Noise Learning-Based Denoising Autoencoder

This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise of the input data. Then, the denoising is performed by subtracting the regenerated noise from the noisy input. Hence, nlDAE i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters Jg. 25; H. 9; S. 2983 - 2987
Hauptverfasser: Lee, Woong-Hee, Ozger, Mustafa, Challita, Ursula, Sung, Ki Won
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-7798, 1558-2558, 1558-2558
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise of the input data. Then, the denoising is performed by subtracting the regenerated noise from the noisy input. Hence, nlDAE is more effective than DAE when the noise is simpler to regenerate than the original data. To validate the performance of nlDAE, we provide three case studies: signal restoration, symbol demodulation, and precise localization. Numerical results suggest that nlDAE requires smaller latent space dimension and smaller training dataset compared to DAE.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
1558-2558
DOI:10.1109/LCOMM.2021.3091800