Rank-based ant colony optimization applied to dynamic traveling salesman problems
This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method to enhance the convergence characteristics of original ACO Dorigo et al., which defines the probability of exploring a city to be visited by...
Gespeichert in:
| Veröffentlicht in: | Engineering optimization Jg. 37; H. 8; S. 831 - 847 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
01.12.2005
|
| Schlagworte: | |
| ISSN: | 0305-215X, 1029-0273 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method to enhance the convergence characteristics of original ACO Dorigo et al., which defines the probability of exploring a city to be visited by ants with a random proportional rule. This probability distribution of the random proportional rule, which is similar to that of the stochastic universal sampling method generally applied to the selection operation in genetic algorithms, is good for exploring favorable paths in small traveling salesman problems (TSPs), but inefficient at exploring such paths in large TSPs. Therefore, this study presents the rank-based nonlinear selection pressure function, based on ranking of [τ (r, z)][η (r, z)]
β
, to improve the performance of the state transition rule of the original ACO, as well as a modified Q-learning method to solve reinforcement learning problems efficiently. The modified Q-learning method, which incorporates a constant pheromone trail distribution with standard Q-learning, can yield a solution effectively when applied in the local-updating rule of an ACO. In this article, the optimal settings for the control parameters (q) used in the rank-based selective pressure function and the discounted factor (γ) associated with modified Q-learning were investigated numerically using a benchmark St70 case of the static TSP. Furthermore, the improved ACO was applied to the static TSP of the KroA100 case and a route programing with 532 nodes. This study also applied the rank-based ACO to solve dynamic TSPs. By introducing the rank-based nonlinear selective pressure function and the modified Q-learning model into the original ACO, the presented rank-based ACO algorithm effectively explores paths affected by a change in the environment. In this work, the environment changes are traffic jams and road closures between cities, which sometimes force the salesman to change his route. |
|---|---|
| AbstractList | This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method to enhance the convergence characteristics of original ACO Dorigo et al., which defines the probability of exploring a city to be visited by ants with a random proportional rule. This probability distribution of the random proportional rule, which is similar to that of the stochastic universal sampling method generally applied to the selection operation in genetic algorithms, is good for exploring favorable paths in small traveling salesman problems (TSPs), but inefficient at exploring such paths in large TSPs. Therefore, this study presents the rank-based nonlinear selection pressure function, based on ranking of [τ (r, z)][η (r, z)]
β
, to improve the performance of the state transition rule of the original ACO, as well as a modified Q-learning method to solve reinforcement learning problems efficiently. The modified Q-learning method, which incorporates a constant pheromone trail distribution with standard Q-learning, can yield a solution effectively when applied in the local-updating rule of an ACO. In this article, the optimal settings for the control parameters (q) used in the rank-based selective pressure function and the discounted factor (γ) associated with modified Q-learning were investigated numerically using a benchmark St70 case of the static TSP. Furthermore, the improved ACO was applied to the static TSP of the KroA100 case and a route programing with 532 nodes. This study also applied the rank-based ACO to solve dynamic TSPs. By introducing the rank-based nonlinear selective pressure function and the modified Q-learning model into the original ACO, the presented rank-based ACO algorithm effectively explores paths affected by a change in the environment. In this work, the environment changes are traffic jams and road closures between cities, which sometimes force the salesman to change his route. This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method to enhance the convergence characteristics of original ACO Dorigo et al., which defines the probability of exploring a city to be visited by ants with a random proportional rule. This probability distribution of the random proportional rule, which is similar to that of the stochastic universal sampling method generally applied to the selection operation in genetic algorithms, is good for exploring favorable paths in small traveling salesman problems (TSPs), but inefficient at exploring such paths in large TSPs. Therefore, this study presents the rank-based nonlinear selection pressure function, based on ranking of [ (r, z)][ (r, z)], to improve the performance of the state transition rule of the original ACO, as well as a modified Q-learning method to solve reinforcement learning problems efficiently. The modified Q-learning method, which incorporates a constant pheromone trail distribution with standard Q-learning, can yield a solution effectively when applied in the local-updating rule of an ACO. In this article, the optimal settings for the control parameters (q) used in the rank-based selective pressure function and the discounted factor () associated with modified Q-learning were investigated numerically using a benchmark St70 case of the static TSP. Furthermore, the improved ACO was applied to the static TSP of the KroA100 case and a route programing with 532 nodes. This study also applied the rank-based ACO to solve dynamic TSPs. By introducing the rank-based nonlinear selective pressure function and the modified Q-learning model into the original ACO, the presented rank-based ACO algorithm effectively explores paths affected by a change in the environment. In this work, the environment changes are traffic jams and road closures between cities, which sometimes force the salesman to change his route. |
| Author | Liu, Jenn-long |
| Author_xml | – sequence: 1 givenname: Jenn-long surname: Liu fullname: Liu, Jenn-long organization: Department of Information Management , Leader University |
| BookMark | eNqFkEFP3DAQhS20SOwu_ABuOfWWMo6ddSL1UqEWkFZCIJC4WbOOjdw6dmqbwvLrMWxPINHLzOG9b0bvLcjMB68JOabwlUIHJ8CgbWgLLQDjZfI9MqfQ9DU0gs3I_FWvi-HugCxS-gVAGUA3J1fX6H_XG0x6qNDnSgUX_LYKU7ajfcZsg69wmpwteg7VsPU4WlXliH-1s_6-Suh0GtFXUwwbp8d0SPYNuqSP_u0luf354-b0vF5fnl2cfl_XigmR6041Ky0GwY3uuFlR1eIGRSfMoIdhoAi8yLRvelgpLjpNV9iyxvBe8KY3yrAl-bK7Wx7_edApy9EmpZ1Dr8NDkoXkfUfbYhQ7o4ohpaiNVDa_JSsprJMU5GuF8kOFhaTvyCnaEeP2U-bbjrHehDjiY4hukBm3LkQT0SubJPsMF__FP1AyP2X2AjdUmoQ |
| CitedBy_id | crossref_primary_10_1007_s10669_020_09788_7 crossref_primary_10_1016_j_jcde_2018_10_004 crossref_primary_10_1016_j_eswa_2011_10_012 crossref_primary_10_3390_a15010009 crossref_primary_10_1109_MCI_2019_2954644 crossref_primary_10_3390_a16120545 crossref_primary_10_1080_02564602_2023_2167742 crossref_primary_10_1080_0305215X_2013_786062 crossref_primary_10_32604_cmes_2022_022807 crossref_primary_10_1016_j_swevo_2016_12_005 |
| Cites_doi | 10.1142/S0219525998000119 10.1109/4235.585892 10.1002/(SICI)1098-111X(199710)12:10<695::AID-INT1>3.0.CO;2-T 10.1016/S0303-2647(97)01708-5 10.1007/3-540-45724-0_8 10.1109/3477.484436 10.1162/106454699568728 10.1080/03052150210918 10.1016/B978-1-55860-377-6.50039-6 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2005 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2005 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/03052150500340504 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-0273 |
| EndPage | 847 |
| ExternalDocumentID | 10_1080_03052150500340504 10326264 |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ACTTO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFBWG AFION AFKVX AFRVT AGDLA AGMYJ AGVKY AGWUF AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRRR AQRUH AQTUD AVBZW AWYRJ BLEHA BWMZZ CAG CCCUG CE4 COF CS3 CYRSC DAOYK DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NX~ O9- OPCYK P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TAJZE TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ 07I 1TA 4B5 AAYLN AAYXX ADUMR ADXEU AEHZU AEZBV AFFNX AGBKS AGBLW AGYFW AKHJE AKMBP ALXIB ARCSS BGSSV C0- C5H CITATION DEXXA FETWF HF~ IFELN L8C LJTGL NUSFT TAP UB6 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c377t-8c26e7d74fe84f61c5aba787fdeddd1a046e7192906c478e16a532f497429fcf3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233564400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-215X |
| IngestDate | Wed Oct 01 13:54:26 EDT 2025 Sat Nov 29 02:09:51 EST 2025 Tue Nov 18 21:33:42 EST 2025 Mon Oct 20 23:32:03 EDT 2025 Mon May 13 12:10:10 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-8c26e7d74fe84f61c5aba787fdeddd1a046e7192906c478e16a532f497429fcf3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 29049815 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_03052150500340504 crossref_citationtrail_10_1080_03052150500340504 crossref_primary_10_1080_03052150500340504 proquest_miscellaneous_29049815 |
| PublicationCentury | 2000 |
| PublicationDate | 12/1/2005 2005-12-00 20051201 |
| PublicationDateYYYYMMDD | 2005-12-01 |
| PublicationDate_xml | – month: 12 year: 2005 text: 12/1/2005 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Engineering optimization |
| PublicationYear | 2005 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | Dorigo M. (CIT0009) 1999 Caironi P. V.C. (CIT0003) 1997; 12 CIT0010 Dorigo M. (CIT0006) 1997; 1 CIT0012 CIT0011 Botee H. M. (CIT0001) 1998; 1 Dorigo M. (CIT0008) 1999; 5 Reinelt G. (CIT0013) 1994 Bullnheimer B. (CIT0002) 1999; 7 Dorigo M. (CIT0005) 1996; 26 Dorigo M. (CIT0007) 1997; 43 Coello Coello C. A. (CIT0004) 2002; 34 CIT0014 |
| References_xml | – volume: 1 start-page: 149 issue: 2 year: 1998 ident: CIT0001 publication-title: Adv. Complex Syst. doi: 10.1142/S0219525998000119 – volume: 1 start-page: 53 issue: 1 year: 1997 ident: CIT0006 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585892 – start-page: 1 volume-title: New Ideas in Optimization year: 1999 ident: CIT0009 – volume-title: The Traveling Salesman: Computational Solutions for TSP Applications year: 1994 ident: CIT0013 – volume: 12 start-page: 695 issue: 10 year: 1997 ident: CIT0003 publication-title: Int. J. Intell. Syst. doi: 10.1002/(SICI)1098-111X(199710)12:10<695::AID-INT1>3.0.CO;2-T – ident: CIT0014 – volume: 43 start-page: 73 year: 1997 ident: CIT0007 publication-title: Biosystems doi: 10.1016/S0303-2647(97)01708-5 – ident: CIT0010 doi: 10.1007/3-540-45724-0_8 – ident: CIT0012 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: CIT0005 publication-title: IEEE Trans. Syst. Man and Cybern.-Part B doi: 10.1109/3477.484436 – volume: 5 start-page: 137 issue: 2 year: 1999 ident: CIT0008 publication-title: Artif. Life doi: 10.1162/106454699568728 – volume: 7 start-page: 25 issue: 1 year: 1999 ident: CIT0002 publication-title: Cent. Eur. J. Oper. Res. Econ. – volume: 34 start-page: 109 issue: 2 year: 2002 ident: CIT0004 publication-title: Eng. Optim. doi: 10.1080/03052150210918 – ident: CIT0011 doi: 10.1016/B978-1-55860-377-6.50039-6 |
| SSID | ssj0013008 |
| Score | 1.8010066 |
| Snippet | This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 831 |
| SubjectTerms | Ant colony optimization Dynamic traveling salesman problems Nonlinear selective pressure function |
| Title | Rank-based ant colony optimization applied to dynamic traveling salesman problems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/03052150500340504 https://www.proquest.com/docview/29049815 |
| Volume | 37 |
| WOSCitedRecordID | wos000233564400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1029-0273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013008 issn: 0305-215X databaseCode: TFW dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQxQADb0R5emBCiojjOI5HhKiYKkBFdItcPyQETVDjIvj3nPMASlEHWDKd7eh89t3Z5-9D6BQiaEY5JDnWRMafVrFgJDkNBLh3Q7xRqVFFNsH7_XQ4FDdNbU7ZlFX6HNrWQBHVXu0XtxyVbUXcubdR8FQh8-Aq8PVooOD2_bIc9B6-7hDCio_OSwcgPmzvNH_rYcYrzWCWzu3RlePprf_zlzfQWhNx4ovaRDbRksm30Oo3HMJtdHsn86fAOzSNQdPYI1nn77iA7WTcvNPEsg5XsSuwrlnssfPURf45Oy7BzZRjmeOGn6bcQfe9q8HlddBwLQSKcu6CVEWJ4ZrH1qSxTYhiEuYs5VYbrTWRkEYbDtGgCBMV89SQRDIa2RjSkUhYZeku6uRFbvYQlpZpyMMoDzVkj4kVsQiNJjAfQlFGZBeFra4z1QCRez6M54y0eKU_tdVFZ59NXmoUjkXC4fcJzFx19GFrnpJ58cy9uS5iC5rQBUOdtMaRwbL0dy0yN8W0zEBRsUgJ2_9jzwdopQaJ9YUzh6jjJlNzhJbVq3ssJ8eVoX8AvG_3_A |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oFdSDu1i35uBJGJwtk5mjiKViLSoVextiFhDtVDpT0X_vyyzaWulBL3N6SYaXl7wlyfcBHGMETT2GSY5WrjLVKmo9cuZZEbp35RijEo852QTrdMJeL7opC25pea3S5NC6AIrI92qzuE0xuroSd2qMFF2VTQ26Cn79eVig6GcNdn63-fB9imDnjHRG3EL5XnWq-VsXE35pArV0apfOXU9z7b8_vQ6rZdBJzgor2YA5lWzCyhgU4Rbc3vHk2TI-TRJUNjFg1skHGeCO0i-fahJeRKwkGxBZENmTzLAXmRftJEVPk_Z5QkqKmnQb7psX3fOWVdItWMJjLLNC4QaKSeZrFfo6cATlOG0h01JJKR2OmbRiGBBGdiB8Fion4NRztY8ZiRtpob0dqCWDRO0C4ZpKTMU8ZktMIAMd-ZGtpIMTEgmPOrwOdqXsWJRY5IYS4yV2KsjSn9qqw8lXk9cCiGOWsD0-g3GWVz90QVUyLR5n71kd6Iwm3oyhGpV1xLgyzXELT9RglMaoKD8KHbr3x54bsNTqXrfj9mXnah-WC8xYc4_mAGrZcKQOYVG8ZU_p8Ci3-k94Kvwm |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBt1hfzcGTsLivbHaPohZFKVUq9rbEPEC029Ldiv57J_vQ1koPetnTJFkmk8xMMvk-gGOMoKnHMMnRylXmtIpaT5x5VoTuXTnGqMRTTjbBWq2w243aZW1OWpZVmhxaF0AR-V5tFvdA6qoi7tTYKHoqmxpwFfz687CAYXNgDLzTfPy-RLBzQjojbqF8t7rU_K2LCbc0AVo6tUnnnqe59s9_XofVMuQkZ4WNbMCcSjZhZQyIcAvu7nnyYhmPJgmqmhgo6-SD9HE_6ZUPNQkv4lWS9YksaOxJZriLzHt2kqKfSXs8ISVBTboND83LzvmVVZItWMJjLLNC4QaKSeZrFfo6cATlOGkh01JJKR2OebRiGA5GdiB8Fion4NRztY_5iBtpob0dqCX9RO0C4ZpKTMQ8ZktMHwMd-ZGtpIPzEQmPOrwOdqXrWJRI5IYQ4zV2KsDSn9qqw8lXk0EBwzFL2B6fwDjLzz50QVQyLR5n71kd6Iwm3oyhGpVxxLguzWULT1R_lMaoKD8KHbr3x54bsNS-aMa3162bfVguAGNNEc0B1LLhSB3ConjLntPhUW7zn3wK-tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-based+ant+colony+optimization+applied+to+dynamic+traveling+salesman+problems&rft.jtitle=Engineering+optimization&rft.au=Liu%2C+Jenn-long&rft.date=2005-12-01&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=37&rft.issue=8&rft.spage=831&rft.epage=847&rft_id=info:doi/10.1080%2F03052150500340504&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03052150500340504 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon |