Rank-based ant colony optimization applied to dynamic traveling salesman problems

This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method to enhance the convergence characteristics of original ACO Dorigo et al., which defines the probability of exploring a city to be visited by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering optimization Jg. 37; H. 8; S. 831 - 847
1. Verfasser: Liu, Jenn-long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 01.12.2005
Schlagworte:
ISSN:0305-215X, 1029-0273
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method to enhance the convergence characteristics of original ACO Dorigo et al., which defines the probability of exploring a city to be visited by ants with a random proportional rule. This probability distribution of the random proportional rule, which is similar to that of the stochastic universal sampling method generally applied to the selection operation in genetic algorithms, is good for exploring favorable paths in small traveling salesman problems (TSPs), but inefficient at exploring such paths in large TSPs. Therefore, this study presents the rank-based nonlinear selection pressure function, based on ranking of [τ (r, z)][η (r, z)] β , to improve the performance of the state transition rule of the original ACO, as well as a modified Q-learning method to solve reinforcement learning problems efficiently. The modified Q-learning method, which incorporates a constant pheromone trail distribution with standard Q-learning, can yield a solution effectively when applied in the local-updating rule of an ACO. In this article, the optimal settings for the control parameters (q) used in the rank-based selective pressure function and the discounted factor (γ) associated with modified Q-learning were investigated numerically using a benchmark St70 case of the static TSP. Furthermore, the improved ACO was applied to the static TSP of the KroA100 case and a route programing with 532 nodes. This study also applied the rank-based ACO to solve dynamic TSPs. By introducing the rank-based nonlinear selective pressure function and the modified Q-learning model into the original ACO, the presented rank-based ACO algorithm effectively explores paths affected by a change in the environment. In this work, the environment changes are traffic jams and road closures between cities, which sometimes force the salesman to change his route.
AbstractList This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method to enhance the convergence characteristics of original ACO Dorigo et al., which defines the probability of exploring a city to be visited by ants with a random proportional rule. This probability distribution of the random proportional rule, which is similar to that of the stochastic universal sampling method generally applied to the selection operation in genetic algorithms, is good for exploring favorable paths in small traveling salesman problems (TSPs), but inefficient at exploring such paths in large TSPs. Therefore, this study presents the rank-based nonlinear selection pressure function, based on ranking of [τ (r, z)][η (r, z)] β , to improve the performance of the state transition rule of the original ACO, as well as a modified Q-learning method to solve reinforcement learning problems efficiently. The modified Q-learning method, which incorporates a constant pheromone trail distribution with standard Q-learning, can yield a solution effectively when applied in the local-updating rule of an ACO. In this article, the optimal settings for the control parameters (q) used in the rank-based selective pressure function and the discounted factor (γ) associated with modified Q-learning were investigated numerically using a benchmark St70 case of the static TSP. Furthermore, the improved ACO was applied to the static TSP of the KroA100 case and a route programing with 532 nodes. This study also applied the rank-based ACO to solve dynamic TSPs. By introducing the rank-based nonlinear selective pressure function and the modified Q-learning model into the original ACO, the presented rank-based ACO algorithm effectively explores paths affected by a change in the environment. In this work, the environment changes are traffic jams and road closures between cities, which sometimes force the salesman to change his route.
This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method to enhance the convergence characteristics of original ACO Dorigo et al., which defines the probability of exploring a city to be visited by ants with a random proportional rule. This probability distribution of the random proportional rule, which is similar to that of the stochastic universal sampling method generally applied to the selection operation in genetic algorithms, is good for exploring favorable paths in small traveling salesman problems (TSPs), but inefficient at exploring such paths in large TSPs. Therefore, this study presents the rank-based nonlinear selection pressure function, based on ranking of [ (r, z)][ (r, z)], to improve the performance of the state transition rule of the original ACO, as well as a modified Q-learning method to solve reinforcement learning problems efficiently. The modified Q-learning method, which incorporates a constant pheromone trail distribution with standard Q-learning, can yield a solution effectively when applied in the local-updating rule of an ACO. In this article, the optimal settings for the control parameters (q) used in the rank-based selective pressure function and the discounted factor () associated with modified Q-learning were investigated numerically using a benchmark St70 case of the static TSP. Furthermore, the improved ACO was applied to the static TSP of the KroA100 case and a route programing with 532 nodes. This study also applied the rank-based ACO to solve dynamic TSPs. By introducing the rank-based nonlinear selective pressure function and the modified Q-learning model into the original ACO, the presented rank-based ACO algorithm effectively explores paths affected by a change in the environment. In this work, the environment changes are traffic jams and road closures between cities, which sometimes force the salesman to change his route.
Author Liu, Jenn-long
Author_xml – sequence: 1
  givenname: Jenn-long
  surname: Liu
  fullname: Liu, Jenn-long
  organization: Department of Information Management , Leader University
BookMark eNqFkEFP3DAQhS20SOwu_ABuOfWWMo6ddSL1UqEWkFZCIJC4WbOOjdw6dmqbwvLrMWxPINHLzOG9b0bvLcjMB68JOabwlUIHJ8CgbWgLLQDjZfI9MqfQ9DU0gs3I_FWvi-HugCxS-gVAGUA3J1fX6H_XG0x6qNDnSgUX_LYKU7ajfcZsg69wmpwteg7VsPU4WlXliH-1s_6-Suh0GtFXUwwbp8d0SPYNuqSP_u0luf354-b0vF5fnl2cfl_XigmR6041Ky0GwY3uuFlR1eIGRSfMoIdhoAi8yLRvelgpLjpNV9iyxvBe8KY3yrAl-bK7Wx7_edApy9EmpZ1Dr8NDkoXkfUfbYhQ7o4ohpaiNVDa_JSsprJMU5GuF8kOFhaTvyCnaEeP2U-bbjrHehDjiY4hukBm3LkQT0SubJPsMF__FP1AyP2X2AjdUmoQ
CitedBy_id crossref_primary_10_1007_s10669_020_09788_7
crossref_primary_10_1016_j_jcde_2018_10_004
crossref_primary_10_1016_j_eswa_2011_10_012
crossref_primary_10_3390_a15010009
crossref_primary_10_1109_MCI_2019_2954644
crossref_primary_10_3390_a16120545
crossref_primary_10_1080_02564602_2023_2167742
crossref_primary_10_1080_0305215X_2013_786062
crossref_primary_10_32604_cmes_2022_022807
crossref_primary_10_1016_j_swevo_2016_12_005
Cites_doi 10.1142/S0219525998000119
10.1109/4235.585892
10.1002/(SICI)1098-111X(199710)12:10<695::AID-INT1>3.0.CO;2-T
10.1016/S0303-2647(97)01708-5
10.1007/3-540-45724-0_8
10.1109/3477.484436
10.1162/106454699568728
10.1080/03052150210918
10.1016/B978-1-55860-377-6.50039-6
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2005
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2005
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03052150500340504
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 847
ExternalDocumentID 10_1080_03052150500340504
10326264
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ACTTO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFBWG
AFION
AFKVX
AFRVT
AGDLA
AGMYJ
AGVKY
AGWUF
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
BWMZZ
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
OPCYK
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07I
1TA
4B5
AAYLN
AAYXX
ADUMR
ADXEU
AEHZU
AEZBV
AFFNX
AGBKS
AGBLW
AGYFW
AKHJE
AKMBP
ALXIB
ARCSS
BGSSV
C0-
C5H
CITATION
DEXXA
FETWF
HF~
IFELN
L8C
LJTGL
NUSFT
TAP
UB6
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c377t-8c26e7d74fe84f61c5aba787fdeddd1a046e7192906c478e16a532f497429fcf3
IEDL.DBID TFW
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233564400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-215X
IngestDate Wed Oct 01 13:54:26 EDT 2025
Sat Nov 29 02:09:51 EST 2025
Tue Nov 18 21:33:42 EST 2025
Mon Oct 20 23:32:03 EDT 2025
Mon May 13 12:10:10 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-8c26e7d74fe84f61c5aba787fdeddd1a046e7192906c478e16a532f497429fcf3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29049815
PQPubID 23500
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_03052150500340504
crossref_citationtrail_10_1080_03052150500340504
crossref_primary_10_1080_03052150500340504
proquest_miscellaneous_29049815
PublicationCentury 2000
PublicationDate 12/1/2005
2005-12-00
20051201
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: 12/1/2005
  day: 01
PublicationDecade 2000
PublicationTitle Engineering optimization
PublicationYear 2005
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Dorigo M. (CIT0009) 1999
Caironi P. V.C. (CIT0003) 1997; 12
CIT0010
Dorigo M. (CIT0006) 1997; 1
CIT0012
CIT0011
Botee H. M. (CIT0001) 1998; 1
Dorigo M. (CIT0008) 1999; 5
Reinelt G. (CIT0013) 1994
Bullnheimer B. (CIT0002) 1999; 7
Dorigo M. (CIT0005) 1996; 26
Dorigo M. (CIT0007) 1997; 43
Coello Coello C. A. (CIT0004) 2002; 34
CIT0014
References_xml – volume: 1
  start-page: 149
  issue: 2
  year: 1998
  ident: CIT0001
  publication-title: Adv. Complex Syst.
  doi: 10.1142/S0219525998000119
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: CIT0006
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585892
– start-page: 1
  volume-title: New Ideas in Optimization
  year: 1999
  ident: CIT0009
– volume-title: The Traveling Salesman: Computational Solutions for TSP Applications
  year: 1994
  ident: CIT0013
– volume: 12
  start-page: 695
  issue: 10
  year: 1997
  ident: CIT0003
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/(SICI)1098-111X(199710)12:10<695::AID-INT1>3.0.CO;2-T
– ident: CIT0014
– volume: 43
  start-page: 73
  year: 1997
  ident: CIT0007
  publication-title: Biosystems
  doi: 10.1016/S0303-2647(97)01708-5
– ident: CIT0010
  doi: 10.1007/3-540-45724-0_8
– ident: CIT0012
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: CIT0005
  publication-title: IEEE Trans. Syst. Man and Cybern.-Part B
  doi: 10.1109/3477.484436
– volume: 5
  start-page: 137
  issue: 2
  year: 1999
  ident: CIT0008
  publication-title: Artif. Life
  doi: 10.1162/106454699568728
– volume: 7
  start-page: 25
  issue: 1
  year: 1999
  ident: CIT0002
  publication-title: Cent. Eur. J. Oper. Res. Econ.
– volume: 34
  start-page: 109
  issue: 2
  year: 2002
  ident: CIT0004
  publication-title: Eng. Optim.
  doi: 10.1080/03052150210918
– ident: CIT0011
  doi: 10.1016/B978-1-55860-377-6.50039-6
SSID ssj0013008
Score 1.8010066
Snippet This study proposes a rank-based ant colony optimization (ACO) method with a rank-based nonlinear selective pressure function and a modified Q-learning method...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 831
SubjectTerms Ant colony optimization
Dynamic traveling salesman problems
Nonlinear selective pressure function
Title Rank-based ant colony optimization applied to dynamic traveling salesman problems
URI https://www.tandfonline.com/doi/abs/10.1080/03052150500340504
https://www.proquest.com/docview/29049815
Volume 37
WOSCitedRecordID wos000233564400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: TFW
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQxQADb0R5emBCiojjOI5HhKiYKkBFdItcPyQETVDjIvj3nPMASlEHWDKd7eh89t3Z5-9D6BQiaEY5JDnWRMafVrFgJDkNBLh3Q7xRqVFFNsH7_XQ4FDdNbU7ZlFX6HNrWQBHVXu0XtxyVbUXcubdR8FQh8-Aq8PVooOD2_bIc9B6-7hDCio_OSwcgPmzvNH_rYcYrzWCWzu3RlePprf_zlzfQWhNx4ovaRDbRksm30Oo3HMJtdHsn86fAOzSNQdPYI1nn77iA7WTcvNPEsg5XsSuwrlnssfPURf45Oy7BzZRjmeOGn6bcQfe9q8HlddBwLQSKcu6CVEWJ4ZrH1qSxTYhiEuYs5VYbrTWRkEYbDtGgCBMV89SQRDIa2RjSkUhYZeku6uRFbvYQlpZpyMMoDzVkj4kVsQiNJjAfQlFGZBeFra4z1QCRez6M54y0eKU_tdVFZ59NXmoUjkXC4fcJzFx19GFrnpJ58cy9uS5iC5rQBUOdtMaRwbL0dy0yN8W0zEBRsUgJ2_9jzwdopQaJ9YUzh6jjJlNzhJbVq3ssJ8eVoX8AvG_3_A
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oFdSDu1i35uBJGJwtk5mjiKViLSoVextiFhDtVDpT0X_vyyzaWulBL3N6SYaXl7wlyfcBHGMETT2GSY5WrjLVKmo9cuZZEbp35RijEo852QTrdMJeL7opC25pea3S5NC6AIrI92qzuE0xuroSd2qMFF2VTQ26Cn79eVig6GcNdn63-fB9imDnjHRG3EL5XnWq-VsXE35pArV0apfOXU9z7b8_vQ6rZdBJzgor2YA5lWzCyhgU4Rbc3vHk2TI-TRJUNjFg1skHGeCO0i-fahJeRKwkGxBZENmTzLAXmRftJEVPk_Z5QkqKmnQb7psX3fOWVdItWMJjLLNC4QaKSeZrFfo6cATlOG0h01JJKR2OmbRiGBBGdiB8Fion4NRztY8ZiRtpob0dqCWDRO0C4ZpKTMU8ZktMIAMd-ZGtpIMTEgmPOrwOdqXsWJRY5IYS4yV2KsjSn9qqw8lXk9cCiGOWsD0-g3GWVz90QVUyLR5n71kd6Iwm3oyhGpV1xLgyzXELT9RglMaoKD8KHbr3x54bsNTqXrfj9mXnah-WC8xYc4_mAGrZcKQOYVG8ZU_p8Ci3-k94Kvwm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBt1hfzcGTsLivbHaPohZFKVUq9rbEPEC029Ldiv57J_vQ1koPetnTJFkmk8xMMvk-gGOMoKnHMMnRylXmtIpaT5x5VoTuXTnGqMRTTjbBWq2w243aZW1OWpZVmhxaF0AR-V5tFvdA6qoi7tTYKHoqmxpwFfz687CAYXNgDLzTfPy-RLBzQjojbqF8t7rU_K2LCbc0AVo6tUnnnqe59s9_XofVMuQkZ4WNbMCcSjZhZQyIcAvu7nnyYhmPJgmqmhgo6-SD9HE_6ZUPNQkv4lWS9YksaOxJZriLzHt2kqKfSXs8ISVBTboND83LzvmVVZItWMJjLLNC4QaKSeZrFfo6cATlOGkh01JJKR2OebRiGA5GdiB8Fion4NRztY_5iBtpob0dqCX9RO0C4ZpKTMQ8ZktMHwMd-ZGtpIPzEQmPOrwOdqXrWJRI5IYQ4zV2KsDSn9qqw8lXk0EBwzFL2B6fwDjLzz50QVQyLR5n71kd6Iwm3oyhGpVxxLguzWULT1R_lMaoKD8KHbr3x54bsNS-aMa3162bfVguAGNNEc0B1LLhSB3ConjLntPhUW7zn3wK-tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-based+ant+colony+optimization+applied+to+dynamic+traveling+salesman+problems&rft.jtitle=Engineering+optimization&rft.au=Liu%2C+Jenn-long&rft.date=2005-12-01&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=37&rft.issue=8&rft.spage=831&rft.epage=847&rft_id=info:doi/10.1080%2F03052150500340504&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03052150500340504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon