Numerical simulation of the generalized modified Benjamin–Bona–Mahony equation using SBP-SAT in time
In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin–Bona–Mahony (BBM) equation, a non-linear soliton model. The spatial discretization uses high-order accurate summation-by-parts (SBP) finite difference operators combined with b...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 459; s. 116377 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.05.2025
|
| Témata: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin–Bona–Mahony (BBM) equation, a non-linear soliton model. The spatial discretization uses high-order accurate summation-by-parts (SBP) finite difference operators combined with both weak and strong enforcement of boundary conditions. For time integration we compare the explicit RK4 method against an implicit SBP time integrator. These time-marching methods are evaluated and compared in terms of accuracy and efficiency. It is shown that the implicit SBP time-integrator is more efficient than the explicit RK4 method for non-linear soliton models.
•Stable approximations of the generalized modified BBM equation are derived.•An implicit SBP-SAT temporal discretization is derived.•The SBP-SAT temporal discretization, as compared to RK4, is much more efficient.•SBP-Projection is a more favourable method of imposing BC, as compared to SAT. |
|---|---|
| AbstractList | In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin–Bona–Mahony (BBM) equation, a non-linear soliton model. The spatial discretization uses high-order accurate summation-by-parts (SBP) finite difference operators combined with both weak and strong enforcement of boundary conditions. For time integration we compare the explicit RK4 method against an implicit SBP time integrator. These time-marching methods are evaluated and compared in terms of accuracy and efficiency. It is shown that the implicit SBP time-integrator is more efficient than the explicit RK4 method for non-linear soliton models.
•Stable approximations of the generalized modified BBM equation are derived.•An implicit SBP-SAT temporal discretization is derived.•The SBP-SAT temporal discretization, as compared to RK4, is much more efficient.•SBP-Projection is a more favourable method of imposing BC, as compared to SAT. In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin-Bona-Mahony (BBM) equation, a non-linear soliton model. The spatial discretization uses high-order accurate summation-by-parts (SBP) finite difference operators combined with both weak and strong enforcement of boundary conditions. For time integration we compare the explicit RK4 method against an implicit SBP time integrator. These time-marching methods are evaluated and compared in terms of accuracy and efficiency. It is shown that the implicit SBP time-integrator is more efficient than the explicit RK4 method for non-linear soliton models. |
| ArticleNumber | 116377 |
| Author | Kjelldahl, Vilma Mattsson, Ken |
| Author_xml | – sequence: 1 givenname: Vilma surname: Kjelldahl fullname: Kjelldahl, Vilma email: vilmakjelldahl@outlook.com – sequence: 2 givenname: Ken orcidid: 0000-0003-0843-3321 surname: Mattsson fullname: Mattsson, Ken email: ken.mattsson@it.uu.se |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-544243$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp9kMFS2zAQhnWgMySUB-hND1Cnkq3I9nBKAqWdoYUZoFeNIq2SzdhSkOwy9NR36BvyJBjc4cCB07-H_9vZ_abkwAcPhHzibMYZl192M6PbWc5yMeNcFmV5QCZsiIyJvDwk05R2jDFZczEh2599CxGNbmjCtm90h8HT4Gi3BboBD1E3-AcsbYNFh8OwBL_TLfrHv_-Wweshfuht8A8U7vqR7hP6Db1eXmXXixuKnnbYwkfywekmwfH_PCK3X89uVt-yi8vz76vFRWaGC7uslpxVppLG1TAvtXGVEVqWxsrK1IZXWsh1wWwtLBTSWuHWpS2skLmzc-PWUByRz-PedA_7fq32EVsdH1TQqE7x10KFuFF9r-ZC5KIY6nysmxhSiuBeAc7Us021U4NN9WxTjTYHpnzDGOxeXu-ixuZd8mQkYTDwGyGqZBC8AYsRTKdswHfoJ1Mol0E |
| CitedBy_id | crossref_primary_10_3390_axioms14040319 crossref_primary_10_1088_1402_4896_add0eb crossref_primary_10_3390_axioms14070545 crossref_primary_10_3390_math13101618 |
| Cites_doi | 10.1016/j.joes.2017.08.006 10.1016/j.jcp.2013.05.042 10.1016/j.jcp.2018.06.030 10.1006/jcph.1994.1057 10.1016/j.jcp.2014.06.027 10.1006/jcph.1994.1005 10.1016/S0168-9274(02)00138-1 10.1016/j.jcp.2022.111743 10.1016/j.physleta.2006.03.005 10.1016/j.jcp.2014.03.048 10.1090/S0025-5718-1995-1308459-9 10.1016/j.heliyon.2022.e12122 10.1016/j.jcp.2019.07.018 10.1137/15M1014917 10.1016/j.jcp.2004.03.001 10.1090/S0025-5718-1995-1297474-X 10.1007/BF01386051 10.1007/BF01939406 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| DOI | 10.1016/j.cam.2024.116377 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | oai_DiVA_org_uu_544243 10_1016_j_cam_2024_116377 S0377042724006253 |
| GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AAOAW AAQFI AAXKI AAXUO ABAOU ABJNI ABMAC ABVKL ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS 9DU AAFWJ AALRI AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EFLBG EJD FGOYB G-2 HZ~ LG9 M26 M41 NHB R2- SSZ WUQ ZY4 ~HD ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c377t-96108c86cf9e57acf8c4a67cd68c9c18a46b30d94de36dd4fb7d3d462fd5cfbe3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001359523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-0427 1879-1778 |
| IngestDate | Tue Nov 04 16:16:51 EST 2025 Sat Nov 29 06:39:26 EST 2025 Tue Nov 18 20:50:51 EST 2025 Sat Dec 21 16:01:01 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Initial boundary value problem Benjamin–Bona–Mahony equation Summation-by-parts Non-linear Boundary conditions Time integration Simultaneous-approximation-terms |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c377t-96108c86cf9e57acf8c4a67cd68c9c18a46b30d94de36dd4fb7d3d462fd5cfbe3 |
| ORCID | 0000-0003-0843-3321 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-544243 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_544243 crossref_primary_10_1016_j_cam_2024_116377 crossref_citationtrail_10_1016_j_cam_2024_116377 elsevier_sciencedirect_doi_10_1016_j_cam_2024_116377 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-15 |
| PublicationDateYYYYMMDD | 2025-05-15 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Arora, Rani, Emadifar (b2) 2022; 8 Strand (b9) 1994; 110 Strang (b17) 1964; 6 Boom, Zingg (b7) 2015; 37 Carpenter, Gottlieb, Abarbanel (b11) 1994; 111 Mattsson (b15) 2014; 274 Hairer (b21) 2006; vol. 31 Wazwaz (b3) 2006; 355 Mattsson, Olsson (b14) 2018; 372 Kennedy, Carpenter (b19) 2003; 44 Nordström, Lundquist (b6) 2013; 251 Mattsson, Nordström (b10) 2004; 199 Svärd, Nordström (b22) 2019; 397 Kreiss, Scherer (b8) 1974 Chipman (b20) 1971; 11 Guner (b4) 2017; 2 Lundquist, Nordström (b5) 2014; 270 Manukure, Booker (b1) 2021; 4 Olsson (b13) 1995; 64 Mattsson, Ljungberg Rydin (b16) 2023; 473 Gustafsson, Kreiss, Oliger (b18) 1995 Olsson (b12) 1995; 64 Arora (10.1016/j.cam.2024.116377_b2) 2022; 8 Olsson (10.1016/j.cam.2024.116377_b12) 1995; 64 Hairer (10.1016/j.cam.2024.116377_b21) 2006; vol. 31 Strand (10.1016/j.cam.2024.116377_b9) 1994; 110 Mattsson (10.1016/j.cam.2024.116377_b14) 2018; 372 Svärd (10.1016/j.cam.2024.116377_b22) 2019; 397 Mattsson (10.1016/j.cam.2024.116377_b15) 2014; 274 Guner (10.1016/j.cam.2024.116377_b4) 2017; 2 Kennedy (10.1016/j.cam.2024.116377_b19) 2003; 44 Mattsson (10.1016/j.cam.2024.116377_b16) 2023; 473 Mattsson (10.1016/j.cam.2024.116377_b10) 2004; 199 Nordström (10.1016/j.cam.2024.116377_b6) 2013; 251 Manukure (10.1016/j.cam.2024.116377_b1) 2021; 4 Chipman (10.1016/j.cam.2024.116377_b20) 1971; 11 Carpenter (10.1016/j.cam.2024.116377_b11) 1994; 111 Wazwaz (10.1016/j.cam.2024.116377_b3) 2006; 355 Boom (10.1016/j.cam.2024.116377_b7) 2015; 37 Olsson (10.1016/j.cam.2024.116377_b13) 1995; 64 Kreiss (10.1016/j.cam.2024.116377_b8) 1974 Lundquist (10.1016/j.cam.2024.116377_b5) 2014; 270 Strang (10.1016/j.cam.2024.116377_b17) 1964; 6 Gustafsson (10.1016/j.cam.2024.116377_b18) 1995 |
| References_xml | – volume: 44 start-page: 139 year: 2003 end-page: 181 ident: b19 article-title: Additive Runge–Kutta schemes for convection–diffusion-reaction equations publication-title: J. Appl. Numer. Math. – volume: 110 start-page: 47 year: 1994 end-page: 67 ident: b9 article-title: Summation by parts for finite difference approximations for d/dx publication-title: J. Comput. Phys. – volume: 473 year: 2023 ident: b16 article-title: Implicit summation by parts operators for finite difference approximations of first and second derivatives publication-title: J. Comput. Phys. – volume: 2 start-page: 248 year: 2017 end-page: 252 ident: b4 article-title: Soliton solution of the generalized modified BBM equation and the generalized Boussinesq equation publication-title: J. Ocean Eng. Sci. – volume: 274 start-page: 432 year: 2014 end-page: 454 ident: b15 article-title: Diagonal-norm summation by parts operators for finite difference approximations of third and fourth derivatives publication-title: J. Comput. Phys. – volume: 111 start-page: 220 year: 1994 end-page: 236 ident: b11 article-title: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes publication-title: J. Comput. Phys. – volume: 372 start-page: 349 year: 2018 end-page: 372 ident: b14 article-title: An improved projection method publication-title: J. Comput. Phys. – volume: 64 start-page: 1035 year: 1995 ident: b12 article-title: Summation by parts, projections, and stability I publication-title: Math. Comp. – volume: 199 start-page: 503 year: 2004 end-page: 540 ident: b10 article-title: Summation by parts operators for finite difference approximations of second derivatives publication-title: J. Comput. Phys. – volume: 251 start-page: 487 year: 2013 end-page: 499 ident: b6 article-title: Summation-by-parts in time publication-title: J. Comput. Phys. – start-page: 195 year: 1974 end-page: 212 ident: b8 article-title: Finite element and finite difference methods for hyperbolic partial differential equations publication-title: Mathematical Aspects of Finite Elements in Partial Differential Equations – volume: 397 year: 2019 ident: b22 article-title: On the convergence rates of energy-stable finite-difference schemes publication-title: J. Comput. Phys. – volume: 270 start-page: 86 year: 2014 end-page: 104 ident: b5 article-title: The sbp-sat technique for initial value problems publication-title: J. Comput. Phys. – volume: 64 start-page: 1473 year: 1995 ident: b13 article-title: Summation by parts, projections, and stability II publication-title: Math. Comp. – volume: 8 year: 2022 ident: b2 article-title: Soliton: A dispersion-less solution with existence and its types publication-title: Heliyon – volume: 37 start-page: A2682 year: 2015 end-page: A2709 ident: b7 article-title: High-order implicit time-marching methods based on generalized summation-by-parts operators publication-title: SIAM J. Sci. Comput. – volume: 6 start-page: 37 year: 1964 end-page: 46 ident: b17 article-title: Accurate partial difference methods II. Non-linear problems publication-title: Numer. Math. – year: 1995 ident: b18 article-title: Time Dependent Problems and Difference Methods – volume: 11 start-page: 384 year: 1971 end-page: 388 ident: b20 article-title: A-stable Runge–Kutta processes publication-title: BIT – volume: vol. 31 year: 2006 ident: b21 publication-title: Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations – volume: 4 year: 2021 ident: b1 article-title: A short overview of solitons and applications publication-title: Partial Differ. Equ. Appl. Math. – volume: 355 start-page: 358 year: 2006 end-page: 362 ident: b3 article-title: New travelling wave solutions of different physical structures to generalized BBM equation publication-title: Phys. Lett. A – year: 1995 ident: 10.1016/j.cam.2024.116377_b18 – volume: 2 start-page: 248 year: 2017 ident: 10.1016/j.cam.2024.116377_b4 article-title: Soliton solution of the generalized modified BBM equation and the generalized Boussinesq equation publication-title: J. Ocean Eng. Sci. doi: 10.1016/j.joes.2017.08.006 – volume: 251 start-page: 487 year: 2013 ident: 10.1016/j.cam.2024.116377_b6 article-title: Summation-by-parts in time publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.05.042 – start-page: 195 year: 1974 ident: 10.1016/j.cam.2024.116377_b8 article-title: Finite element and finite difference methods for hyperbolic partial differential equations – volume: 372 start-page: 349 year: 2018 ident: 10.1016/j.cam.2024.116377_b14 article-title: An improved projection method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.06.030 – volume: 111 start-page: 220 issue: 2 year: 1994 ident: 10.1016/j.cam.2024.116377_b11 article-title: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1057 – volume: 274 start-page: 432 year: 2014 ident: 10.1016/j.cam.2024.116377_b15 article-title: Diagonal-norm summation by parts operators for finite difference approximations of third and fourth derivatives publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.06.027 – volume: 110 start-page: 47 year: 1994 ident: 10.1016/j.cam.2024.116377_b9 article-title: Summation by parts for finite difference approximations for d/dx publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1005 – volume: 44 start-page: 139 year: 2003 ident: 10.1016/j.cam.2024.116377_b19 article-title: Additive Runge–Kutta schemes for convection–diffusion-reaction equations publication-title: J. Appl. Numer. Math. doi: 10.1016/S0168-9274(02)00138-1 – volume: 473 year: 2023 ident: 10.1016/j.cam.2024.116377_b16 article-title: Implicit summation by parts operators for finite difference approximations of first and second derivatives publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111743 – volume: 355 start-page: 358 year: 2006 ident: 10.1016/j.cam.2024.116377_b3 article-title: New travelling wave solutions of different physical structures to generalized BBM equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2006.03.005 – volume: 270 start-page: 86 year: 2014 ident: 10.1016/j.cam.2024.116377_b5 article-title: The sbp-sat technique for initial value problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.03.048 – volume: 64 start-page: 1473 year: 1995 ident: 10.1016/j.cam.2024.116377_b13 article-title: Summation by parts, projections, and stability II publication-title: Math. Comp. doi: 10.1090/S0025-5718-1995-1308459-9 – volume: 4 year: 2021 ident: 10.1016/j.cam.2024.116377_b1 article-title: A short overview of solitons and applications publication-title: Partial Differ. Equ. Appl. Math. – volume: 8 year: 2022 ident: 10.1016/j.cam.2024.116377_b2 article-title: Soliton: A dispersion-less solution with existence and its types publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12122 – volume: 397 year: 2019 ident: 10.1016/j.cam.2024.116377_b22 article-title: On the convergence rates of energy-stable finite-difference schemes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.07.018 – volume: 37 start-page: A2682 year: 2015 ident: 10.1016/j.cam.2024.116377_b7 article-title: High-order implicit time-marching methods based on generalized summation-by-parts operators publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1014917 – volume: 199 start-page: 503 issue: 2 year: 2004 ident: 10.1016/j.cam.2024.116377_b10 article-title: Summation by parts operators for finite difference approximations of second derivatives publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.03.001 – volume: 64 start-page: 1035 year: 1995 ident: 10.1016/j.cam.2024.116377_b12 article-title: Summation by parts, projections, and stability I publication-title: Math. Comp. doi: 10.1090/S0025-5718-1995-1297474-X – volume: 6 start-page: 37 year: 1964 ident: 10.1016/j.cam.2024.116377_b17 article-title: Accurate partial difference methods II. Non-linear problems publication-title: Numer. Math. doi: 10.1007/BF01386051 – volume: vol. 31 year: 2006 ident: 10.1016/j.cam.2024.116377_b21 – volume: 11 start-page: 384 year: 1971 ident: 10.1016/j.cam.2024.116377_b20 article-title: A-stable Runge–Kutta processes publication-title: BIT doi: 10.1007/BF01939406 |
| SSID | ssj0006914 |
| Score | 2.4641478 |
| Snippet | In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin–Bona–Mahony (BBM) equation, a... In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin-Bona-Mahony (BBM) equation, a... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 116377 |
| SubjectTerms | Benjamin-Bona-Mahony equation Beräkningsvetenskap med inriktning mot numerisk analys Boundary conditions Initial boundary value problem Non-linear Scientific Computing with specialization in Numerical Analysis Simultaneous-approximation-terms Summation-by-parts Time integration |
| Title | Numerical simulation of the generalized modified Benjamin–Bona–Mahony equation using SBP-SAT in time |
| URI | https://dx.doi.org/10.1016/j.cam.2024.116377 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-544243 |
| Volume | 459 |
| WOSCitedRecordID | wos001359523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1879-1778 databaseCode: AIEXJ dateStart: 20211207 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006914 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbKxgEOE59iDJAPcKEKahInTo4tDPG1atJK1Zvl2PGWKk1HP6YJLvwH_iG_hNexnXRDm9iBS5JGjuPmfWI_sd_3eRF6qXqSi1jCi0R85ZE0y7xE-oknZagofGMLv_byHX-hw2EymaSHnc4PFwtzVtKqSs7P09P_amo4B8bWobM3MHdTKZyAYzA6bMHssP0nww_XZhGm7C6LmU3O5TwBjo3IdPEdaOZsLgulCeggr6Z8VlTO7yEcADtvfhxw7bzezb8ZTfDuup5cOBocekf9Ue0lWVzUO9iguKJOGeGmG2tZWEt6Z41abLuYNM3LUvKTek56XJTtgKFzki9tZNhnG7pmJyqCSK-xm1BNF6BFqadTe2x2vsTqgZvu0wd2aLK6_NWzm0mGKXy1a_2AgLxpy15U0b40ujU-h86dbcqgCqarYKaKW2g7oFEKXeJ2_-P-5FMzkMepkYZ37XaL4rV74KV2XElrNvVna84yuod2rCVw34DkPurk1QN096B99g_RSQMX3MIFzxWGMngDLtjBBTu4_P75SwMFdgYi2EEE1xDBFiK4qLCGyCP09f3-6O0Hz2bf8AT8n5WXArFORBILleYR5UIlgvCYChknIhV-wkmchT2ZEpmHsZREZVSGksSBkpFQWR4-RlvVvMqfIBwJDkSa6iXwgEQ5z-JeGHDly0xxoiK5i3ru4TFhpel1hpSSXWm0XfS6ueTU6LJcV5g4izBLLA1hZICu6y57ZazX3EFrsb8rxn02Xxyz9ZpFhAQkfHqTtuyhO-3L8QxtrRbr_Dm6Lc5WxXLxwkLwD3vQqQ0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+the+generalized+modified+Benjamin%E2%80%93Bona%E2%80%93Mahony+equation+using+SBP-SAT+in+time&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Kjelldahl%2C+Vilma&rft.au=Mattsson%2C+Ken&rft.date=2025-05-15&rft.issn=0377-0427&rft.volume=459&rft.spage=116377&rft_id=info:doi/10.1016%2Fj.cam.2024.116377&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2024_116377 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |