Numerical simulation of the generalized modified Benjamin–Bona–Mahony equation using SBP-SAT in time

In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin–Bona–Mahony (BBM) equation, a non-linear soliton model. The spatial discretization uses high-order accurate summation-by-parts (SBP) finite difference operators combined with b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 459; s. 116377
Hlavní autoři: Kjelldahl, Vilma, Mattsson, Ken
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.05.2025
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin–Bona–Mahony (BBM) equation, a non-linear soliton model. The spatial discretization uses high-order accurate summation-by-parts (SBP) finite difference operators combined with both weak and strong enforcement of boundary conditions. For time integration we compare the explicit RK4 method against an implicit SBP time integrator. These time-marching methods are evaluated and compared in terms of accuracy and efficiency. It is shown that the implicit SBP time-integrator is more efficient than the explicit RK4 method for non-linear soliton models. •Stable approximations of the generalized modified BBM equation are derived.•An implicit SBP-SAT temporal discretization is derived.•The SBP-SAT temporal discretization, as compared to RK4, is much more efficient.•SBP-Projection is a more favourable method of imposing BC, as compared to SAT.
AbstractList In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin–Bona–Mahony (BBM) equation, a non-linear soliton model. The spatial discretization uses high-order accurate summation-by-parts (SBP) finite difference operators combined with both weak and strong enforcement of boundary conditions. For time integration we compare the explicit RK4 method against an implicit SBP time integrator. These time-marching methods are evaluated and compared in terms of accuracy and efficiency. It is shown that the implicit SBP time-integrator is more efficient than the explicit RK4 method for non-linear soliton models. •Stable approximations of the generalized modified BBM equation are derived.•An implicit SBP-SAT temporal discretization is derived.•The SBP-SAT temporal discretization, as compared to RK4, is much more efficient.•SBP-Projection is a more favourable method of imposing BC, as compared to SAT.
In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin-Bona-Mahony (BBM) equation, a non-linear soliton model. The spatial discretization uses high-order accurate summation-by-parts (SBP) finite difference operators combined with both weak and strong enforcement of boundary conditions. For time integration we compare the explicit RK4 method against an implicit SBP time integrator. These time-marching methods are evaluated and compared in terms of accuracy and efficiency. It is shown that the implicit SBP time-integrator is more efficient than the explicit RK4 method for non-linear soliton models.
ArticleNumber 116377
Author Kjelldahl, Vilma
Mattsson, Ken
Author_xml – sequence: 1
  givenname: Vilma
  surname: Kjelldahl
  fullname: Kjelldahl, Vilma
  email: vilmakjelldahl@outlook.com
– sequence: 2
  givenname: Ken
  orcidid: 0000-0003-0843-3321
  surname: Mattsson
  fullname: Mattsson, Ken
  email: ken.mattsson@it.uu.se
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-544243$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kMFS2zAQhnWgMySUB-hND1Cnkq3I9nBKAqWdoYUZoFeNIq2SzdhSkOwy9NR36BvyJBjc4cCB07-H_9vZ_abkwAcPhHzibMYZl192M6PbWc5yMeNcFmV5QCZsiIyJvDwk05R2jDFZczEh2599CxGNbmjCtm90h8HT4Gi3BboBD1E3-AcsbYNFh8OwBL_TLfrHv_-Wweshfuht8A8U7vqR7hP6Db1eXmXXixuKnnbYwkfywekmwfH_PCK3X89uVt-yi8vz76vFRWaGC7uslpxVppLG1TAvtXGVEVqWxsrK1IZXWsh1wWwtLBTSWuHWpS2skLmzc-PWUByRz-PedA_7fq32EVsdH1TQqE7x10KFuFF9r-ZC5KIY6nysmxhSiuBeAc7Us021U4NN9WxTjTYHpnzDGOxeXu-ixuZd8mQkYTDwGyGqZBC8AYsRTKdswHfoJ1Mol0E
CitedBy_id crossref_primary_10_3390_axioms14040319
crossref_primary_10_1088_1402_4896_add0eb
crossref_primary_10_3390_axioms14070545
crossref_primary_10_3390_math13101618
Cites_doi 10.1016/j.joes.2017.08.006
10.1016/j.jcp.2013.05.042
10.1016/j.jcp.2018.06.030
10.1006/jcph.1994.1057
10.1016/j.jcp.2014.06.027
10.1006/jcph.1994.1005
10.1016/S0168-9274(02)00138-1
10.1016/j.jcp.2022.111743
10.1016/j.physleta.2006.03.005
10.1016/j.jcp.2014.03.048
10.1090/S0025-5718-1995-1308459-9
10.1016/j.heliyon.2022.e12122
10.1016/j.jcp.2019.07.018
10.1137/15M1014917
10.1016/j.jcp.2004.03.001
10.1090/S0025-5718-1995-1297474-X
10.1007/BF01386051
10.1007/BF01939406
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.cam.2024.116377
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID oai_DiVA_org_uu_544243
10_1016_j_cam_2024_116377
S0377042724006253
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AAOAW
AAQFI
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AALRI
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
LG9
M26
M41
NHB
R2-
SSZ
WUQ
ZY4
~HD
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c377t-96108c86cf9e57acf8c4a67cd68c9c18a46b30d94de36dd4fb7d3d462fd5cfbe3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001359523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
1879-1778
IngestDate Tue Nov 04 16:16:51 EST 2025
Sat Nov 29 06:39:26 EST 2025
Tue Nov 18 20:50:51 EST 2025
Sat Dec 21 16:01:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Initial boundary value problem
Benjamin–Bona–Mahony equation
Summation-by-parts
Non-linear
Boundary conditions
Time integration
Simultaneous-approximation-terms
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-96108c86cf9e57acf8c4a67cd68c9c18a46b30d94de36dd4fb7d3d462fd5cfbe3
ORCID 0000-0003-0843-3321
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-544243
ParticipantIDs swepub_primary_oai_DiVA_org_uu_544243
crossref_primary_10_1016_j_cam_2024_116377
crossref_citationtrail_10_1016_j_cam_2024_116377
elsevier_sciencedirect_doi_10_1016_j_cam_2024_116377
PublicationCentury 2000
PublicationDate 2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Arora, Rani, Emadifar (b2) 2022; 8
Strand (b9) 1994; 110
Strang (b17) 1964; 6
Boom, Zingg (b7) 2015; 37
Carpenter, Gottlieb, Abarbanel (b11) 1994; 111
Mattsson (b15) 2014; 274
Hairer (b21) 2006; vol. 31
Wazwaz (b3) 2006; 355
Mattsson, Olsson (b14) 2018; 372
Kennedy, Carpenter (b19) 2003; 44
Nordström, Lundquist (b6) 2013; 251
Mattsson, Nordström (b10) 2004; 199
Svärd, Nordström (b22) 2019; 397
Kreiss, Scherer (b8) 1974
Chipman (b20) 1971; 11
Guner (b4) 2017; 2
Lundquist, Nordström (b5) 2014; 270
Manukure, Booker (b1) 2021; 4
Olsson (b13) 1995; 64
Mattsson, Ljungberg Rydin (b16) 2023; 473
Gustafsson, Kreiss, Oliger (b18) 1995
Olsson (b12) 1995; 64
Arora (10.1016/j.cam.2024.116377_b2) 2022; 8
Olsson (10.1016/j.cam.2024.116377_b12) 1995; 64
Hairer (10.1016/j.cam.2024.116377_b21) 2006; vol. 31
Strand (10.1016/j.cam.2024.116377_b9) 1994; 110
Mattsson (10.1016/j.cam.2024.116377_b14) 2018; 372
Svärd (10.1016/j.cam.2024.116377_b22) 2019; 397
Mattsson (10.1016/j.cam.2024.116377_b15) 2014; 274
Guner (10.1016/j.cam.2024.116377_b4) 2017; 2
Kennedy (10.1016/j.cam.2024.116377_b19) 2003; 44
Mattsson (10.1016/j.cam.2024.116377_b16) 2023; 473
Mattsson (10.1016/j.cam.2024.116377_b10) 2004; 199
Nordström (10.1016/j.cam.2024.116377_b6) 2013; 251
Manukure (10.1016/j.cam.2024.116377_b1) 2021; 4
Chipman (10.1016/j.cam.2024.116377_b20) 1971; 11
Carpenter (10.1016/j.cam.2024.116377_b11) 1994; 111
Wazwaz (10.1016/j.cam.2024.116377_b3) 2006; 355
Boom (10.1016/j.cam.2024.116377_b7) 2015; 37
Olsson (10.1016/j.cam.2024.116377_b13) 1995; 64
Kreiss (10.1016/j.cam.2024.116377_b8) 1974
Lundquist (10.1016/j.cam.2024.116377_b5) 2014; 270
Strang (10.1016/j.cam.2024.116377_b17) 1964; 6
Gustafsson (10.1016/j.cam.2024.116377_b18) 1995
References_xml – volume: 44
  start-page: 139
  year: 2003
  end-page: 181
  ident: b19
  article-title: Additive Runge–Kutta schemes for convection–diffusion-reaction equations
  publication-title: J. Appl. Numer. Math.
– volume: 110
  start-page: 47
  year: 1994
  end-page: 67
  ident: b9
  article-title: Summation by parts for finite difference approximations for d/dx
  publication-title: J. Comput. Phys.
– volume: 473
  year: 2023
  ident: b16
  article-title: Implicit summation by parts operators for finite difference approximations of first and second derivatives
  publication-title: J. Comput. Phys.
– volume: 2
  start-page: 248
  year: 2017
  end-page: 252
  ident: b4
  article-title: Soliton solution of the generalized modified BBM equation and the generalized Boussinesq equation
  publication-title: J. Ocean Eng. Sci.
– volume: 274
  start-page: 432
  year: 2014
  end-page: 454
  ident: b15
  article-title: Diagonal-norm summation by parts operators for finite difference approximations of third and fourth derivatives
  publication-title: J. Comput. Phys.
– volume: 111
  start-page: 220
  year: 1994
  end-page: 236
  ident: b11
  article-title: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes
  publication-title: J. Comput. Phys.
– volume: 372
  start-page: 349
  year: 2018
  end-page: 372
  ident: b14
  article-title: An improved projection method
  publication-title: J. Comput. Phys.
– volume: 64
  start-page: 1035
  year: 1995
  ident: b12
  article-title: Summation by parts, projections, and stability I
  publication-title: Math. Comp.
– volume: 199
  start-page: 503
  year: 2004
  end-page: 540
  ident: b10
  article-title: Summation by parts operators for finite difference approximations of second derivatives
  publication-title: J. Comput. Phys.
– volume: 251
  start-page: 487
  year: 2013
  end-page: 499
  ident: b6
  article-title: Summation-by-parts in time
  publication-title: J. Comput. Phys.
– start-page: 195
  year: 1974
  end-page: 212
  ident: b8
  article-title: Finite element and finite difference methods for hyperbolic partial differential equations
  publication-title: Mathematical Aspects of Finite Elements in Partial Differential Equations
– volume: 397
  year: 2019
  ident: b22
  article-title: On the convergence rates of energy-stable finite-difference schemes
  publication-title: J. Comput. Phys.
– volume: 270
  start-page: 86
  year: 2014
  end-page: 104
  ident: b5
  article-title: The sbp-sat technique for initial value problems
  publication-title: J. Comput. Phys.
– volume: 64
  start-page: 1473
  year: 1995
  ident: b13
  article-title: Summation by parts, projections, and stability II
  publication-title: Math. Comp.
– volume: 8
  year: 2022
  ident: b2
  article-title: Soliton: A dispersion-less solution with existence and its types
  publication-title: Heliyon
– volume: 37
  start-page: A2682
  year: 2015
  end-page: A2709
  ident: b7
  article-title: High-order implicit time-marching methods based on generalized summation-by-parts operators
  publication-title: SIAM J. Sci. Comput.
– volume: 6
  start-page: 37
  year: 1964
  end-page: 46
  ident: b17
  article-title: Accurate partial difference methods II. Non-linear problems
  publication-title: Numer. Math.
– year: 1995
  ident: b18
  article-title: Time Dependent Problems and Difference Methods
– volume: 11
  start-page: 384
  year: 1971
  end-page: 388
  ident: b20
  article-title: A-stable Runge–Kutta processes
  publication-title: BIT
– volume: vol. 31
  year: 2006
  ident: b21
  publication-title: Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations
– volume: 4
  year: 2021
  ident: b1
  article-title: A short overview of solitons and applications
  publication-title: Partial Differ. Equ. Appl. Math.
– volume: 355
  start-page: 358
  year: 2006
  end-page: 362
  ident: b3
  article-title: New travelling wave solutions of different physical structures to generalized BBM equation
  publication-title: Phys. Lett. A
– year: 1995
  ident: 10.1016/j.cam.2024.116377_b18
– volume: 2
  start-page: 248
  year: 2017
  ident: 10.1016/j.cam.2024.116377_b4
  article-title: Soliton solution of the generalized modified BBM equation and the generalized Boussinesq equation
  publication-title: J. Ocean Eng. Sci.
  doi: 10.1016/j.joes.2017.08.006
– volume: 251
  start-page: 487
  year: 2013
  ident: 10.1016/j.cam.2024.116377_b6
  article-title: Summation-by-parts in time
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.05.042
– start-page: 195
  year: 1974
  ident: 10.1016/j.cam.2024.116377_b8
  article-title: Finite element and finite difference methods for hyperbolic partial differential equations
– volume: 372
  start-page: 349
  year: 2018
  ident: 10.1016/j.cam.2024.116377_b14
  article-title: An improved projection method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.06.030
– volume: 111
  start-page: 220
  issue: 2
  year: 1994
  ident: 10.1016/j.cam.2024.116377_b11
  article-title: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1057
– volume: 274
  start-page: 432
  year: 2014
  ident: 10.1016/j.cam.2024.116377_b15
  article-title: Diagonal-norm summation by parts operators for finite difference approximations of third and fourth derivatives
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.06.027
– volume: 110
  start-page: 47
  year: 1994
  ident: 10.1016/j.cam.2024.116377_b9
  article-title: Summation by parts for finite difference approximations for d/dx
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1005
– volume: 44
  start-page: 139
  year: 2003
  ident: 10.1016/j.cam.2024.116377_b19
  article-title: Additive Runge–Kutta schemes for convection–diffusion-reaction equations
  publication-title: J. Appl. Numer. Math.
  doi: 10.1016/S0168-9274(02)00138-1
– volume: 473
  year: 2023
  ident: 10.1016/j.cam.2024.116377_b16
  article-title: Implicit summation by parts operators for finite difference approximations of first and second derivatives
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111743
– volume: 355
  start-page: 358
  year: 2006
  ident: 10.1016/j.cam.2024.116377_b3
  article-title: New travelling wave solutions of different physical structures to generalized BBM equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.03.005
– volume: 270
  start-page: 86
  year: 2014
  ident: 10.1016/j.cam.2024.116377_b5
  article-title: The sbp-sat technique for initial value problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.03.048
– volume: 64
  start-page: 1473
  year: 1995
  ident: 10.1016/j.cam.2024.116377_b13
  article-title: Summation by parts, projections, and stability II
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1995-1308459-9
– volume: 4
  year: 2021
  ident: 10.1016/j.cam.2024.116377_b1
  article-title: A short overview of solitons and applications
  publication-title: Partial Differ. Equ. Appl. Math.
– volume: 8
  year: 2022
  ident: 10.1016/j.cam.2024.116377_b2
  article-title: Soliton: A dispersion-less solution with existence and its types
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12122
– volume: 397
  year: 2019
  ident: 10.1016/j.cam.2024.116377_b22
  article-title: On the convergence rates of energy-stable finite-difference schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.07.018
– volume: 37
  start-page: A2682
  year: 2015
  ident: 10.1016/j.cam.2024.116377_b7
  article-title: High-order implicit time-marching methods based on generalized summation-by-parts operators
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1014917
– volume: 199
  start-page: 503
  issue: 2
  year: 2004
  ident: 10.1016/j.cam.2024.116377_b10
  article-title: Summation by parts operators for finite difference approximations of second derivatives
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.03.001
– volume: 64
  start-page: 1035
  year: 1995
  ident: 10.1016/j.cam.2024.116377_b12
  article-title: Summation by parts, projections, and stability I
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1995-1297474-X
– volume: 6
  start-page: 37
  year: 1964
  ident: 10.1016/j.cam.2024.116377_b17
  article-title: Accurate partial difference methods II. Non-linear problems
  publication-title: Numer. Math.
  doi: 10.1007/BF01386051
– volume: vol. 31
  year: 2006
  ident: 10.1016/j.cam.2024.116377_b21
– volume: 11
  start-page: 384
  year: 1971
  ident: 10.1016/j.cam.2024.116377_b20
  article-title: A-stable Runge–Kutta processes
  publication-title: BIT
  doi: 10.1007/BF01939406
SSID ssj0006914
Score 2.4641478
Snippet In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin–Bona–Mahony (BBM) equation, a...
In this paper we present high-order accurate finite difference approximations for solving the generalized modified Benjamin-Bona-Mahony (BBM) equation, a...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 116377
SubjectTerms Benjamin-Bona-Mahony equation
Beräkningsvetenskap med inriktning mot numerisk analys
Boundary conditions
Initial boundary value problem
Non-linear
Scientific Computing with specialization in Numerical Analysis
Simultaneous-approximation-terms
Summation-by-parts
Time integration
Title Numerical simulation of the generalized modified Benjamin–Bona–Mahony equation using SBP-SAT in time
URI https://dx.doi.org/10.1016/j.cam.2024.116377
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-544243
Volume 459
WOSCitedRecordID wos001359523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1879-1778
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbKxgEOE59iDJAPcKEKahInTo4tDPG1atJK1Zvl2PGWKk1HP6YJLvwH_iG_hNexnXRDm9iBS5JGjuPmfWI_sd_3eRF6qXqSi1jCi0R85ZE0y7xE-oknZagofGMLv_byHX-hw2EymaSHnc4PFwtzVtKqSs7P09P_amo4B8bWobM3MHdTKZyAYzA6bMHssP0nww_XZhGm7C6LmU3O5TwBjo3IdPEdaOZsLgulCeggr6Z8VlTO7yEcADtvfhxw7bzezb8ZTfDuup5cOBocekf9Ue0lWVzUO9iguKJOGeGmG2tZWEt6Z41abLuYNM3LUvKTek56XJTtgKFzki9tZNhnG7pmJyqCSK-xm1BNF6BFqadTe2x2vsTqgZvu0wd2aLK6_NWzm0mGKXy1a_2AgLxpy15U0b40ujU-h86dbcqgCqarYKaKW2g7oFEKXeJ2_-P-5FMzkMepkYZ37XaL4rV74KV2XElrNvVna84yuod2rCVw34DkPurk1QN096B99g_RSQMX3MIFzxWGMngDLtjBBTu4_P75SwMFdgYi2EEE1xDBFiK4qLCGyCP09f3-6O0Hz2bf8AT8n5WXArFORBILleYR5UIlgvCYChknIhV-wkmchT2ZEpmHsZREZVSGksSBkpFQWR4-RlvVvMqfIBwJDkSa6iXwgEQ5z-JeGHDly0xxoiK5i3ru4TFhpel1hpSSXWm0XfS6ueTU6LJcV5g4izBLLA1hZICu6y57ZazX3EFrsb8rxn02Xxyz9ZpFhAQkfHqTtuyhO-3L8QxtrRbr_Dm6Lc5WxXLxwkLwD3vQqQ0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+the+generalized+modified+Benjamin%E2%80%93Bona%E2%80%93Mahony+equation+using+SBP-SAT+in+time&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Kjelldahl%2C+Vilma&rft.au=Mattsson%2C+Ken&rft.date=2025-05-15&rft.issn=0377-0427&rft.volume=459&rft.spage=116377&rft_id=info:doi/10.1016%2Fj.cam.2024.116377&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2024_116377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon