat.2024.115619_b0225) 2014; 6 Goetze (10.1016/j.jcat.2024.115619_b0175) 2017; 7 Dung (10.1016/j.jcat.2024.115619_b0015) 2008; 73 Vollmer (10.1016/j.jcat.2024.115619_b0080) 2018; 9 Chen (10.1016/j.jcat.2024.115619_b0160) 2022; 9 Lezcano-González (10.1016/j.jcat.2024.115619_b0105) 2016; 55 Kosinov (10.1016/j.jcat.2024.115619_b0210) 2019; 58 Solymosi (10.1016/j.jcat.2024.115619_b0120) 1997; 165 Yarulina (10.1016/j.jcat.2024.115619_b0235) 2018; 10 Olsbye (10.1016/j.jcat.2024.115619_b0140) 2012; 51 Soltanieh (10.1016/j.jcat.2024.115619_b0010) 2016; 49 Chen (10.1016/j.jcat.2024.115619_b0115) 1995; 157 Gao (10.1016/j.jcat.2024.115619_b0145) 2021; 60 Vollmer (10.1016/j.jcat.2024.115619_b0065) 2019; 11 Goetze (10.1016/j.jcat.2024.115619_b0220) 2018; 8 Portilla (10.1016/j.jcat.2024.115619_b0245) 2021; 11 Jiang (10.1016/j.jcat.2024.115619_b0185) 2007; 105 Vollmer (10.1016/j.jcat.2024.115619_b0190) 2019; 141 Wang (10.1016/j.jcat.2024.115619_b0060) 1993; 21 Tempelman (10.1016/j.jcat.2024.115619_b0150) 2015; 176–177 10.1016/j.jcat.2024.115619_b0025 Liu (10.1016/j.jcat.2024.115619_b0075) 2023; 13 Jura (10.1016/j.jcat.2024.115619_b0200) 1943; 11 Felten (10.1016/j.jcat.2024.115619_b0215) 2015; 10 Vollmer (10.1016/j.jcat.2024.115619_b0230) 2019; 370 Solymosi (10.1016/j.jcat.2024.115619_b0095) 1996; 39 Solymosi (10.1016/j.jcat.2024.115619_b0090) 1995; 32 Kosinov (10.1016/j.jcat.2024.115619_b0130) 2018; 8 Kindzierski (10.1016/j.jcat.2024.115619_b0020) 2000; 8 Li (10.1016/j.jcat.2024.115619_b0100) 2019; 9 Kosinov (10.1016/j.jcat.2024.115619_b0135) 2018; 57 Rahman (10.1016/j.jcat.2024.115619_b0085) 2018; 558 Xu (10.1016/j.jcat.2024.115619_b0125) 1995; 30 10.1016/j.jcat.2024.115619_b0030 Weckhuysen (10.1016/j.jcat.2024.115619_b0050) 1998; 175 |
| References_xml | – volume: 8 start-page: 8459 year: 2018 end-page: 8467 ident: b0130 article-title: Structure and evolution of confined carbon species during methane dehydroaromatization over Mo/ZSM-5 publication-title: ACS Catal. – volume: 57 start-page: 95 year: 1999 end-page: 102 ident: b0110 article-title: Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit publication-title: Catal. Lett. – volume: 50 start-page: 1251 year: 2021 end-page: 1268 ident: b0070 article-title: Methane activation by ZSM-5-supported transition metal centers publication-title: Chem. Soc. Rev – volume: 7 start-page: 4033 year: 2017 end-page: 4046 ident: b0175 article-title: Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV−vis spectroscopy publication-title: ACS Catal. – volume: 11 start-page: 7780 year: 2021 end-page: 7819 ident: b0240 article-title: Aromatics production via methanol-mediated transformation routes publication-title: ACS Catal. – volume: 11 start-page: 39 year: 2019 end-page: 52 ident: b0065 article-title: Progress in developing a structure-activity relationship for the direct aromatization of methane publication-title: ChemCatChem – volume: 117 start-page: 8497 year: 2017 end-page: 8520 ident: b0040 article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects publication-title: Chem. Rev. – volume: 9 start-page: 8731 year: 2019 end-page: 8737 ident: b0100 article-title: Structure and reactivity of the Mo/ZSM-5 dehydroaromatization catalyst: an operando computational study publication-title: ACS Catal. – volume: 122 start-page: 84 year: 2008 end-page: 90 ident: b0165 article-title: Highly dispersed molybdenum oxide supported on hzsm-5 for methane dehydroaromatization publication-title: Catal. Lett. – volume: 36 start-page: 829 year: 2015 end-page: 837 ident: b0170 article-title: Activation of Mo/HZSM-5 for methane aromatization publication-title: Chin. J. Catal. – volume: 21 start-page: 35 year: 1993 end-page: 41 ident: b0060 article-title: Dehydrogenation and aromatization of methane under non-oxidizing conditions publication-title: Catal. Lett. – volume: 175 start-page: 338 year: 1998 end-page: 346 ident: b0050 article-title: Conversion of methane to benzene over transition metal ion ZSM-5 zeolites: I. Catalytic characterization publication-title: J. Catal. – volume: 58 start-page: 7068 year: 2019 end-page: 7072 ident: b0210 article-title: Reversible Nature of Coke Formation on Mo/ZSM-5 Methane Dehydroaromatization Catalysts publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 217 year: 2015 end-page: 240 ident: b0215 article-title: Vibrational spectroscopic image analysis of biological material using multivariate curve resolution-alternating least squares (MCR-ALS) publication-title: Nat. Protoc. – volume: 57 start-page: 1016 year: 2018 end-page: 1020 ident: b0135 article-title: Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5 publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: b0195 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3521 year: 2014 end-page: 3532 ident: b0180 article-title: The role of cyclopentadienium ions in methanol-to-hydrocarbons chemistry publication-title: ACS Catal. – volume: 66 start-page: 1366 year: 1944 end-page: 1373 ident: b0205 article-title: Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 5810 year: 2012 end-page: 5831 ident: b0140 article-title: Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 4642 year: 2022 end-page: 4650 ident: b0160 article-title: Enhancing metal dispersion over an Mo/ZSM-5 catalyst for methane dehydroaromatization publication-title: Inorg. Chem. Front. – volume: 105 start-page: 132 year: 2007 end-page: 139 ident: b0185 article-title: Hunger, In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration publication-title: Micropor. Mesopor. Mater. – volume: 32 start-page: 43 year: 1995 end-page: 53 ident: b0090 article-title: Dehydrogenation of methane on supported molybdenum oxides. Formation of benzene from methane publication-title: Catal. Lett. – volume: 55 start-page: 5215 year: 2016 end-page: 5219 ident: b0105 article-title: Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-Ray methods publication-title: Angew. Chem. Int. Ed. – volume: 165 start-page: 150 year: 1997 end-page: 161 ident: b0120 article-title: Aromatization of methane over supported and unsupported Mo-based catalysts publication-title: J. Catal. – volume: 73 start-page: 297 year: 2008 end-page: 305 ident: b0015 article-title: The effects of gas flaring on crops in the Niger Delta, Nigeria publication-title: GeoJournal – volume: 49 start-page: 488 year: 2016 end-page: 509 ident: b0010 article-title: A review of global gas flaring and venting and impact on the environment: Case study of Iran publication-title: Int. J. Greenh. Gas Control – volume: 32 start-page: 1 year: 2020 end-page: 14 ident: b0045 article-title: Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization publication-title: Adv. Mater. – volume: 175 start-page: 347 year: 1998 end-page: 351 ident: b0055 article-title: Conversion of methane to benzene over transition metal ion ZSM-5 zeolites: II. Catalyst characterization by X-ray photoelectron spectroscopy publication-title: J. Catal. – reference: BP, Statistical Review of World Energy, 2021. – volume: 558 start-page: 67 year: 2018 end-page: 80 ident: b0085 article-title: Impact of the presence of Mo carbide species prepared ex situ in Mo/HZSM-5 on the catalytic properties in methane aromatization publication-title: Appl. Catal. A Gen. – volume: 574 start-page: 144 year: 2019 end-page: 150 ident: b0155 article-title: Quantifying the impact of dispersion, acidity and porosity of Mo/HZSM-5 on the performance in methane dehydroaromatization publication-title: Appl. Catal. A Gen. – volume: 11 start-page: 430 year: 1943 end-page: 431 ident: b0200 article-title: A new adsorption isotherm which is valid over a very wide range of pressure publication-title: J. Chem. Phys. – volume: 39 start-page: 157 year: 1996 end-page: 161 ident: b0095 article-title: Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts publication-title: Catal. Lett. – volume: 13 start-page: 1 year: 2023 end-page: 10 ident: b0075 article-title: Transition-metal catalysts for methane dehydroaromatization (Mo, Re, Fe): activity, stability, active sites, and carbon deposits publication-title: ACS Catal. – volume: 8 start-page: 41 year: 2000 end-page: 62 ident: b0020 article-title: Importance of human environmental exposure to hazardous air pollutants from gas flares publication-title: Environ. Rev. – reference: World Bank, Report on Small-scale Technologies for Utilization of Associated Gas, 2022. https://documents1.worldbank.org/curated/en/305891644478108245/pdf/Report-on-Small-scale-Technologies-for-Utilization-of-Associated-Gas.pdf. – volume: 9 start-page: 4801 year: 2018 end-page: 4807 ident: b0080 article-title: On the dynamic nature of Mo sites for methane dehydroaromatization publication-title: Chem. Sci. – volume: 157 start-page: 190 year: 1995 end-page: 200 ident: b0115 article-title: Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst publication-title: J. Catal. – reference: World Bank, Global Gas Flaring Tracking Report 2023, 2023. https://www.worldbank.org/en/programs/gasflaringreduction/publication/2023-global-gas-flaring-tracker-report (Accessed October 9, 2023). – volume: 176–177 start-page: 731 year: 2015 end-page: 739 ident: b0150 article-title: On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction publication-title: Appl. Catal. B Environ. – volume: 11 start-page: 5465 year: 2021 end-page: 5482 ident: b0245 article-title: Influence of preparation conditions on the catalytic performance of Mo/H-ZSM-5 for methane dehydroaromatization publication-title: Appl. Sci. – volume: 141 start-page: 18814 year: 2019 end-page: 18824 ident: b0190 article-title: Activity descriptors derived from comparison of Mo and Fe as active metal for methane conversion to aromatics publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 143 year: 2015 end-page: 314 ident: b0035 article-title: Zeolites and zeotypes for oil and gas conversion publication-title: Adv. Catal. – volume: 6 start-page: 2663 year: 2014 end-page: 2678 ident: b0225 article-title: Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance publication-title: Catal. Sci. Technol – volume: 10 start-page: 804 year: 2018 end-page: 812 ident: b0235 article-title: Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process publication-title: Nat. Chem. – volume: 60 start-page: 10709 year: 2021 end-page: 10715 ident: b0145 article-title: Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 135 year: 1995 end-page: 149 ident: b0125 article-title: Methane activation without using oxidants over Mo / HZSM-5 zeolite catalysts publication-title: Catal. Lett. – volume: 8 start-page: 1632 year: 2018 end-page: 1644 ident: b0220 article-title: Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with: Operando UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5 publication-title: Catal. Sci. Technol. – volume: 370 start-page: 321 year: 2019 end-page: 331 ident: b0230 article-title: A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation publication-title: J. Catal. – volume: 8 start-page: 1632 year: 2018 ident: 10.1016/j.jcat.2024.115619_b0220 article-title: Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with: Operando UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY02459B – volume: 32 start-page: 43 year: 1995 ident: 10.1016/j.jcat.2024.115619_b0090 article-title: Dehydrogenation of methane on supported molybdenum oxides. Formation of benzene from methane publication-title: Catal. Lett. doi: 10.1007/BF00806100 – volume: 8 start-page: 8459 year: 2018 ident: 10.1016/j.jcat.2024.115619_b0130 article-title: Structure and evolution of confined carbon species during methane dehydroaromatization over Mo/ZSM-5 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02491 – volume: 13 start-page: 1 year: 2023 ident: 10.1016/j.jcat.2024.115619_b0075 article-title: Transition-metal catalysts for methane dehydroaromatization (Mo, Re, Fe): activity, stability, active sites, and carbon deposits publication-title: ACS Catal. doi: 10.1021/acscatal.2c04962 – volume: 39 start-page: 157 year: 1996 ident: 10.1016/j.jcat.2024.115619_b0095 article-title: Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts publication-title: Catal. Lett. doi: 10.1007/BF00805576 – volume: 11 start-page: 5465 year: 2021 ident: 10.1016/j.jcat.2024.115619_b0245 article-title: Influence of preparation conditions on the catalytic performance of Mo/H-ZSM-5 for methane dehydroaromatization publication-title: Appl. Sci. doi: 10.3390/app11125465 – volume: 60 start-page: 10709 year: 2021 ident: 10.1016/j.jcat.2024.115619_b0145 article-title: Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202017074 – volume: 141 start-page: 18814 year: 2019 ident: 10.1016/j.jcat.2024.115619_b0190 article-title: Activity descriptors derived from comparison of Mo and Fe as active metal for methane conversion to aromatics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09710 – volume: 175 start-page: 347 year: 1998 ident: 10.1016/j.jcat.2024.115619_b0055 article-title: Conversion of methane to benzene over transition metal ion ZSM-5 zeolites: II. Catalyst characterization by X-ray photoelectron spectroscopy publication-title: J. Catal. doi: 10.1006/jcat.1998.2011 – volume: 165 start-page: 150 year: 1997 ident: 10.1016/j.jcat.2024.115619_b0120 article-title: Aromatization of methane over supported and unsupported Mo-based catalysts publication-title: J. Catal. doi: 10.1006/jcat.1997.1478 – volume: 9 start-page: 4642 year: 2022 ident: 10.1016/j.jcat.2024.115619_b0160 article-title: Enhancing metal dispersion over an Mo/ZSM-5 catalyst for methane dehydroaromatization publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI00694D – volume: 21 start-page: 35 year: 1993 ident: 10.1016/j.jcat.2024.115619_b0060 article-title: Dehydrogenation and aromatization of methane under non-oxidizing conditions publication-title: Catal. Lett. doi: 10.1007/BF00767368 – volume: 51 start-page: 5810 year: 2012 ident: 10.1016/j.jcat.2024.115619_b0140 article-title: Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103657 – ident: 10.1016/j.jcat.2024.115619_b0030 – volume: 9 start-page: 4801 year: 2018 ident: 10.1016/j.jcat.2024.115619_b0080 article-title: On the dynamic nature of Mo sites for methane dehydroaromatization publication-title: Chem. Sci. doi: 10.1039/C8SC01263F – volume: 49 start-page: 488 year: 2016 ident: 10.1016/j.jcat.2024.115619_b0010 article-title: A review of global gas flaring and venting and impact on the environment: Case study of Iran publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2016.02.010 – volume: 176–177 start-page: 731 year: 2015 ident: 10.1016/j.jcat.2024.115619_b0150 article-title: On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.04.052 – volume: 6 start-page: 2663 year: 2014 ident: 10.1016/j.jcat.2024.115619_b0225 article-title: Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance publication-title: Catal. Sci. Technol doi: 10.1039/C5CY02140E – volume: 117 start-page: 8497 year: 2017 ident: 10.1016/j.jcat.2024.115619_b0040 article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00715 – volume: 66 start-page: 1366 year: 1944 ident: 10.1016/j.jcat.2024.115619_b0205 article-title: Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01236a048 – volume: 73 start-page: 297 year: 2008 ident: 10.1016/j.jcat.2024.115619_b0015 article-title: The effects of gas flaring on crops in the Niger Delta, Nigeria publication-title: GeoJournal doi: 10.1007/s10708-008-9207-z – volume: 58 start-page: 7068 year: 2019 ident: 10.1016/j.jcat.2024.115619_b0210 article-title: Reversible Nature of Coke Formation on Mo/ZSM-5 Methane Dehydroaromatization Catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902730 – volume: 11 start-page: 7780 year: 2021 ident: 10.1016/j.jcat.2024.115619_b0240 article-title: Aromatics production via methanol-mediated transformation routes publication-title: ACS Catal. doi: 10.1021/acscatal.1c01422 – ident: 10.1016/j.jcat.2024.115619_b0025 – volume: 8 start-page: 41 year: 2000 ident: 10.1016/j.jcat.2024.115619_b0020 article-title: Importance of human environmental exposure to hazardous air pollutants from gas flares publication-title: Environ. Rev. doi: 10.1139/a00-005 – volume: 10 start-page: 217 year: 2015 ident: 10.1016/j.jcat.2024.115619_b0215 article-title: Vibrational spectroscopic image analysis of biological material using multivariate curve resolution-alternating least squares (MCR-ALS) publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.008 – volume: 36 start-page: 829 year: 2015 ident: 10.1016/j.jcat.2024.115619_b0170 article-title: Activation of Mo/HZSM-5 for methane aromatization publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(14)60301-6 – volume: 122 start-page: 84 year: 2008 ident: 10.1016/j.jcat.2024.115619_b0165 article-title: Highly dispersed molybdenum oxide supported on hzsm-5 for methane dehydroaromatization publication-title: Catal. Lett. doi: 10.1007/s10562-007-9346-8 – volume: 175 start-page: 338 year: 1998 ident: 10.1016/j.jcat.2024.115619_b0050 article-title: Conversion of methane to benzene over transition metal ion ZSM-5 zeolites: I. Catalytic characterization publication-title: J. Catal. doi: 10.1006/jcat.1998.2010 – volume: 11 start-page: 39 year: 2019 ident: 10.1016/j.jcat.2024.115619_b0065 article-title: Progress in developing a structure-activity relationship for the direct aromatization of methane publication-title: ChemCatChem doi: 10.1002/cctc.201800880 – volume: 558 start-page: 67 year: 2018 ident: 10.1016/j.jcat.2024.115619_b0085 article-title: Impact of the presence of Mo carbide species prepared ex situ in Mo/HZSM-5 on the catalytic properties in methane aromatization publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2018.03.023 – volume: 57 start-page: 95 year: 1999 ident: 10.1016/j.jcat.2024.115619_b0110 article-title: Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit publication-title: Catal. Lett. doi: 10.1023/A:1019087313679 – volume: 7 start-page: 4033 year: 2017 ident: 10.1016/j.jcat.2024.115619_b0175 article-title: Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV−vis spectroscopy publication-title: ACS Catal. doi: 10.1021/acscatal.6b03677 – volume: 4 start-page: 3521 year: 2014 ident: 10.1016/j.jcat.2024.115619_b0180 article-title: The role of cyclopentadienium ions in methanol-to-hydrocarbons chemistry publication-title: ACS Catal. doi: 10.1021/cs500722m – volume: 11 start-page: 430 year: 1943 ident: 10.1016/j.jcat.2024.115619_b0200 article-title: A new adsorption isotherm which is valid over a very wide range of pressure publication-title: J. Chem. Phys. doi: 10.1063/1.1723870 – volume: 370 start-page: 321 year: 2019 ident: 10.1016/j.jcat.2024.115619_b0230 article-title: A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation publication-title: J. Catal. doi: 10.1016/j.jcat.2019.01.013 – volume: 574 start-page: 144 year: 2019 ident: 10.1016/j.jcat.2024.115619_b0155 article-title: Quantifying the impact of dispersion, acidity and porosity of Mo/HZSM-5 on the performance in methane dehydroaromatization publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2019.01.022 – ident: 10.1016/j.jcat.2024.115619_b0005 – volume: 50 start-page: 1251 year: 2021 ident: 10.1016/j.jcat.2024.115619_b0070 article-title: Methane activation by ZSM-5-supported transition metal centers publication-title: Chem. Soc. Rev doi: 10.1039/D0CS01016B – volume: 57 start-page: 1016 year: 2018 ident: 10.1016/j.jcat.2024.115619_b0135 article-title: Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711098 – volume: 157 start-page: 190 year: 1995 ident: 10.1016/j.jcat.2024.115619_b0115 article-title: Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst publication-title: J. Catal. doi: 10.1006/jcat.1995.1279 – volume: 32 start-page: 1 year: 2020 ident: 10.1016/j.jcat.2024.115619_b0045 article-title: Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization publication-title: Adv. Mater. – volume: 30 start-page: 135 year: 1995 ident: 10.1016/j.jcat.2024.115619_b0125 article-title: Methane activation without using oxidants over Mo / HZSM-5 zeolite catalysts publication-title: Catal. Lett. doi: 10.1007/BF00813680 – volume: 105 start-page: 132 year: 2007 ident: 10.1016/j.jcat.2024.115619_b0185 article-title: Hunger, In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2007.05.028 – volume: 58 start-page: 143 year: 2015 ident: 10.1016/j.jcat.2024.115619_b0035 article-title: Zeolites and zeotypes for oil and gas conversion publication-title: Adv. Catal. doi: 10.1016/bs.acat.2015.10.001 – volume: 10 start-page: 804 year: 2018 ident: 10.1016/j.jcat.2024.115619_b0235 article-title: Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process publication-title: Nat. Chem. doi: 10.1038/s41557-018-0081-0 – volume: 55 start-page: 5215 year: 2016 ident: 10.1016/j.jcat.2024.115619_b0105 article-title: Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-Ray methods publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601357 – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.jcat.2024.115619_b0195 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 9 start-page: 8731 year: 2019 ident: 10.1016/j.jcat.2024.115619_b0100 article-title: Structure and reactivity of the Mo/ZSM-5 dehydroaromatization catalyst: an operando computational study publication-title: ACS Catal. doi: 10.1021/acscatal.9b02213 |
| SSID | ssj0011558 |
| Score | 2.465705 |
| Snippet | [Display omitted]
•Operando UV–Vis diffuse reflectance spectroscopy and chemometrics could distinguish the reaction phases of the methane dehydroaromatization... Methane Dehydroaromatization (MDA) is proposed as a possible way to valorize stranded natural gas, e.g., arising during crude oil drilling. In this study, we... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115619 |
| SubjectTerms | catalysts catalytic activity Coke deposition methane Methane dehydroaromatization Mo/HZSM-5 natural gas Operando UV–Vis diffuse reflectance spectroscopy petroleum Reaction phases reflectance spectroscopy |
| Title | Operando UV–Vis diffuse reflectance spectroscopy insights into the methane dehydroaromatization reaction over Mo/H-ZSM-5 catalysts |
| URI | https://dx.doi.org/10.1016/j.jcat.2024.115619 https://www.proquest.com/docview/3153672290 |
| Volume | 436 |
| WOSCitedRecordID | wos001265274300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0021-9517 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0011558 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6FFgl6QFBAlD8tErfIIfbGWftYqkJblILUJoq4WGt7rSat7MhO2ubGgTfgWXghnoQZ765tQlvRAxcr8s945fky883uzA4hb0WYhDLuxRawZQxQYmGFwgWFRCIRzPfsSIqy2QQ_PPTGY_9Lq_XT1MKcn_E09S4v_dl_VTWcA2Vj6ewt1F0JhRPwG5QOR1A7HP9J8Z9nEvxPnLWHI5PJwEaTomyFsiiwS0qCU_VlqUBZZ4n7WWYzrP8rMFLHBC1NSLG9tEixsupkGeeZyDPkt6pwE-ToNuOYBAq2AUa8Z309Glhuu5wTWhZqk6grqK--Pilq-xcq83ckwa3OG5D9BO-8mExP69UK0T7ofOyY6yPAsW4As5_WLkZGpyeLpZ5dei_zeXvQaU5wOL0qva4uOLAtIIK8abR7rGl2gdb2leX9yyOoyYlpZ4oTuSi-U9_85_bbK26xSlY0eXDTAGUEKCNQMu6QdYe7PhjT9e393fFBtXwFJE1RAD1yXa2lEgtXR3IdI1rhBiXhOX5IHmh10W2FsEekJdNNcm_HNAjcJBuNvSwfk-8Gd3Q4-vXtByCOasTRBuJoE3HUII4i4iggjmrE0asQRw3iKCKODrJ3Gm-0wtsTMvywe7yzZ-kWH1bEOJ9bfgIEMXG6vB_azGMRZ4zHXui5nu90WegKiDYSW0IQ3EsS1hWCA5_ifSwIDznEHuwpWUuzVD4jtOtw241cCEf6wKkj8Eusx2Lfc2LZ5dxLtohtPnMQ6f3vsQ3LWXC9grdIu3pmpnZ_ufFu12gv0PxV8dIAwHjjc2-MqgNQIa7YwZfOFkXAgI_0ObZkeH6rkbwg9-t_0kuyNs8X8hW5G53PJ0X-WqP1NzZvypM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operando+UV%E2%80%93Vis+diffuse+reflectance+spectroscopy+insights+into+the+methane+dehydroaromatization+reaction+over+Mo%2FH-ZSM-5+catalysts&rft.jtitle=Journal+of+catalysis&rft.au=Haben%2C+Sebastian&rft.au=Kromwijk%2C+Josepha+J.G.&rft.au=Vollmer%2C+Ina&rft.au=Weckhuysen%2C+Bert+M.&rft.date=2024-08-01&rft.issn=0021-9517&rft.volume=436&rft.spage=115619&rft_id=info:doi/10.1016%2Fj.jcat.2024.115619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcat_2024_115619 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |