The potential of ZrO2 catalysts for the dehydration of 2,3-butanediol into 3-buten-2-ol: Impact of synthesis method and operating conditions
[Display omitted] •Hydrothermal ZrO2 calcined at high temperature gives high 3-buten-2-ol selectivity.•Highest 3-buten-2-ol selectivity at low temperature and high space time.•Mild acid-base properties are crucial for selective first dehydration step.•Incompatible acid-base properties for one-step o...
Gespeichert in:
| Veröffentlicht in: | Journal of catalysis Jg. 411; S. 200 - 211 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.07.2022
|
| Schlagworte: | |
| ISSN: | 0021-9517, 1090-2694 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•Hydrothermal ZrO2 calcined at high temperature gives high 3-buten-2-ol selectivity.•Highest 3-buten-2-ol selectivity at low temperature and high space time.•Mild acid-base properties are crucial for selective first dehydration step.•Incompatible acid-base properties for one-step optimization of both dehydrations.
2,3-Butanediol (2,3-BDO) dehydration towards 1,3-butadiene was investigated over commercial and in-house synthesized ZrO2 catalysts in a Berty reactor at intrinsic kinetics conditions. The commercial and ZrO2 catalysts prepared via precipitation (ZrO2-PP) exhibited a higher selectivity towards the undesired methyl ethyl ketone which was attributed to a lack of sufficient acid-base concerted active sites. For ZrO2-PP, this was attributed to its tetragonal crystal structure with weaker adsorption sites. Hydrothermal synthesis allowed producing ZrO2 with a monoclinic crystal structure, with correspondingly more pronounced acidic and basic properties which could be further tuned via calcination. A maximal 3-buten-2-ol, i.e., the desired intermediate for further conversion into 1,3-butadiene, yield amounting to 38% (mol mol−1) could be obtained under a N2 flow at 300 °C, a space time of 1130 kg s mol−1 and 2,3-BDO partial pressure of 0.16 bar over the hydrothermally synthesized catalyst. |
|---|---|
| AbstractList | [Display omitted]
•Hydrothermal ZrO2 calcined at high temperature gives high 3-buten-2-ol selectivity.•Highest 3-buten-2-ol selectivity at low temperature and high space time.•Mild acid-base properties are crucial for selective first dehydration step.•Incompatible acid-base properties for one-step optimization of both dehydrations.
2,3-Butanediol (2,3-BDO) dehydration towards 1,3-butadiene was investigated over commercial and in-house synthesized ZrO2 catalysts in a Berty reactor at intrinsic kinetics conditions. The commercial and ZrO2 catalysts prepared via precipitation (ZrO2-PP) exhibited a higher selectivity towards the undesired methyl ethyl ketone which was attributed to a lack of sufficient acid-base concerted active sites. For ZrO2-PP, this was attributed to its tetragonal crystal structure with weaker adsorption sites. Hydrothermal synthesis allowed producing ZrO2 with a monoclinic crystal structure, with correspondingly more pronounced acidic and basic properties which could be further tuned via calcination. A maximal 3-buten-2-ol, i.e., the desired intermediate for further conversion into 1,3-butadiene, yield amounting to 38% (mol mol−1) could be obtained under a N2 flow at 300 °C, a space time of 1130 kg s mol−1 and 2,3-BDO partial pressure of 0.16 bar over the hydrothermally synthesized catalyst. 2,3-Butanediol (2,3-BDO) dehydration towards 1,3-butadiene was investigated over commercial and in-house synthesized ZrO₂ catalysts in a Berty reactor at intrinsic kinetics conditions. The commercial and ZrO₂ catalysts prepared via precipitation (ZrO₂-PP) exhibited a higher selectivity towards the undesired methyl ethyl ketone which was attributed to a lack of sufficient acid-base concerted active sites. For ZrO₂-PP, this was attributed to its tetragonal crystal structure with weaker adsorption sites. Hydrothermal synthesis allowed producing ZrO₂ with a monoclinic crystal structure, with correspondingly more pronounced acidic and basic properties which could be further tuned via calcination. A maximal 3-buten-2-ol, i.e., the desired intermediate for further conversion into 1,3-butadiene, yield amounting to 38% (mol mol⁻¹) could be obtained under a N₂ flow at 300 °C, a space time of 1130 kg s mol⁻¹ and 2,3-BDO partial pressure of 0.16 bar over the hydrothermally synthesized catalyst. |
| Author | Poissonnier, Jeroen Thybaut, Joris W. Bekele, Beruk A. |
| Author_xml | – sequence: 1 givenname: Beruk A. surname: Bekele fullname: Bekele, Beruk A. – sequence: 2 givenname: Jeroen surname: Poissonnier fullname: Poissonnier, Jeroen – sequence: 3 givenname: Joris W. surname: Thybaut fullname: Thybaut, Joris W. email: Joris.Thybaut@UGent.be |
| BookMark | eNp9kL1uFDEURi0UJDaBF6ByScFMru35W0SDokAiRUoTGhrLP9esV7P2YHuR9h14aDxZKopUlqxzPumeS3IRYkBC3jNoGbDhet_ujSotB85b6Ftg7BXZMNhCw4dtd0E2AJw1256Nb8hlznuoRN9PG_LnaYd0iQVD8Wqm0dEf6ZHTOqbmUy6ZuphoqYzF3ckmVXwMK8U_ikYfiwpofZypDyXS5x8MDW_i_IneHxZlysrmU6gL2Wd6wLKLlqpgaVxwXQs_qYnB-nU3vyWvnZozvvv3XpHvX2-fbu6ah8dv9zdfHhojxrE0W4FOg1N61CMHJzrdcTVYoxkKHPkgumkyGjrFJmedYxbMYDS3IPQInQBxRT6cd5cUfx0xF3nw2eA813PiMUs-jDVOD11XUX5GTYo5J3RySf6g0kkykGt6uZdrermml9DLGrZK03-S8eU5XUnKzy-rn88q1vt_e0wyG4_B1MwJTZE2-pf0v0Gxoyc |
| CitedBy_id | crossref_primary_10_1016_j_cherd_2023_10_037 crossref_primary_10_3390_catal15070655 crossref_primary_10_1016_j_jcat_2025_116167 crossref_primary_10_1016_S1872_2067_23_64512_7 crossref_primary_10_1016_j_apcata_2023_119321 crossref_primary_10_1002_cctc_202401832 crossref_primary_10_1016_j_cattod_2024_114732 |
| Cites_doi | 10.1128/AEM.00355-11 10.1021/ja01145a126 10.1039/C4CS00105B 10.1016/j.jcat.2018.01.001 10.1016/j.biortech.2009.10.052 10.3390/catal8120622 10.1016/j.catcom.2014.01.018 10.1016/0254-0584(85)90064-1 10.1006/jcat.2001.3426 10.1246/cl.160595 10.1002/aic.690070239 10.1021/ie049375+ 10.1016/j.jcat.2004.12.010 10.1016/j.btre.2019.e00397 10.1016/j.apcata.2014.09.007 10.1016/j.jcat.2018.01.034 10.1016/j.apcata.2017.07.048 10.1039/b406854h 10.1016/j.jcat.2018.11.028 10.1021/la800370r 10.1080/03602457908065106 10.1002/cctc.201501399 10.1016/j.jcat.2017.08.017 10.1021/ja01269a023 10.1016/j.jcat.2016.09.003 10.1002/chem.201602390 10.1039/C8RA02977F 10.1002/anie.201105125 10.1016/j.catcom.2017.05.022 10.1134/S0965544116030099 10.1246/cl.140662 10.1021/acs.energyfuels.1c01706 10.1007/s00253-009-2004-x 10.1016/0304-5102(89)80134-8 10.1002/anie.201305058 10.1016/j.apcata.2018.05.029 10.1039/C5RA23251A 10.1016/S0360-0564(08)60390-9 10.1007/978-94-009-5562-2_3 10.1016/0021-9517(71)90073-X 10.1016/j.fuproc.2019.106193 10.1016/j.cbi.2007.01.009 10.1016/j.jcat.2015.07.004 10.1039/c2gc36324k 10.1007/BF02705631 10.1016/j.ces.2017.10.009 10.1016/j.rser.2009.10.003 10.1515/pac-2014-1117 10.1039/C5CY02211H 10.1016/S0167-2991(08)63302-9 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jcat.2022.05.011 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1090-2694 |
| EndPage | 211 |
| ExternalDocumentID | 10_1016_j_jcat_2022_05_011 S0021951722002032 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c377t-93efb0fab7b720f34b42a6dcb1e3e7263488cb04a18fdff1d0c6cb2d03b704303 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810197500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9517 |
| IngestDate | Sun Sep 28 03:03:31 EDT 2025 Sat Nov 29 07:01:36 EST 2025 Tue Nov 18 20:24:48 EST 2025 Fri Feb 23 02:40:10 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Kinetics Biomass conversion 2,3-butanediol dehydration Hydrothermal ZrO₂ synthesis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c377t-93efb0fab7b720f34b42a6dcb1e3e7263488cb04a18fdff1d0c6cb2d03b704303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://biblio.ugent.be/publication/01GPE44RZ7FN0BR4S6HA2S6Z2T/file/01GPE45FXCC6YH2HAGX36PXFT7.pdf |
| PQID | 2675585044 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2675585044 crossref_primary_10_1016_j_jcat_2022_05_011 crossref_citationtrail_10_1016_j_jcat_2022_05_011 elsevier_sciencedirect_doi_10_1016_j_jcat_2022_05_011 |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of catalysis |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Jenck, Agterberg, Droescher (b0010) 2004; 6 Bruijnincx, Weckhuysen (b0030) 2013; 52 Sanyal, Martinez, Guo, Subramaniam, Song, Ramasamy (b0145) 2021; 35 Wang, Sun, Yamada, Sato (b0045) 2018; 562 Zheng, Grossardt, Almkhelfe, Xu, Grady, Douglas, Amama, Hohn (b0150) 2017; 354 Sun, Li, Yang, Su, Yamada, Sato (b0090) 2020; 197 Petrov, Petrova (b0075) 2009; 84 White (b0025) 2007; 166 Thybaut, Laxmi Narasimhan, Denayer, Baron, Jacobs, Martens, Marin (b0200) 2005; 44 Zhang, Yang, Sun, Shen, Wei, Zhu, Chu (b0070) 2010; 101 Lowell, Shields (b0220) 1984 Akiyama, Miyaji, Hayashi, Hiza, Sekiguchi, Koyama, Shiga, Baba (b0055) 2018; 359 Nikitina, Ivanova (b0240) 2016; 8 Zheng, Xu, Liu, Hohn (b0160) 2018; 360 Scherrer (b0190) 1918; 2 Makshina, Dusselier, Janssens, Degrève, Jacobs, Sels (b0035) 2014; 43 Zhang, Yu, Ji, Huang (b0100) 2012; 14 Al-Auda, Al-Atabi, Hohn (b0235) 2018; 8 Duan, Yamada, Sato (b0155) 2017; 99 Barrett, Joyner, Halenda (b0185) 2002; 73 Liu, Fabos, Taylor, Knight, Whiston, Hutchings (b0230) 2016; 22 Duan, Yamada, Sato (b0140) 2014; 43 Kruger, Dong, Beckham, Biddy (b0050) 2018; 8 Duan, Sun, Yamada, Sato (b0130) 2014; 48 Zhao, Yu, Zhang, Hu, Jiang, Fu, Huang (b0105) 2016; 6 Duan, Yamada, Sato (b0095) 2016; 45 Matsuda, Matsumura, Yamada, Sato (b0060) 2021; 514 Duan, Unno, Yamada, Sato (b0125) 2017; 546 Berty (b0195) 1979; 20 Tanabe (b0165) 1985; 13 H. Duan, Dehydration of 2,3-butanediol into 3-buten-2-ol and 1,3-butadiene over acid-base catalysts, 2017. Zeng, Bossmann, Heidlage, Hohn (b0265) 2018; 175 Wang, Saleh, Ozkan (b0255) 2005; 231 Ruppert, Weinberg, Palkovits (b0015) 2012; 51 Hakizimana, Matabaro, Lee (b0065) 2020; 25 Weisz (b0210) 1954; 6 Baertsch, Komala, Chua, Iglesia (b0250) 2002; 205 Walker, Motagamwala, Dumesic, Huber (b0020) 2019; 369 Brunauer, Emmett, Teller (b0180) 1938; 60 Mears (b0215) 1971; 20 Hattori (b0260) 1993; 78 Naik, Goud, Rout, Dalai (b0005) 2010; 14 Duan, Yamada, Sato (b0135) 2014; 487 Zeng, Tenn, Aki, Xu, Liu, Hohn (b0120) 2016; 344 Köpke, Mihalcea, Liew, Tizard, Ali, Conolly, Al-Sinawi, Simpson (b0080) 2011; 77 Nikitina, Sushkevich, Ivanova (b0110) 2016; 56 Winfield (b0085) 1945; 18 Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol, Sing (b0175) 2015; 87 Li, Huang, Li, Zhang, Liu (b0170) 2008; 24 Jing, Katryniok, Araque, Wojcieszak, Capron, Paul, Daturi, Clacens, De Campo, Liebens, Dumeignil, Pera-Titus (b0040) 2016; 6 Zheng, Wales, Heidlage, Rezac, Wang, Bossmann, Hohn (b0115) 2015; 330 Jung, Shul, Bell (b0225) 2001; 18 Carberry (b0205) 1961; 7 Salvapati, Ramanamurty, Janardanarao (b0270) 1989; 54 Carberry (10.1016/j.jcat.2022.05.011_b0205) 1961; 7 Hattori (10.1016/j.jcat.2022.05.011_b0260) 1993; 78 Zhang (10.1016/j.jcat.2022.05.011_b0070) 2010; 101 Wang (10.1016/j.jcat.2022.05.011_b0255) 2005; 231 Kruger (10.1016/j.jcat.2022.05.011_b0050) 2018; 8 Duan (10.1016/j.jcat.2022.05.011_b0155) 2017; 99 Sun (10.1016/j.jcat.2022.05.011_b0090) 2020; 197 Zhao (10.1016/j.jcat.2022.05.011_b0105) 2016; 6 Walker (10.1016/j.jcat.2022.05.011_b0020) 2019; 369 Akiyama (10.1016/j.jcat.2022.05.011_b0055) 2018; 359 Mears (10.1016/j.jcat.2022.05.011_b0215) 1971; 20 Thybaut (10.1016/j.jcat.2022.05.011_b0200) 2005; 44 Barrett (10.1016/j.jcat.2022.05.011_b0185) 2002; 73 Sanyal (10.1016/j.jcat.2022.05.011_b0145) 2021; 35 Winfield (10.1016/j.jcat.2022.05.011_b0085) 1945; 18 Duan (10.1016/j.jcat.2022.05.011_b0125) 2017; 546 Duan (10.1016/j.jcat.2022.05.011_b0140) 2014; 43 Makshina (10.1016/j.jcat.2022.05.011_b0035) 2014; 43 Ruppert (10.1016/j.jcat.2022.05.011_b0015) 2012; 51 Thommes (10.1016/j.jcat.2022.05.011_b0175) 2015; 87 Weisz (10.1016/j.jcat.2022.05.011_b0210) 1954; 6 Liu (10.1016/j.jcat.2022.05.011_b0230) 2016; 22 Zhang (10.1016/j.jcat.2022.05.011_b0100) 2012; 14 Zheng (10.1016/j.jcat.2022.05.011_b0115) 2015; 330 Duan (10.1016/j.jcat.2022.05.011_b0130) 2014; 48 Jung (10.1016/j.jcat.2022.05.011_b0225) 2001; 18 White (10.1016/j.jcat.2022.05.011_b0025) 2007; 166 Nikitina (10.1016/j.jcat.2022.05.011_b0110) 2016; 56 Tanabe (10.1016/j.jcat.2022.05.011_b0165) 1985; 13 Jenck (10.1016/j.jcat.2022.05.011_b0010) 2004; 6 Lowell (10.1016/j.jcat.2022.05.011_b0220) 1984 Zeng (10.1016/j.jcat.2022.05.011_b0265) 2018; 175 Wang (10.1016/j.jcat.2022.05.011_b0045) 2018; 562 Nikitina (10.1016/j.jcat.2022.05.011_b0240) 2016; 8 Jing (10.1016/j.jcat.2022.05.011_b0040) 2016; 6 Baertsch (10.1016/j.jcat.2022.05.011_b0250) 2002; 205 Matsuda (10.1016/j.jcat.2022.05.011_b0060) 2021; 514 Zeng (10.1016/j.jcat.2022.05.011_b0120) 2016; 344 Köpke (10.1016/j.jcat.2022.05.011_b0080) 2011; 77 Bruijnincx (10.1016/j.jcat.2022.05.011_b0030) 2013; 52 Li (10.1016/j.jcat.2022.05.011_b0170) 2008; 24 Brunauer (10.1016/j.jcat.2022.05.011_b0180) 1938; 60 Berty (10.1016/j.jcat.2022.05.011_b0195) 1979; 20 Zheng (10.1016/j.jcat.2022.05.011_b0160) 2018; 360 Duan (10.1016/j.jcat.2022.05.011_b0135) 2014; 487 Salvapati (10.1016/j.jcat.2022.05.011_b0270) 1989; 54 Zheng (10.1016/j.jcat.2022.05.011_b0150) 2017; 354 Petrov (10.1016/j.jcat.2022.05.011_b0075) 2009; 84 Duan (10.1016/j.jcat.2022.05.011_b0095) 2016; 45 Al-Auda (10.1016/j.jcat.2022.05.011_b0235) 2018; 8 10.1016/j.jcat.2022.05.011_b0245 Naik (10.1016/j.jcat.2022.05.011_b0005) 2010; 14 Hakizimana (10.1016/j.jcat.2022.05.011_b0065) 2020; 25 Scherrer (10.1016/j.jcat.2022.05.011_b0190) 1918; 2 |
| References_xml | – volume: 546 start-page: 96 year: 2017 end-page: 102 ident: b0125 article-title: Adsorptive interaction between 1,5-pentanediol and MgO-modified ZrO publication-title: Appl. Catal. A Gen. – volume: 35 start-page: 15742 year: 2021 end-page: 15751 ident: b0145 article-title: Selective Dehydration of 2,3-Butanediol to 3-Buten-2-ol over In publication-title: Energy Fuels – volume: 84 start-page: 659 year: 2009 end-page: 665 ident: b0075 article-title: High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31 publication-title: Appl. Microbiol. Biotechnol. – volume: 562 start-page: 11 year: 2018 end-page: 18 ident: b0045 article-title: Selective production of 1,3-butadiene in the dehydration of 1,4-butanediol over rare earth oxides publication-title: Appl. Catal. A Gen. – volume: 101 start-page: 1961 year: 2010 end-page: 1967 ident: b0070 article-title: Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30 publication-title: Bioresour. Technol. – volume: 6 start-page: 16988 year: 2016 end-page: 16995 ident: b0105 article-title: Catalytic dehydration of 2,3-butanediol over P/HZSM-5: effect of catalyst, reaction temperature and reactant configuration on rearrangement products publication-title: RSC Adv. – volume: 359 start-page: 184 year: 2018 end-page: 197 ident: b0055 article-title: Selective conversion of ethanol to 1,3-butadiene using germanium talc as catalyst publication-title: J. Catal. – volume: 99 start-page: 53 year: 2017 end-page: 56 ident: b0155 article-title: Vapor-phase hydrogenation of acetoin and diacetyl into 2,3-butanediol over supported metal catalysts publication-title: Catal. Commun. – volume: 51 start-page: 2564 year: 2012 end-page: 2601 ident: b0015 article-title: Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals publication-title: Angew. Chemie - Int. Ed. – volume: 18 start-page: 412 year: 1945 end-page: 423 ident: b0085 article-title: The catalytic dehydration of 2,3-butanediol to 1,3-butadiene publication-title: J. Counc. Sci. Ind. Res. – volume: 330 start-page: 222 year: 2015 end-page: 237 ident: b0115 article-title: Conversion of 2,3-butanediol to butenes over bifunctional catalysts in a single reactor publication-title: J. Catal. – volume: 514 year: 2021 ident: b0060 article-title: Vapor-phase dehydration of 1,4-butanediol to 1,3-butadiene over Y publication-title: Mol. Catal. – volume: 344 start-page: 77 year: 2016 end-page: 89 ident: b0120 article-title: Influence of basicity on 1,3-butadiene formation from catalytic 2,3-butanediol dehydration over γ-alumina publication-title: J. Catal. – volume: 354 start-page: 182 year: 2017 end-page: 196 ident: b0150 article-title: Study of mesoporous catalysts for conversion of 2,3-butanediol to butenes publication-title: J. Catal. – reference: H. Duan, Dehydration of 2,3-butanediol into 3-buten-2-ol and 1,3-butadiene over acid-base catalysts, 2017. – volume: 369 start-page: 518 year: 2019 end-page: 525 ident: b0020 article-title: Fundamental catalytic challenges to design improved biomass conversion technologies publication-title: J. Catal. – volume: 54 start-page: 9 year: 1989 end-page: 30 ident: b0270 article-title: Selective catalytic self-condensation of acetone publication-title: J. Mol. Catal. – volume: 8 start-page: 1346 year: 2016 end-page: 1353 ident: b0240 article-title: Conversion of 2,3-butanediol over phosphate catalysts publication-title: ChemCatChem – volume: 231 start-page: 20 year: 2005 end-page: 32 ident: b0255 article-title: Reaction network of aldehyde hydrogenation over sulfided Ni-Mo/Al publication-title: J. Catal. – volume: 25 year: 2020 ident: b0065 article-title: The current strategies and parameters for the enhanced microbial production of 2,3-butanediol publication-title: Biotechnol. Reports. – volume: 166 start-page: 10 year: 2007 end-page: 14 ident: b0025 article-title: Butadiene production process overview publication-title: Chem. Biol. Interact. – volume: 20 start-page: 75 year: 1979 end-page: 96 ident: b0195 article-title: Testing commercial catalysts in recycle reactors publication-title: Catal. Rev. – volume: 8 start-page: 24068 year: 2018 end-page: 24074 ident: b0050 article-title: Integrated conversion of 1-butanol to 1,3-butadiene publication-title: RSC Adv. – volume: 43 start-page: 1773 year: 2014 end-page: 1775 ident: b0140 article-title: Vapor-phase catalytic dehydration of 2,3-butanediol into 3-buten-2-ol over Sc publication-title: Chem. Lett. – volume: 43 start-page: 7917 year: 2014 end-page: 7953 ident: b0035 article-title: Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene publication-title: Chem. Soc. Rev. – volume: 6 start-page: 143 year: 1954 end-page: 196 ident: b0210 article-title: Interpretation of measurements in experimental catalysis publication-title: Adv. Catlay. – volume: 14 start-page: 578 year: 2010 end-page: 597 ident: b0005 article-title: Production of first and second generation biofuels: A comprehensive review publication-title: Renew. Sustain. Energy Rev. – volume: 52 start-page: 11980 year: 2013 end-page: 11987 ident: b0030 article-title: Shale gas revolution: An opportunity for the production of biobased chemicals? publication-title: Angew. Chemie - Int. Ed. – volume: 487 start-page: 226 year: 2014 end-page: 233 ident: b0135 article-title: Selective dehydration of 2,3-butanediol to 3-buten-2-ol over ZrO2 modified with CaO publication-title: Appl. Catal. A Gen. – start-page: 11 year: 1984 end-page: 13 ident: b0220 article-title: Adsorption isotherms publication-title: Powder Surf. Area Porosity – volume: 78 start-page: 35 year: 1993 end-page: 49 ident: b0260 article-title: Basic catalysts and fine chemicals publication-title: Stud. Surf. Sci. Catal. – volume: 6 start-page: 544 year: 2004 end-page: 556 ident: b0010 article-title: Products and processes for a sustainable chemical industry: A review of achievements and prospects publication-title: Green Chem. – volume: 56 start-page: 230 year: 2016 end-page: 236 ident: b0110 article-title: Dehydration of 2,3-butanediol over zeolite catalysts publication-title: Pet. Chem. – volume: 8 start-page: 1 year: 2018 end-page: 15 ident: b0235 article-title: Metals on ZrO2: Catalysts for the aldol condensation of methyl ethyl ketone (MEK) to C8 ketones publication-title: Catalysts. – volume: 175 start-page: 387 year: 2018 end-page: 395 ident: b0265 article-title: Transformation of 2,3-butanediol in a dual bed catalyst system publication-title: Chem. Eng. Sci. – volume: 13 start-page: 347 year: 1985 end-page: 364 ident: b0165 article-title: Surface and catalytic properties of ZrO publication-title: Mater. Chem. Phys. – volume: 205 start-page: 44 year: 2002 end-page: 57 ident: b0250 article-title: Genesis of Brønsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts publication-title: J. Catal. – volume: 197 year: 2020 ident: b0090 article-title: Production of 1,3-butadiene from biomass-derived C4 alcohols publication-title: Fuel Process. Technol. – volume: 77 start-page: 5467 year: 2011 end-page: 5475 ident: b0080 article-title: 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas publication-title: Appl. Environ. Microbiol. – volume: 14 start-page: 3441 year: 2012 end-page: 3450 ident: b0100 article-title: Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites publication-title: Green Chem. – volume: 2 start-page: 98 year: 1918 end-page: 100 ident: b0190 article-title: Nachr Ges Wiss Goettingen publication-title: Math. Phys. – volume: 7 start-page: 350 year: 1961 end-page: 351 ident: b0205 article-title: The Catalytic Effectiveness Factor Under Nonisothermal Conditions publication-title: AIChE J. – volume: 20 start-page: 127 year: 1971 end-page: 131 ident: b0215 article-title: Diagnostic criteria for heat transport limitations in fixed bed reactors publication-title: J. Catal. – volume: 22 start-page: 12290 year: 2016 end-page: 12294 ident: b0230 article-title: One-step production of 1,3-butadiene from 2,3-butanediol dehydration publication-title: Chem. - A Eur. J. – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: b0180 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 992 year: 2001 end-page: 999 ident: b0225 article-title: The Preparation and Surface Characterization of Zirconia Polymorphs publication-title: Korean J. Chem. Eng. – volume: 48 start-page: 1 year: 2014 end-page: 4 ident: b0130 article-title: Dehydration of 2,3-butanediol into 3-buten-2-ol catalyzed by ZrO publication-title: Catal. Commun. – volume: 24 start-page: 8358 year: 2008 end-page: 8366 ident: b0170 article-title: Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation publication-title: Langmuir – volume: 6 start-page: 5830 year: 2016 end-page: 5840 ident: b0040 article-title: Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts publication-title: Catal. Sci. Technol. – volume: 73 start-page: 373 year: 2002 end-page: 380 ident: b0185 article-title: The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen isotherms publication-title: J. Am. Chem. Soc. – volume: 87 start-page: 1051 year: 2015 end-page: 1069 ident: b0175 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl. Chem. – volume: 45 start-page: 1036 year: 2016 end-page: 1047 ident: b0095 article-title: Future prospect of the production of 1,3-butadiene from butanediols publication-title: Chem. Lett. – volume: 360 start-page: 221 year: 2018 end-page: 239 ident: b0160 article-title: Mechanistic study of the catalytic conversion of 2,3-butanediol to butenes publication-title: J. Catal. – volume: 44 start-page: 5159 year: 2005 end-page: 5169 ident: b0200 article-title: Acid-metal balance of a hydrocracking catalyst: Ideal versus nonideal behavior publication-title: Ind. Eng. Chem. Res. – volume: 77 start-page: 5467 year: 2011 ident: 10.1016/j.jcat.2022.05.011_b0080 article-title: 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00355-11 – volume: 73 start-page: 373 year: 2002 ident: 10.1016/j.jcat.2022.05.011_b0185 article-title: The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen isotherms publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01145a126 – volume: 43 start-page: 7917 issue: 22 year: 2014 ident: 10.1016/j.jcat.2022.05.011_b0035 article-title: Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00105B – volume: 359 start-page: 184 year: 2018 ident: 10.1016/j.jcat.2022.05.011_b0055 article-title: Selective conversion of ethanol to 1,3-butadiene using germanium talc as catalyst publication-title: J. Catal. doi: 10.1016/j.jcat.2018.01.001 – volume: 514 year: 2021 ident: 10.1016/j.jcat.2022.05.011_b0060 article-title: Vapor-phase dehydration of 1,4-butanediol to 1,3-butadiene over Y2Zr2O7 catalyst publication-title: Mol. Catal. – volume: 101 start-page: 1961 year: 2010 ident: 10.1016/j.jcat.2022.05.011_b0070 article-title: Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.052 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.jcat.2022.05.011_b0235 article-title: Metals on ZrO2: Catalysts for the aldol condensation of methyl ethyl ketone (MEK) to C8 ketones publication-title: Catalysts. doi: 10.3390/catal8120622 – volume: 48 start-page: 1 year: 2014 ident: 10.1016/j.jcat.2022.05.011_b0130 article-title: Dehydration of 2,3-butanediol into 3-buten-2-ol catalyzed by ZrO2 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2014.01.018 – volume: 13 start-page: 347 year: 1985 ident: 10.1016/j.jcat.2022.05.011_b0165 article-title: Surface and catalytic properties of ZrO2 publication-title: Mater. Chem. Phys. doi: 10.1016/0254-0584(85)90064-1 – volume: 205 start-page: 44 year: 2002 ident: 10.1016/j.jcat.2022.05.011_b0250 article-title: Genesis of Brønsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts publication-title: J. Catal. doi: 10.1006/jcat.2001.3426 – volume: 45 start-page: 1036 year: 2016 ident: 10.1016/j.jcat.2022.05.011_b0095 article-title: Future prospect of the production of 1,3-butadiene from butanediols publication-title: Chem. Lett. doi: 10.1246/cl.160595 – volume: 7 start-page: 350 issue: 2 year: 1961 ident: 10.1016/j.jcat.2022.05.011_b0205 article-title: The Catalytic Effectiveness Factor Under Nonisothermal Conditions publication-title: AIChE J. doi: 10.1002/aic.690070239 – volume: 44 start-page: 5159 year: 2005 ident: 10.1016/j.jcat.2022.05.011_b0200 article-title: Acid-metal balance of a hydrocracking catalyst: Ideal versus nonideal behavior publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049375+ – volume: 231 start-page: 20 year: 2005 ident: 10.1016/j.jcat.2022.05.011_b0255 article-title: Reaction network of aldehyde hydrogenation over sulfided Ni-Mo/Al2O3 catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2004.12.010 – volume: 25 year: 2020 ident: 10.1016/j.jcat.2022.05.011_b0065 article-title: The current strategies and parameters for the enhanced microbial production of 2,3-butanediol publication-title: Biotechnol. Reports. doi: 10.1016/j.btre.2019.e00397 – volume: 487 start-page: 226 year: 2014 ident: 10.1016/j.jcat.2022.05.011_b0135 article-title: Selective dehydration of 2,3-butanediol to 3-buten-2-ol over ZrO2 modified with CaO publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.09.007 – volume: 360 start-page: 221 year: 2018 ident: 10.1016/j.jcat.2022.05.011_b0160 article-title: Mechanistic study of the catalytic conversion of 2,3-butanediol to butenes publication-title: J. Catal. doi: 10.1016/j.jcat.2018.01.034 – volume: 546 start-page: 96 year: 2017 ident: 10.1016/j.jcat.2022.05.011_b0125 article-title: Adsorptive interaction between 1,5-pentanediol and MgO-modified ZrO2 catalyst in the vapor-phase dehydration to produce 4-penten-1-ol publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.07.048 – volume: 6 start-page: 544 year: 2004 ident: 10.1016/j.jcat.2022.05.011_b0010 article-title: Products and processes for a sustainable chemical industry: A review of achievements and prospects publication-title: Green Chem. doi: 10.1039/b406854h – volume: 369 start-page: 518 year: 2019 ident: 10.1016/j.jcat.2022.05.011_b0020 article-title: Fundamental catalytic challenges to design improved biomass conversion technologies publication-title: J. Catal. doi: 10.1016/j.jcat.2018.11.028 – volume: 24 start-page: 8358 year: 2008 ident: 10.1016/j.jcat.2022.05.011_b0170 article-title: Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation publication-title: Langmuir doi: 10.1021/la800370r – volume: 20 start-page: 75 year: 1979 ident: 10.1016/j.jcat.2022.05.011_b0195 article-title: Testing commercial catalysts in recycle reactors publication-title: Catal. Rev. doi: 10.1080/03602457908065106 – volume: 8 start-page: 1346 year: 2016 ident: 10.1016/j.jcat.2022.05.011_b0240 article-title: Conversion of 2,3-butanediol over phosphate catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201501399 – volume: 354 start-page: 182 year: 2017 ident: 10.1016/j.jcat.2022.05.011_b0150 article-title: Study of mesoporous catalysts for conversion of 2,3-butanediol to butenes publication-title: J. Catal. doi: 10.1016/j.jcat.2017.08.017 – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.jcat.2022.05.011_b0180 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 344 start-page: 77 year: 2016 ident: 10.1016/j.jcat.2022.05.011_b0120 article-title: Influence of basicity on 1,3-butadiene formation from catalytic 2,3-butanediol dehydration over γ-alumina publication-title: J. Catal. doi: 10.1016/j.jcat.2016.09.003 – volume: 22 start-page: 12290 year: 2016 ident: 10.1016/j.jcat.2022.05.011_b0230 article-title: One-step production of 1,3-butadiene from 2,3-butanediol dehydration publication-title: Chem. - A Eur. J. doi: 10.1002/chem.201602390 – volume: 8 start-page: 24068 year: 2018 ident: 10.1016/j.jcat.2022.05.011_b0050 article-title: Integrated conversion of 1-butanol to 1,3-butadiene publication-title: RSC Adv. doi: 10.1039/C8RA02977F – volume: 51 start-page: 2564 year: 2012 ident: 10.1016/j.jcat.2022.05.011_b0015 article-title: Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals publication-title: Angew. Chemie - Int. Ed. doi: 10.1002/anie.201105125 – ident: 10.1016/j.jcat.2022.05.011_b0245 doi: 10.1016/j.catcom.2014.01.018 – volume: 99 start-page: 53 year: 2017 ident: 10.1016/j.jcat.2022.05.011_b0155 article-title: Vapor-phase hydrogenation of acetoin and diacetyl into 2,3-butanediol over supported metal catalysts publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.05.022 – volume: 56 start-page: 230 year: 2016 ident: 10.1016/j.jcat.2022.05.011_b0110 article-title: Dehydration of 2,3-butanediol over zeolite catalysts publication-title: Pet. Chem. doi: 10.1134/S0965544116030099 – volume: 43 start-page: 1773 year: 2014 ident: 10.1016/j.jcat.2022.05.011_b0140 article-title: Vapor-phase catalytic dehydration of 2,3-butanediol into 3-buten-2-ol over Sc2O3 publication-title: Chem. Lett. doi: 10.1246/cl.140662 – volume: 18 start-page: 412 year: 1945 ident: 10.1016/j.jcat.2022.05.011_b0085 article-title: The catalytic dehydration of 2,3-butanediol to 1,3-butadiene publication-title: J. Counc. Sci. Ind. Res. – volume: 35 start-page: 15742 year: 2021 ident: 10.1016/j.jcat.2022.05.011_b0145 article-title: Selective Dehydration of 2,3-Butanediol to 3-Buten-2-ol over In2O3Catalyst publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01706 – volume: 2 start-page: 98 year: 1918 ident: 10.1016/j.jcat.2022.05.011_b0190 article-title: Nachr Ges Wiss Goettingen publication-title: Math. Phys. – volume: 84 start-page: 659 year: 2009 ident: 10.1016/j.jcat.2022.05.011_b0075 article-title: High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2004-x – volume: 54 start-page: 9 year: 1989 ident: 10.1016/j.jcat.2022.05.011_b0270 article-title: Selective catalytic self-condensation of acetone publication-title: J. Mol. Catal. doi: 10.1016/0304-5102(89)80134-8 – volume: 52 start-page: 11980 year: 2013 ident: 10.1016/j.jcat.2022.05.011_b0030 article-title: Shale gas revolution: An opportunity for the production of biobased chemicals? publication-title: Angew. Chemie - Int. Ed. doi: 10.1002/anie.201305058 – volume: 562 start-page: 11 year: 2018 ident: 10.1016/j.jcat.2022.05.011_b0045 article-title: Selective production of 1,3-butadiene in the dehydration of 1,4-butanediol over rare earth oxides publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2018.05.029 – volume: 6 start-page: 16988 year: 2016 ident: 10.1016/j.jcat.2022.05.011_b0105 article-title: Catalytic dehydration of 2,3-butanediol over P/HZSM-5: effect of catalyst, reaction temperature and reactant configuration on rearrangement products publication-title: RSC Adv. doi: 10.1039/C5RA23251A – volume: 6 start-page: 143 year: 1954 ident: 10.1016/j.jcat.2022.05.011_b0210 article-title: Interpretation of measurements in experimental catalysis publication-title: Adv. Catlay. doi: 10.1016/S0360-0564(08)60390-9 – start-page: 11 year: 1984 ident: 10.1016/j.jcat.2022.05.011_b0220 article-title: Adsorption isotherms publication-title: Powder Surf. Area Porosity doi: 10.1007/978-94-009-5562-2_3 – volume: 20 start-page: 127 year: 1971 ident: 10.1016/j.jcat.2022.05.011_b0215 article-title: Diagnostic criteria for heat transport limitations in fixed bed reactors publication-title: J. Catal. doi: 10.1016/0021-9517(71)90073-X – volume: 197 year: 2020 ident: 10.1016/j.jcat.2022.05.011_b0090 article-title: Production of 1,3-butadiene from biomass-derived C4 alcohols publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.106193 – volume: 166 start-page: 10 year: 2007 ident: 10.1016/j.jcat.2022.05.011_b0025 article-title: Butadiene production process overview publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2007.01.009 – volume: 330 start-page: 222 year: 2015 ident: 10.1016/j.jcat.2022.05.011_b0115 article-title: Conversion of 2,3-butanediol to butenes over bifunctional catalysts in a single reactor publication-title: J. Catal. doi: 10.1016/j.jcat.2015.07.004 – volume: 14 start-page: 3441 year: 2012 ident: 10.1016/j.jcat.2022.05.011_b0100 article-title: Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites publication-title: Green Chem. doi: 10.1039/c2gc36324k – volume: 18 start-page: 992 year: 2001 ident: 10.1016/j.jcat.2022.05.011_b0225 article-title: The Preparation and Surface Characterization of Zirconia Polymorphs publication-title: Korean J. Chem. Eng. doi: 10.1007/BF02705631 – volume: 175 start-page: 387 year: 2018 ident: 10.1016/j.jcat.2022.05.011_b0265 article-title: Transformation of 2,3-butanediol in a dual bed catalyst system publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.10.009 – volume: 14 start-page: 578 year: 2010 ident: 10.1016/j.jcat.2022.05.011_b0005 article-title: Production of first and second generation biofuels: A comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.10.003 – volume: 87 start-page: 1051 year: 2015 ident: 10.1016/j.jcat.2022.05.011_b0175 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-1117 – volume: 6 start-page: 5830 year: 2016 ident: 10.1016/j.jcat.2022.05.011_b0040 article-title: Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY02211H – volume: 78 start-page: 35 year: 1993 ident: 10.1016/j.jcat.2022.05.011_b0260 article-title: Basic catalysts and fine chemicals publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(08)63302-9 |
| SSID | ssj0011558 |
| Score | 2.451392 |
| Snippet | [Display omitted]
•Hydrothermal ZrO2 calcined at high temperature gives high 3-buten-2-ol selectivity.•Highest 3-buten-2-ol selectivity at low temperature and... 2,3-Butanediol (2,3-BDO) dehydration towards 1,3-butadiene was investigated over commercial and in-house synthesized ZrO₂ catalysts in a Berty reactor at... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 200 |
| SubjectTerms | 2,3-butanediol dehydration adsorption Biomass conversion catalysts catalytic activity crystal structure Hydrothermal ZrO₂ synthesis Kinetics partial pressure |
| Title | The potential of ZrO2 catalysts for the dehydration of 2,3-butanediol into 3-buten-2-ol: Impact of synthesis method and operating conditions |
| URI | https://dx.doi.org/10.1016/j.jcat.2022.05.011 https://www.proquest.com/docview/2675585044 |
| Volume | 411 |
| WOSCitedRecordID | wos000810197500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011558 issn: 0021-9517 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLaqDgm4QDBAG38yEncllWMnccJdmYbYLgYXRVTcRHHiaO2quErbaX0HnoYn5Dh2nLCJCZC4iaLUSS1_X845OX9G6E0ZSy4SEXkZCxIvKBMfXimeeFFMEioCwXIRN5tN8LOzeDZLPg8GP9pamMslr6r46ipZ_Veo4RqArUtn_wJu91C4AOcAOhwBdjj-MfArtdFZQMbQ_FZ_oqPGTbNbb9Yur7CQ57uidhYjhcVmntiCsQj6TOlWHGCWNldk5VFPLbXz4MQVVa53FTxFtzMxm1A3UQi10j2aTR2vjoU7Z-BN89dOaN656eWFNLnN72W9vRhNxk5sK2CHqqq5odeprFVXwDY934lsayIqCiTW6Ou478mgXdarda-1JTa_ZICaHJLQFHiOpZHSJCGeLsHti_HACm0riAnp6XRqfruhLoznYjFeaC-vnpLp4up3ytGlLOqotq_nQWkTvQW1v0d5mMRDtDc5OZ6dutgVWGhG_9uJ21Itk1V4_Z9-Zw5dMwwaa2f6ED2wOOGJodcjNJDVPrp71O4OuI_u9xpZPkbfgXTYkQ6rEmvSYUc6DKTDQBfcI50eRd_2KYc15XCfcu-wIZwe6wiHDeEwEA47wuGOcE_Qlw_H06OPnt3nw8sZ5xsvYbIUpMwEF5ySkgUioFlU5MKXTHIaMVAyuSBB5sdlUZZ-QfIoF7QgTHDdso49RcNKVfIAYclyuC0KszyUYGrHgmS-BOEDp5xRTg-R3y53mtsm-HovlmXaZjsuUg1RqiFKSZgCRIdo5O5ZmRYwt44OWxRTa8Qa4zQF0t163-sW8hSg1GE7WHy1XacUvunho54EwbN_fPZzdK97316g4abeypfoTn65ma_rV5a_PwHh_s5a |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+of+ZrO2+catalysts+for+the+dehydration+of+2%2C3-butanediol+into+3-buten-2-ol%3A+Impact+of+synthesis+method+and+operating+conditions&rft.jtitle=Journal+of+catalysis&rft.au=Bekele%2C+Beruk+A.&rft.au=Poissonnier%2C+Jeroen&rft.au=Thybaut%2C+Joris+W.&rft.date=2022-07-01&rft.pub=Elsevier+Inc&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=411&rft.spage=200&rft.epage=211&rft_id=info:doi/10.1016%2Fj.jcat.2022.05.011&rft.externalDocID=S0021951722002032 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |