The potential of ZrO2 catalysts for the dehydration of 2,3-butanediol into 3-buten-2-ol: Impact of synthesis method and operating conditions

[Display omitted] •Hydrothermal ZrO2 calcined at high temperature gives high 3-buten-2-ol selectivity.•Highest 3-buten-2-ol selectivity at low temperature and high space time.•Mild acid-base properties are crucial for selective first dehydration step.•Incompatible acid-base properties for one-step o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis Jg. 411; S. 200 - 211
Hauptverfasser: Bekele, Beruk A., Poissonnier, Jeroen, Thybaut, Joris W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.07.2022
Schlagworte:
ISSN:0021-9517, 1090-2694
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Hydrothermal ZrO2 calcined at high temperature gives high 3-buten-2-ol selectivity.•Highest 3-buten-2-ol selectivity at low temperature and high space time.•Mild acid-base properties are crucial for selective first dehydration step.•Incompatible acid-base properties for one-step optimization of both dehydrations. 2,3-Butanediol (2,3-BDO) dehydration towards 1,3-butadiene was investigated over commercial and in-house synthesized ZrO2 catalysts in a Berty reactor at intrinsic kinetics conditions. The commercial and ZrO2 catalysts prepared via precipitation (ZrO2-PP) exhibited a higher selectivity towards the undesired methyl ethyl ketone which was attributed to a lack of sufficient acid-base concerted active sites. For ZrO2-PP, this was attributed to its tetragonal crystal structure with weaker adsorption sites. Hydrothermal synthesis allowed producing ZrO2 with a monoclinic crystal structure, with correspondingly more pronounced acidic and basic properties which could be further tuned via calcination. A maximal 3-buten-2-ol, i.e., the desired intermediate for further conversion into 1,3-butadiene, yield amounting to 38% (mol mol−1) could be obtained under a N2 flow at 300 °C, a space time of 1130 kg s mol−1 and 2,3-BDO partial pressure of 0.16 bar over the hydrothermally synthesized catalyst.
AbstractList [Display omitted] •Hydrothermal ZrO2 calcined at high temperature gives high 3-buten-2-ol selectivity.•Highest 3-buten-2-ol selectivity at low temperature and high space time.•Mild acid-base properties are crucial for selective first dehydration step.•Incompatible acid-base properties for one-step optimization of both dehydrations. 2,3-Butanediol (2,3-BDO) dehydration towards 1,3-butadiene was investigated over commercial and in-house synthesized ZrO2 catalysts in a Berty reactor at intrinsic kinetics conditions. The commercial and ZrO2 catalysts prepared via precipitation (ZrO2-PP) exhibited a higher selectivity towards the undesired methyl ethyl ketone which was attributed to a lack of sufficient acid-base concerted active sites. For ZrO2-PP, this was attributed to its tetragonal crystal structure with weaker adsorption sites. Hydrothermal synthesis allowed producing ZrO2 with a monoclinic crystal structure, with correspondingly more pronounced acidic and basic properties which could be further tuned via calcination. A maximal 3-buten-2-ol, i.e., the desired intermediate for further conversion into 1,3-butadiene, yield amounting to 38% (mol mol−1) could be obtained under a N2 flow at 300 °C, a space time of 1130 kg s mol−1 and 2,3-BDO partial pressure of 0.16 bar over the hydrothermally synthesized catalyst.
2,3-Butanediol (2,3-BDO) dehydration towards 1,3-butadiene was investigated over commercial and in-house synthesized ZrO₂ catalysts in a Berty reactor at intrinsic kinetics conditions. The commercial and ZrO₂ catalysts prepared via precipitation (ZrO₂-PP) exhibited a higher selectivity towards the undesired methyl ethyl ketone which was attributed to a lack of sufficient acid-base concerted active sites. For ZrO₂-PP, this was attributed to its tetragonal crystal structure with weaker adsorption sites. Hydrothermal synthesis allowed producing ZrO₂ with a monoclinic crystal structure, with correspondingly more pronounced acidic and basic properties which could be further tuned via calcination. A maximal 3-buten-2-ol, i.e., the desired intermediate for further conversion into 1,3-butadiene, yield amounting to 38% (mol mol⁻¹) could be obtained under a N₂ flow at 300 °C, a space time of 1130 kg s mol⁻¹ and 2,3-BDO partial pressure of 0.16 bar over the hydrothermally synthesized catalyst.
Author Poissonnier, Jeroen
Thybaut, Joris W.
Bekele, Beruk A.
Author_xml – sequence: 1
  givenname: Beruk A.
  surname: Bekele
  fullname: Bekele, Beruk A.
– sequence: 2
  givenname: Jeroen
  surname: Poissonnier
  fullname: Poissonnier, Jeroen
– sequence: 3
  givenname: Joris W.
  surname: Thybaut
  fullname: Thybaut, Joris W.
  email: Joris.Thybaut@UGent.be
BookMark eNp9kL1uFDEURi0UJDaBF6ByScFMru35W0SDokAiRUoTGhrLP9esV7P2YHuR9h14aDxZKopUlqxzPumeS3IRYkBC3jNoGbDhet_ujSotB85b6Ftg7BXZMNhCw4dtd0E2AJw1256Nb8hlznuoRN9PG_LnaYd0iQVD8Wqm0dEf6ZHTOqbmUy6ZuphoqYzF3ckmVXwMK8U_ikYfiwpofZypDyXS5x8MDW_i_IneHxZlysrmU6gL2Wd6wLKLlqpgaVxwXQs_qYnB-nU3vyWvnZozvvv3XpHvX2-fbu6ah8dv9zdfHhojxrE0W4FOg1N61CMHJzrdcTVYoxkKHPkgumkyGjrFJmedYxbMYDS3IPQInQBxRT6cd5cUfx0xF3nw2eA813PiMUs-jDVOD11XUX5GTYo5J3RySf6g0kkykGt6uZdrermml9DLGrZK03-S8eU5XUnKzy-rn88q1vt_e0wyG4_B1MwJTZE2-pf0v0Gxoyc
CitedBy_id crossref_primary_10_1016_j_cherd_2023_10_037
crossref_primary_10_3390_catal15070655
crossref_primary_10_1016_j_jcat_2025_116167
crossref_primary_10_1016_S1872_2067_23_64512_7
crossref_primary_10_1016_j_apcata_2023_119321
crossref_primary_10_1002_cctc_202401832
crossref_primary_10_1016_j_cattod_2024_114732
Cites_doi 10.1128/AEM.00355-11
10.1021/ja01145a126
10.1039/C4CS00105B
10.1016/j.jcat.2018.01.001
10.1016/j.biortech.2009.10.052
10.3390/catal8120622
10.1016/j.catcom.2014.01.018
10.1016/0254-0584(85)90064-1
10.1006/jcat.2001.3426
10.1246/cl.160595
10.1002/aic.690070239
10.1021/ie049375+
10.1016/j.jcat.2004.12.010
10.1016/j.btre.2019.e00397
10.1016/j.apcata.2014.09.007
10.1016/j.jcat.2018.01.034
10.1016/j.apcata.2017.07.048
10.1039/b406854h
10.1016/j.jcat.2018.11.028
10.1021/la800370r
10.1080/03602457908065106
10.1002/cctc.201501399
10.1016/j.jcat.2017.08.017
10.1021/ja01269a023
10.1016/j.jcat.2016.09.003
10.1002/chem.201602390
10.1039/C8RA02977F
10.1002/anie.201105125
10.1016/j.catcom.2017.05.022
10.1134/S0965544116030099
10.1246/cl.140662
10.1021/acs.energyfuels.1c01706
10.1007/s00253-009-2004-x
10.1016/0304-5102(89)80134-8
10.1002/anie.201305058
10.1016/j.apcata.2018.05.029
10.1039/C5RA23251A
10.1016/S0360-0564(08)60390-9
10.1007/978-94-009-5562-2_3
10.1016/0021-9517(71)90073-X
10.1016/j.fuproc.2019.106193
10.1016/j.cbi.2007.01.009
10.1016/j.jcat.2015.07.004
10.1039/c2gc36324k
10.1007/BF02705631
10.1016/j.ces.2017.10.009
10.1016/j.rser.2009.10.003
10.1515/pac-2014-1117
10.1039/C5CY02211H
10.1016/S0167-2991(08)63302-9
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jcat.2022.05.011
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 211
ExternalDocumentID 10_1016_j_jcat_2022_05_011
S0021951722002032
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c377t-93efb0fab7b720f34b42a6dcb1e3e7263488cb04a18fdff1d0c6cb2d03b704303
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810197500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9517
IngestDate Sun Sep 28 03:03:31 EDT 2025
Sat Nov 29 07:01:36 EST 2025
Tue Nov 18 20:24:48 EST 2025
Fri Feb 23 02:40:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Kinetics
Biomass conversion
2,3-butanediol dehydration
Hydrothermal ZrO₂ synthesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-93efb0fab7b720f34b42a6dcb1e3e7263488cb04a18fdff1d0c6cb2d03b704303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://biblio.ugent.be/publication/01GPE44RZ7FN0BR4S6HA2S6Z2T/file/01GPE45FXCC6YH2HAGX36PXFT7.pdf
PQID 2675585044
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2675585044
crossref_primary_10_1016_j_jcat_2022_05_011
crossref_citationtrail_10_1016_j_jcat_2022_05_011
elsevier_sciencedirect_doi_10_1016_j_jcat_2022_05_011
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Journal of catalysis
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jenck, Agterberg, Droescher (b0010) 2004; 6
Bruijnincx, Weckhuysen (b0030) 2013; 52
Sanyal, Martinez, Guo, Subramaniam, Song, Ramasamy (b0145) 2021; 35
Wang, Sun, Yamada, Sato (b0045) 2018; 562
Zheng, Grossardt, Almkhelfe, Xu, Grady, Douglas, Amama, Hohn (b0150) 2017; 354
Sun, Li, Yang, Su, Yamada, Sato (b0090) 2020; 197
Petrov, Petrova (b0075) 2009; 84
White (b0025) 2007; 166
Thybaut, Laxmi Narasimhan, Denayer, Baron, Jacobs, Martens, Marin (b0200) 2005; 44
Zhang, Yang, Sun, Shen, Wei, Zhu, Chu (b0070) 2010; 101
Lowell, Shields (b0220) 1984
Akiyama, Miyaji, Hayashi, Hiza, Sekiguchi, Koyama, Shiga, Baba (b0055) 2018; 359
Nikitina, Ivanova (b0240) 2016; 8
Zheng, Xu, Liu, Hohn (b0160) 2018; 360
Scherrer (b0190) 1918; 2
Makshina, Dusselier, Janssens, Degrève, Jacobs, Sels (b0035) 2014; 43
Zhang, Yu, Ji, Huang (b0100) 2012; 14
Al-Auda, Al-Atabi, Hohn (b0235) 2018; 8
Duan, Yamada, Sato (b0155) 2017; 99
Barrett, Joyner, Halenda (b0185) 2002; 73
Liu, Fabos, Taylor, Knight, Whiston, Hutchings (b0230) 2016; 22
Duan, Yamada, Sato (b0140) 2014; 43
Kruger, Dong, Beckham, Biddy (b0050) 2018; 8
Duan, Sun, Yamada, Sato (b0130) 2014; 48
Zhao, Yu, Zhang, Hu, Jiang, Fu, Huang (b0105) 2016; 6
Duan, Yamada, Sato (b0095) 2016; 45
Matsuda, Matsumura, Yamada, Sato (b0060) 2021; 514
Duan, Unno, Yamada, Sato (b0125) 2017; 546
Berty (b0195) 1979; 20
Tanabe (b0165) 1985; 13
H. Duan, Dehydration of 2,3-butanediol into 3-buten-2-ol and 1,3-butadiene over acid-base catalysts, 2017.
Zeng, Bossmann, Heidlage, Hohn (b0265) 2018; 175
Wang, Saleh, Ozkan (b0255) 2005; 231
Ruppert, Weinberg, Palkovits (b0015) 2012; 51
Hakizimana, Matabaro, Lee (b0065) 2020; 25
Weisz (b0210) 1954; 6
Baertsch, Komala, Chua, Iglesia (b0250) 2002; 205
Walker, Motagamwala, Dumesic, Huber (b0020) 2019; 369
Brunauer, Emmett, Teller (b0180) 1938; 60
Mears (b0215) 1971; 20
Hattori (b0260) 1993; 78
Naik, Goud, Rout, Dalai (b0005) 2010; 14
Duan, Yamada, Sato (b0135) 2014; 487
Zeng, Tenn, Aki, Xu, Liu, Hohn (b0120) 2016; 344
Köpke, Mihalcea, Liew, Tizard, Ali, Conolly, Al-Sinawi, Simpson (b0080) 2011; 77
Nikitina, Sushkevich, Ivanova (b0110) 2016; 56
Winfield (b0085) 1945; 18
Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol, Sing (b0175) 2015; 87
Li, Huang, Li, Zhang, Liu (b0170) 2008; 24
Jing, Katryniok, Araque, Wojcieszak, Capron, Paul, Daturi, Clacens, De Campo, Liebens, Dumeignil, Pera-Titus (b0040) 2016; 6
Zheng, Wales, Heidlage, Rezac, Wang, Bossmann, Hohn (b0115) 2015; 330
Jung, Shul, Bell (b0225) 2001; 18
Carberry (b0205) 1961; 7
Salvapati, Ramanamurty, Janardanarao (b0270) 1989; 54
Carberry (10.1016/j.jcat.2022.05.011_b0205) 1961; 7
Hattori (10.1016/j.jcat.2022.05.011_b0260) 1993; 78
Zhang (10.1016/j.jcat.2022.05.011_b0070) 2010; 101
Wang (10.1016/j.jcat.2022.05.011_b0255) 2005; 231
Kruger (10.1016/j.jcat.2022.05.011_b0050) 2018; 8
Duan (10.1016/j.jcat.2022.05.011_b0155) 2017; 99
Sun (10.1016/j.jcat.2022.05.011_b0090) 2020; 197
Zhao (10.1016/j.jcat.2022.05.011_b0105) 2016; 6
Walker (10.1016/j.jcat.2022.05.011_b0020) 2019; 369
Akiyama (10.1016/j.jcat.2022.05.011_b0055) 2018; 359
Mears (10.1016/j.jcat.2022.05.011_b0215) 1971; 20
Thybaut (10.1016/j.jcat.2022.05.011_b0200) 2005; 44
Barrett (10.1016/j.jcat.2022.05.011_b0185) 2002; 73
Sanyal (10.1016/j.jcat.2022.05.011_b0145) 2021; 35
Winfield (10.1016/j.jcat.2022.05.011_b0085) 1945; 18
Duan (10.1016/j.jcat.2022.05.011_b0125) 2017; 546
Duan (10.1016/j.jcat.2022.05.011_b0140) 2014; 43
Makshina (10.1016/j.jcat.2022.05.011_b0035) 2014; 43
Ruppert (10.1016/j.jcat.2022.05.011_b0015) 2012; 51
Thommes (10.1016/j.jcat.2022.05.011_b0175) 2015; 87
Weisz (10.1016/j.jcat.2022.05.011_b0210) 1954; 6
Liu (10.1016/j.jcat.2022.05.011_b0230) 2016; 22
Zhang (10.1016/j.jcat.2022.05.011_b0100) 2012; 14
Zheng (10.1016/j.jcat.2022.05.011_b0115) 2015; 330
Duan (10.1016/j.jcat.2022.05.011_b0130) 2014; 48
Jung (10.1016/j.jcat.2022.05.011_b0225) 2001; 18
White (10.1016/j.jcat.2022.05.011_b0025) 2007; 166
Nikitina (10.1016/j.jcat.2022.05.011_b0110) 2016; 56
Tanabe (10.1016/j.jcat.2022.05.011_b0165) 1985; 13
Jenck (10.1016/j.jcat.2022.05.011_b0010) 2004; 6
Lowell (10.1016/j.jcat.2022.05.011_b0220) 1984
Zeng (10.1016/j.jcat.2022.05.011_b0265) 2018; 175
Wang (10.1016/j.jcat.2022.05.011_b0045) 2018; 562
Nikitina (10.1016/j.jcat.2022.05.011_b0240) 2016; 8
Jing (10.1016/j.jcat.2022.05.011_b0040) 2016; 6
Baertsch (10.1016/j.jcat.2022.05.011_b0250) 2002; 205
Matsuda (10.1016/j.jcat.2022.05.011_b0060) 2021; 514
Zeng (10.1016/j.jcat.2022.05.011_b0120) 2016; 344
Köpke (10.1016/j.jcat.2022.05.011_b0080) 2011; 77
Bruijnincx (10.1016/j.jcat.2022.05.011_b0030) 2013; 52
Li (10.1016/j.jcat.2022.05.011_b0170) 2008; 24
Brunauer (10.1016/j.jcat.2022.05.011_b0180) 1938; 60
Berty (10.1016/j.jcat.2022.05.011_b0195) 1979; 20
Zheng (10.1016/j.jcat.2022.05.011_b0160) 2018; 360
Duan (10.1016/j.jcat.2022.05.011_b0135) 2014; 487
Salvapati (10.1016/j.jcat.2022.05.011_b0270) 1989; 54
Zheng (10.1016/j.jcat.2022.05.011_b0150) 2017; 354
Petrov (10.1016/j.jcat.2022.05.011_b0075) 2009; 84
Duan (10.1016/j.jcat.2022.05.011_b0095) 2016; 45
Al-Auda (10.1016/j.jcat.2022.05.011_b0235) 2018; 8
10.1016/j.jcat.2022.05.011_b0245
Naik (10.1016/j.jcat.2022.05.011_b0005) 2010; 14
Hakizimana (10.1016/j.jcat.2022.05.011_b0065) 2020; 25
Scherrer (10.1016/j.jcat.2022.05.011_b0190) 1918; 2
References_xml – volume: 546
  start-page: 96
  year: 2017
  end-page: 102
  ident: b0125
  article-title: Adsorptive interaction between 1,5-pentanediol and MgO-modified ZrO
  publication-title: Appl. Catal. A Gen.
– volume: 35
  start-page: 15742
  year: 2021
  end-page: 15751
  ident: b0145
  article-title: Selective Dehydration of 2,3-Butanediol to 3-Buten-2-ol over In
  publication-title: Energy Fuels
– volume: 84
  start-page: 659
  year: 2009
  end-page: 665
  ident: b0075
  article-title: High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 562
  start-page: 11
  year: 2018
  end-page: 18
  ident: b0045
  article-title: Selective production of 1,3-butadiene in the dehydration of 1,4-butanediol over rare earth oxides
  publication-title: Appl. Catal. A Gen.
– volume: 101
  start-page: 1961
  year: 2010
  end-page: 1967
  ident: b0070
  article-title: Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 16988
  year: 2016
  end-page: 16995
  ident: b0105
  article-title: Catalytic dehydration of 2,3-butanediol over P/HZSM-5: effect of catalyst, reaction temperature and reactant configuration on rearrangement products
  publication-title: RSC Adv.
– volume: 359
  start-page: 184
  year: 2018
  end-page: 197
  ident: b0055
  article-title: Selective conversion of ethanol to 1,3-butadiene using germanium talc as catalyst
  publication-title: J. Catal.
– volume: 99
  start-page: 53
  year: 2017
  end-page: 56
  ident: b0155
  article-title: Vapor-phase hydrogenation of acetoin and diacetyl into 2,3-butanediol over supported metal catalysts
  publication-title: Catal. Commun.
– volume: 51
  start-page: 2564
  year: 2012
  end-page: 2601
  ident: b0015
  article-title: Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals
  publication-title: Angew. Chemie - Int. Ed.
– volume: 18
  start-page: 412
  year: 1945
  end-page: 423
  ident: b0085
  article-title: The catalytic dehydration of 2,3-butanediol to 1,3-butadiene
  publication-title: J. Counc. Sci. Ind. Res.
– volume: 330
  start-page: 222
  year: 2015
  end-page: 237
  ident: b0115
  article-title: Conversion of 2,3-butanediol to butenes over bifunctional catalysts in a single reactor
  publication-title: J. Catal.
– volume: 514
  year: 2021
  ident: b0060
  article-title: Vapor-phase dehydration of 1,4-butanediol to 1,3-butadiene over Y
  publication-title: Mol. Catal.
– volume: 344
  start-page: 77
  year: 2016
  end-page: 89
  ident: b0120
  article-title: Influence of basicity on 1,3-butadiene formation from catalytic 2,3-butanediol dehydration over γ-alumina
  publication-title: J. Catal.
– volume: 354
  start-page: 182
  year: 2017
  end-page: 196
  ident: b0150
  article-title: Study of mesoporous catalysts for conversion of 2,3-butanediol to butenes
  publication-title: J. Catal.
– reference: H. Duan, Dehydration of 2,3-butanediol into 3-buten-2-ol and 1,3-butadiene over acid-base catalysts, 2017.
– volume: 369
  start-page: 518
  year: 2019
  end-page: 525
  ident: b0020
  article-title: Fundamental catalytic challenges to design improved biomass conversion technologies
  publication-title: J. Catal.
– volume: 54
  start-page: 9
  year: 1989
  end-page: 30
  ident: b0270
  article-title: Selective catalytic self-condensation of acetone
  publication-title: J. Mol. Catal.
– volume: 8
  start-page: 1346
  year: 2016
  end-page: 1353
  ident: b0240
  article-title: Conversion of 2,3-butanediol over phosphate catalysts
  publication-title: ChemCatChem
– volume: 231
  start-page: 20
  year: 2005
  end-page: 32
  ident: b0255
  article-title: Reaction network of aldehyde hydrogenation over sulfided Ni-Mo/Al
  publication-title: J. Catal.
– volume: 25
  year: 2020
  ident: b0065
  article-title: The current strategies and parameters for the enhanced microbial production of 2,3-butanediol
  publication-title: Biotechnol. Reports.
– volume: 166
  start-page: 10
  year: 2007
  end-page: 14
  ident: b0025
  article-title: Butadiene production process overview
  publication-title: Chem. Biol. Interact.
– volume: 20
  start-page: 75
  year: 1979
  end-page: 96
  ident: b0195
  article-title: Testing commercial catalysts in recycle reactors
  publication-title: Catal. Rev.
– volume: 8
  start-page: 24068
  year: 2018
  end-page: 24074
  ident: b0050
  article-title: Integrated conversion of 1-butanol to 1,3-butadiene
  publication-title: RSC Adv.
– volume: 43
  start-page: 1773
  year: 2014
  end-page: 1775
  ident: b0140
  article-title: Vapor-phase catalytic dehydration of 2,3-butanediol into 3-buten-2-ol over Sc
  publication-title: Chem. Lett.
– volume: 43
  start-page: 7917
  year: 2014
  end-page: 7953
  ident: b0035
  article-title: Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 143
  year: 1954
  end-page: 196
  ident: b0210
  article-title: Interpretation of measurements in experimental catalysis
  publication-title: Adv. Catlay.
– volume: 14
  start-page: 578
  year: 2010
  end-page: 597
  ident: b0005
  article-title: Production of first and second generation biofuels: A comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 52
  start-page: 11980
  year: 2013
  end-page: 11987
  ident: b0030
  article-title: Shale gas revolution: An opportunity for the production of biobased chemicals?
  publication-title: Angew. Chemie - Int. Ed.
– volume: 487
  start-page: 226
  year: 2014
  end-page: 233
  ident: b0135
  article-title: Selective dehydration of 2,3-butanediol to 3-buten-2-ol over ZrO2 modified with CaO
  publication-title: Appl. Catal. A Gen.
– start-page: 11
  year: 1984
  end-page: 13
  ident: b0220
  article-title: Adsorption isotherms
  publication-title: Powder Surf. Area Porosity
– volume: 78
  start-page: 35
  year: 1993
  end-page: 49
  ident: b0260
  article-title: Basic catalysts and fine chemicals
  publication-title: Stud. Surf. Sci. Catal.
– volume: 6
  start-page: 544
  year: 2004
  end-page: 556
  ident: b0010
  article-title: Products and processes for a sustainable chemical industry: A review of achievements and prospects
  publication-title: Green Chem.
– volume: 56
  start-page: 230
  year: 2016
  end-page: 236
  ident: b0110
  article-title: Dehydration of 2,3-butanediol over zeolite catalysts
  publication-title: Pet. Chem.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0235
  article-title: Metals on ZrO2: Catalysts for the aldol condensation of methyl ethyl ketone (MEK) to C8 ketones
  publication-title: Catalysts.
– volume: 175
  start-page: 387
  year: 2018
  end-page: 395
  ident: b0265
  article-title: Transformation of 2,3-butanediol in a dual bed catalyst system
  publication-title: Chem. Eng. Sci.
– volume: 13
  start-page: 347
  year: 1985
  end-page: 364
  ident: b0165
  article-title: Surface and catalytic properties of ZrO
  publication-title: Mater. Chem. Phys.
– volume: 205
  start-page: 44
  year: 2002
  end-page: 57
  ident: b0250
  article-title: Genesis of Brønsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts
  publication-title: J. Catal.
– volume: 197
  year: 2020
  ident: b0090
  article-title: Production of 1,3-butadiene from biomass-derived C4 alcohols
  publication-title: Fuel Process. Technol.
– volume: 77
  start-page: 5467
  year: 2011
  end-page: 5475
  ident: b0080
  article-title: 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas
  publication-title: Appl. Environ. Microbiol.
– volume: 14
  start-page: 3441
  year: 2012
  end-page: 3450
  ident: b0100
  article-title: Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites
  publication-title: Green Chem.
– volume: 2
  start-page: 98
  year: 1918
  end-page: 100
  ident: b0190
  article-title: Nachr Ges Wiss Goettingen
  publication-title: Math. Phys.
– volume: 7
  start-page: 350
  year: 1961
  end-page: 351
  ident: b0205
  article-title: The Catalytic Effectiveness Factor Under Nonisothermal Conditions
  publication-title: AIChE J.
– volume: 20
  start-page: 127
  year: 1971
  end-page: 131
  ident: b0215
  article-title: Diagnostic criteria for heat transport limitations in fixed bed reactors
  publication-title: J. Catal.
– volume: 22
  start-page: 12290
  year: 2016
  end-page: 12294
  ident: b0230
  article-title: One-step production of 1,3-butadiene from 2,3-butanediol dehydration
  publication-title: Chem. - A Eur. J.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: b0180
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 992
  year: 2001
  end-page: 999
  ident: b0225
  article-title: The Preparation and Surface Characterization of Zirconia Polymorphs
  publication-title: Korean J. Chem. Eng.
– volume: 48
  start-page: 1
  year: 2014
  end-page: 4
  ident: b0130
  article-title: Dehydration of 2,3-butanediol into 3-buten-2-ol catalyzed by ZrO
  publication-title: Catal. Commun.
– volume: 24
  start-page: 8358
  year: 2008
  end-page: 8366
  ident: b0170
  article-title: Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation
  publication-title: Langmuir
– volume: 6
  start-page: 5830
  year: 2016
  end-page: 5840
  ident: b0040
  article-title: Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts
  publication-title: Catal. Sci. Technol.
– volume: 73
  start-page: 373
  year: 2002
  end-page: 380
  ident: b0185
  article-title: The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen isotherms
  publication-title: J. Am. Chem. Soc.
– volume: 87
  start-page: 1051
  year: 2015
  end-page: 1069
  ident: b0175
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
– volume: 45
  start-page: 1036
  year: 2016
  end-page: 1047
  ident: b0095
  article-title: Future prospect of the production of 1,3-butadiene from butanediols
  publication-title: Chem. Lett.
– volume: 360
  start-page: 221
  year: 2018
  end-page: 239
  ident: b0160
  article-title: Mechanistic study of the catalytic conversion of 2,3-butanediol to butenes
  publication-title: J. Catal.
– volume: 44
  start-page: 5159
  year: 2005
  end-page: 5169
  ident: b0200
  article-title: Acid-metal balance of a hydrocracking catalyst: Ideal versus nonideal behavior
  publication-title: Ind. Eng. Chem. Res.
– volume: 77
  start-page: 5467
  year: 2011
  ident: 10.1016/j.jcat.2022.05.011_b0080
  article-title: 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00355-11
– volume: 73
  start-page: 373
  year: 2002
  ident: 10.1016/j.jcat.2022.05.011_b0185
  article-title: The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen isotherms
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01145a126
– volume: 43
  start-page: 7917
  issue: 22
  year: 2014
  ident: 10.1016/j.jcat.2022.05.011_b0035
  article-title: Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00105B
– volume: 359
  start-page: 184
  year: 2018
  ident: 10.1016/j.jcat.2022.05.011_b0055
  article-title: Selective conversion of ethanol to 1,3-butadiene using germanium talc as catalyst
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.01.001
– volume: 514
  year: 2021
  ident: 10.1016/j.jcat.2022.05.011_b0060
  article-title: Vapor-phase dehydration of 1,4-butanediol to 1,3-butadiene over Y2Zr2O7 catalyst
  publication-title: Mol. Catal.
– volume: 101
  start-page: 1961
  year: 2010
  ident: 10.1016/j.jcat.2022.05.011_b0070
  article-title: Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.10.052
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.jcat.2022.05.011_b0235
  article-title: Metals on ZrO2: Catalysts for the aldol condensation of methyl ethyl ketone (MEK) to C8 ketones
  publication-title: Catalysts.
  doi: 10.3390/catal8120622
– volume: 48
  start-page: 1
  year: 2014
  ident: 10.1016/j.jcat.2022.05.011_b0130
  article-title: Dehydration of 2,3-butanediol into 3-buten-2-ol catalyzed by ZrO2
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2014.01.018
– volume: 13
  start-page: 347
  year: 1985
  ident: 10.1016/j.jcat.2022.05.011_b0165
  article-title: Surface and catalytic properties of ZrO2
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/0254-0584(85)90064-1
– volume: 205
  start-page: 44
  year: 2002
  ident: 10.1016/j.jcat.2022.05.011_b0250
  article-title: Genesis of Brønsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts
  publication-title: J. Catal.
  doi: 10.1006/jcat.2001.3426
– volume: 45
  start-page: 1036
  year: 2016
  ident: 10.1016/j.jcat.2022.05.011_b0095
  article-title: Future prospect of the production of 1,3-butadiene from butanediols
  publication-title: Chem. Lett.
  doi: 10.1246/cl.160595
– volume: 7
  start-page: 350
  issue: 2
  year: 1961
  ident: 10.1016/j.jcat.2022.05.011_b0205
  article-title: The Catalytic Effectiveness Factor Under Nonisothermal Conditions
  publication-title: AIChE J.
  doi: 10.1002/aic.690070239
– volume: 44
  start-page: 5159
  year: 2005
  ident: 10.1016/j.jcat.2022.05.011_b0200
  article-title: Acid-metal balance of a hydrocracking catalyst: Ideal versus nonideal behavior
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049375+
– volume: 231
  start-page: 20
  year: 2005
  ident: 10.1016/j.jcat.2022.05.011_b0255
  article-title: Reaction network of aldehyde hydrogenation over sulfided Ni-Mo/Al2O3 catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.12.010
– volume: 25
  year: 2020
  ident: 10.1016/j.jcat.2022.05.011_b0065
  article-title: The current strategies and parameters for the enhanced microbial production of 2,3-butanediol
  publication-title: Biotechnol. Reports.
  doi: 10.1016/j.btre.2019.e00397
– volume: 487
  start-page: 226
  year: 2014
  ident: 10.1016/j.jcat.2022.05.011_b0135
  article-title: Selective dehydration of 2,3-butanediol to 3-buten-2-ol over ZrO2 modified with CaO
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2014.09.007
– volume: 360
  start-page: 221
  year: 2018
  ident: 10.1016/j.jcat.2022.05.011_b0160
  article-title: Mechanistic study of the catalytic conversion of 2,3-butanediol to butenes
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.01.034
– volume: 546
  start-page: 96
  year: 2017
  ident: 10.1016/j.jcat.2022.05.011_b0125
  article-title: Adsorptive interaction between 1,5-pentanediol and MgO-modified ZrO2 catalyst in the vapor-phase dehydration to produce 4-penten-1-ol
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2017.07.048
– volume: 6
  start-page: 544
  year: 2004
  ident: 10.1016/j.jcat.2022.05.011_b0010
  article-title: Products and processes for a sustainable chemical industry: A review of achievements and prospects
  publication-title: Green Chem.
  doi: 10.1039/b406854h
– volume: 369
  start-page: 518
  year: 2019
  ident: 10.1016/j.jcat.2022.05.011_b0020
  article-title: Fundamental catalytic challenges to design improved biomass conversion technologies
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.11.028
– volume: 24
  start-page: 8358
  year: 2008
  ident: 10.1016/j.jcat.2022.05.011_b0170
  article-title: Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation
  publication-title: Langmuir
  doi: 10.1021/la800370r
– volume: 20
  start-page: 75
  year: 1979
  ident: 10.1016/j.jcat.2022.05.011_b0195
  article-title: Testing commercial catalysts in recycle reactors
  publication-title: Catal. Rev.
  doi: 10.1080/03602457908065106
– volume: 8
  start-page: 1346
  year: 2016
  ident: 10.1016/j.jcat.2022.05.011_b0240
  article-title: Conversion of 2,3-butanediol over phosphate catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201501399
– volume: 354
  start-page: 182
  year: 2017
  ident: 10.1016/j.jcat.2022.05.011_b0150
  article-title: Study of mesoporous catalysts for conversion of 2,3-butanediol to butenes
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.08.017
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.jcat.2022.05.011_b0180
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 344
  start-page: 77
  year: 2016
  ident: 10.1016/j.jcat.2022.05.011_b0120
  article-title: Influence of basicity on 1,3-butadiene formation from catalytic 2,3-butanediol dehydration over γ-alumina
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.09.003
– volume: 22
  start-page: 12290
  year: 2016
  ident: 10.1016/j.jcat.2022.05.011_b0230
  article-title: One-step production of 1,3-butadiene from 2,3-butanediol dehydration
  publication-title: Chem. - A Eur. J.
  doi: 10.1002/chem.201602390
– volume: 8
  start-page: 24068
  year: 2018
  ident: 10.1016/j.jcat.2022.05.011_b0050
  article-title: Integrated conversion of 1-butanol to 1,3-butadiene
  publication-title: RSC Adv.
  doi: 10.1039/C8RA02977F
– volume: 51
  start-page: 2564
  year: 2012
  ident: 10.1016/j.jcat.2022.05.011_b0015
  article-title: Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals
  publication-title: Angew. Chemie - Int. Ed.
  doi: 10.1002/anie.201105125
– ident: 10.1016/j.jcat.2022.05.011_b0245
  doi: 10.1016/j.catcom.2014.01.018
– volume: 99
  start-page: 53
  year: 2017
  ident: 10.1016/j.jcat.2022.05.011_b0155
  article-title: Vapor-phase hydrogenation of acetoin and diacetyl into 2,3-butanediol over supported metal catalysts
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.05.022
– volume: 56
  start-page: 230
  year: 2016
  ident: 10.1016/j.jcat.2022.05.011_b0110
  article-title: Dehydration of 2,3-butanediol over zeolite catalysts
  publication-title: Pet. Chem.
  doi: 10.1134/S0965544116030099
– volume: 43
  start-page: 1773
  year: 2014
  ident: 10.1016/j.jcat.2022.05.011_b0140
  article-title: Vapor-phase catalytic dehydration of 2,3-butanediol into 3-buten-2-ol over Sc2O3
  publication-title: Chem. Lett.
  doi: 10.1246/cl.140662
– volume: 18
  start-page: 412
  year: 1945
  ident: 10.1016/j.jcat.2022.05.011_b0085
  article-title: The catalytic dehydration of 2,3-butanediol to 1,3-butadiene
  publication-title: J. Counc. Sci. Ind. Res.
– volume: 35
  start-page: 15742
  year: 2021
  ident: 10.1016/j.jcat.2022.05.011_b0145
  article-title: Selective Dehydration of 2,3-Butanediol to 3-Buten-2-ol over In2O3Catalyst
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c01706
– volume: 2
  start-page: 98
  year: 1918
  ident: 10.1016/j.jcat.2022.05.011_b0190
  article-title: Nachr Ges Wiss Goettingen
  publication-title: Math. Phys.
– volume: 84
  start-page: 659
  year: 2009
  ident: 10.1016/j.jcat.2022.05.011_b0075
  article-title: High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2004-x
– volume: 54
  start-page: 9
  year: 1989
  ident: 10.1016/j.jcat.2022.05.011_b0270
  article-title: Selective catalytic self-condensation of acetone
  publication-title: J. Mol. Catal.
  doi: 10.1016/0304-5102(89)80134-8
– volume: 52
  start-page: 11980
  year: 2013
  ident: 10.1016/j.jcat.2022.05.011_b0030
  article-title: Shale gas revolution: An opportunity for the production of biobased chemicals?
  publication-title: Angew. Chemie - Int. Ed.
  doi: 10.1002/anie.201305058
– volume: 562
  start-page: 11
  year: 2018
  ident: 10.1016/j.jcat.2022.05.011_b0045
  article-title: Selective production of 1,3-butadiene in the dehydration of 1,4-butanediol over rare earth oxides
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2018.05.029
– volume: 6
  start-page: 16988
  year: 2016
  ident: 10.1016/j.jcat.2022.05.011_b0105
  article-title: Catalytic dehydration of 2,3-butanediol over P/HZSM-5: effect of catalyst, reaction temperature and reactant configuration on rearrangement products
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23251A
– volume: 6
  start-page: 143
  year: 1954
  ident: 10.1016/j.jcat.2022.05.011_b0210
  article-title: Interpretation of measurements in experimental catalysis
  publication-title: Adv. Catlay.
  doi: 10.1016/S0360-0564(08)60390-9
– start-page: 11
  year: 1984
  ident: 10.1016/j.jcat.2022.05.011_b0220
  article-title: Adsorption isotherms
  publication-title: Powder Surf. Area Porosity
  doi: 10.1007/978-94-009-5562-2_3
– volume: 20
  start-page: 127
  year: 1971
  ident: 10.1016/j.jcat.2022.05.011_b0215
  article-title: Diagnostic criteria for heat transport limitations in fixed bed reactors
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(71)90073-X
– volume: 197
  year: 2020
  ident: 10.1016/j.jcat.2022.05.011_b0090
  article-title: Production of 1,3-butadiene from biomass-derived C4 alcohols
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2019.106193
– volume: 166
  start-page: 10
  year: 2007
  ident: 10.1016/j.jcat.2022.05.011_b0025
  article-title: Butadiene production process overview
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2007.01.009
– volume: 330
  start-page: 222
  year: 2015
  ident: 10.1016/j.jcat.2022.05.011_b0115
  article-title: Conversion of 2,3-butanediol to butenes over bifunctional catalysts in a single reactor
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.07.004
– volume: 14
  start-page: 3441
  year: 2012
  ident: 10.1016/j.jcat.2022.05.011_b0100
  article-title: Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites
  publication-title: Green Chem.
  doi: 10.1039/c2gc36324k
– volume: 18
  start-page: 992
  year: 2001
  ident: 10.1016/j.jcat.2022.05.011_b0225
  article-title: The Preparation and Surface Characterization of Zirconia Polymorphs
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/BF02705631
– volume: 175
  start-page: 387
  year: 2018
  ident: 10.1016/j.jcat.2022.05.011_b0265
  article-title: Transformation of 2,3-butanediol in a dual bed catalyst system
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.10.009
– volume: 14
  start-page: 578
  year: 2010
  ident: 10.1016/j.jcat.2022.05.011_b0005
  article-title: Production of first and second generation biofuels: A comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.10.003
– volume: 87
  start-page: 1051
  year: 2015
  ident: 10.1016/j.jcat.2022.05.011_b0175
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2014-1117
– volume: 6
  start-page: 5830
  year: 2016
  ident: 10.1016/j.jcat.2022.05.011_b0040
  article-title: Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY02211H
– volume: 78
  start-page: 35
  year: 1993
  ident: 10.1016/j.jcat.2022.05.011_b0260
  article-title: Basic catalysts and fine chemicals
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(08)63302-9
SSID ssj0011558
Score 2.451392
Snippet [Display omitted] •Hydrothermal ZrO2 calcined at high temperature gives high 3-buten-2-ol selectivity.•Highest 3-buten-2-ol selectivity at low temperature and...
2,3-Butanediol (2,3-BDO) dehydration towards 1,3-butadiene was investigated over commercial and in-house synthesized ZrO₂ catalysts in a Berty reactor at...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 200
SubjectTerms 2,3-butanediol dehydration
adsorption
Biomass conversion
catalysts
catalytic activity
crystal structure
Hydrothermal ZrO₂ synthesis
Kinetics
partial pressure
Title The potential of ZrO2 catalysts for the dehydration of 2,3-butanediol into 3-buten-2-ol: Impact of synthesis method and operating conditions
URI https://dx.doi.org/10.1016/j.jcat.2022.05.011
https://www.proquest.com/docview/2675585044
Volume 411
WOSCitedRecordID wos000810197500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011558
  issn: 0021-9517
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLaqDgm4QDBAG38yEncllWMnccJdmYbYLgYXRVTcRHHiaO2quErbaX0HnoYn5Dh2nLCJCZC4iaLUSS1_X845OX9G6E0ZSy4SEXkZCxIvKBMfXimeeFFMEioCwXIRN5tN8LOzeDZLPg8GP9pamMslr6r46ipZ_Veo4RqArUtn_wJu91C4AOcAOhwBdjj-MfArtdFZQMbQ_FZ_oqPGTbNbb9Yur7CQ57uidhYjhcVmntiCsQj6TOlWHGCWNldk5VFPLbXz4MQVVa53FTxFtzMxm1A3UQi10j2aTR2vjoU7Z-BN89dOaN656eWFNLnN72W9vRhNxk5sK2CHqqq5odeprFVXwDY934lsayIqCiTW6Ou478mgXdarda-1JTa_ZICaHJLQFHiOpZHSJCGeLsHti_HACm0riAnp6XRqfruhLoznYjFeaC-vnpLp4up3ytGlLOqotq_nQWkTvQW1v0d5mMRDtDc5OZ6dutgVWGhG_9uJ21Itk1V4_Z9-Zw5dMwwaa2f6ED2wOOGJodcjNJDVPrp71O4OuI_u9xpZPkbfgXTYkQ6rEmvSYUc6DKTDQBfcI50eRd_2KYc15XCfcu-wIZwe6wiHDeEwEA47wuGOcE_Qlw_H06OPnt3nw8sZ5xsvYbIUpMwEF5ySkgUioFlU5MKXTHIaMVAyuSBB5sdlUZZ-QfIoF7QgTHDdso49RcNKVfIAYclyuC0KszyUYGrHgmS-BOEDp5xRTg-R3y53mtsm-HovlmXaZjsuUg1RqiFKSZgCRIdo5O5ZmRYwt44OWxRTa8Qa4zQF0t163-sW8hSg1GE7WHy1XacUvunho54EwbN_fPZzdK97316g4abeypfoTn65ma_rV5a_PwHh_s5a
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+of+ZrO2+catalysts+for+the+dehydration+of+2%2C3-butanediol+into+3-buten-2-ol%3A+Impact+of+synthesis+method+and+operating+conditions&rft.jtitle=Journal+of+catalysis&rft.au=Bekele%2C+Beruk+A.&rft.au=Poissonnier%2C+Jeroen&rft.au=Thybaut%2C+Joris+W.&rft.date=2022-07-01&rft.pub=Elsevier+Inc&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=411&rft.spage=200&rft.epage=211&rft_id=info:doi/10.1016%2Fj.jcat.2022.05.011&rft.externalDocID=S0021951722002032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon