Automatically Designing State-of-the-Art Multi- and Many-Objective Evolutionary Algorithms

A recent comparison of well-established multiobjective evolutionary algorithms (MOEAs) has helped better identify the current state-of-the-art by considering (i) parameter tuning through automatic configuration, (ii) a wide range of different setups, and (iii) various performance metrics. Here, we a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Evolutionary computation Ročník 28; číslo 2; s. 195
Hlavní autoři: Bezerra, Leonardo C T, López-Ibáñez, Manuel, Stützle, Thomas
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.06.2020
Témata:
ISSN:1530-9304, 1530-9304
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A recent comparison of well-established multiobjective evolutionary algorithms (MOEAs) has helped better identify the current state-of-the-art by considering (i) parameter tuning through automatic configuration, (ii) a wide range of different setups, and (iii) various performance metrics. Here, we automatically devise MOEAs with verified state-of-the-art performance for multi- and many-objective continuous optimization. Our work is based on two main considerations. The first is that high-performing algorithms can be obtained from a configurable algorithmic framework in an automated way. The second is that multiple performance metrics may be required to guide this automatic design process. In the first part of this work, we extend our previously proposed algorithmic framework, increasing the number of MOEAs, underlying evolutionary algorithms, and search paradigms that it comprises. These components can be combined following a general MOEA template, and an automatic configuration method is used to instantiate high-performing MOEA designs that optimize a given performance metric and present state-of-the-art performance. In the second part, we propose a multiobjective formulation for the automatic MOEA design, which proves critical for the context of many-objective optimization due to the disagreement of established performance metrics. Our proposed formulation leads to an automatically designed MOEA that presents state-of-the-art performance according to a set of metrics, rather than a single one.
AbstractList A recent comparison of well-established multiobjective evolutionary algorithms (MOEAs) has helped better identify the current state-of-the-art by considering (i) parameter tuning through automatic configuration, (ii) a wide range of different setups, and (iii) various performance metrics. Here, we automatically devise MOEAs with verified state-of-the-art performance for multi- and many-objective continuous optimization. Our work is based on two main considerations. The first is that high-performing algorithms can be obtained from a configurable algorithmic framework in an automated way. The second is that multiple performance metrics may be required to guide this automatic design process. In the first part of this work, we extend our previously proposed algorithmic framework, increasing the number of MOEAs, underlying evolutionary algorithms, and search paradigms that it comprises. These components can be combined following a general MOEA template, and an automatic configuration method is used to instantiate high-performing MOEA designs that optimize a given performance metric and present state-of-the-art performance. In the second part, we propose a multiobjective formulation for the automatic MOEA design, which proves critical for the context of many-objective optimization due to the disagreement of established performance metrics. Our proposed formulation leads to an automatically designed MOEA that presents state-of-the-art performance according to a set of metrics, rather than a single one.
A recent comparison of well-established multiobjective evolutionary algorithms (MOEAs) has helped better identify the current state-of-the-art by considering (i) parameter tuning through automatic configuration, (ii) a wide range of different setups, and (iii) various performance metrics. Here, we automatically devise MOEAs with verified state-of-the-art performance for multi- and many-objective continuous optimization. Our work is based on two main considerations. The first is that high-performing algorithms can be obtained from a configurable algorithmic framework in an automated way. The second is that multiple performance metrics may be required to guide this automatic design process. In the first part of this work, we extend our previously proposed algorithmic framework, increasing the number of MOEAs, underlying evolutionary algorithms, and search paradigms that it comprises. These components can be combined following a general MOEA template, and an automatic configuration method is used to instantiate high-performing MOEA designs that optimize a given performance metric and present state-of-the-art performance. In the second part, we propose a multiobjective formulation for the automatic MOEA design, which proves critical for the context of many-objective optimization due to the disagreement of established performance metrics. Our proposed formulation leads to an automatically designed MOEA that presents state-of-the-art performance according to a set of metrics, rather than a single one.A recent comparison of well-established multiobjective evolutionary algorithms (MOEAs) has helped better identify the current state-of-the-art by considering (i) parameter tuning through automatic configuration, (ii) a wide range of different setups, and (iii) various performance metrics. Here, we automatically devise MOEAs with verified state-of-the-art performance for multi- and many-objective continuous optimization. Our work is based on two main considerations. The first is that high-performing algorithms can be obtained from a configurable algorithmic framework in an automated way. The second is that multiple performance metrics may be required to guide this automatic design process. In the first part of this work, we extend our previously proposed algorithmic framework, increasing the number of MOEAs, underlying evolutionary algorithms, and search paradigms that it comprises. These components can be combined following a general MOEA template, and an automatic configuration method is used to instantiate high-performing MOEA designs that optimize a given performance metric and present state-of-the-art performance. In the second part, we propose a multiobjective formulation for the automatic MOEA design, which proves critical for the context of many-objective optimization due to the disagreement of established performance metrics. Our proposed formulation leads to an automatically designed MOEA that presents state-of-the-art performance according to a set of metrics, rather than a single one.
Author Bezerra, Leonardo C T
López-Ibáñez, Manuel
Stützle, Thomas
Author_xml – sequence: 1
  givenname: Leonardo C T
  surname: Bezerra
  fullname: Bezerra, Leonardo C T
  email: leobezerra@imd.ufrn.br
  organization: Instituto Metrópole Digital (IMD), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil leobezerra@imd.ufrn.br
– sequence: 2
  givenname: Manuel
  surname: López-Ibáñez
  fullname: López-Ibáñez, Manuel
  email: manuel.lopez-ibanez@manchester.ac.uk
  organization: Alliance Manchester Business School, University of Manchester, UK manuel.lopez-ibanez@manchester.ac.uk
– sequence: 3
  givenname: Thomas
  surname: Stützle
  fullname: Stützle, Thomas
  email: stuetzle@ulb.ac.be
  organization: IRIDIA, CoDE, Université Libre de Bruxelles, Belgium stuetzle@ulb.ac.be
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31464527$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLAzEYxINU7ENvnmWPXqJ5dR_HpdYHtPSgXrws2eyXNiWb1E220P--FSt4moH5MQwzRgPnHSB0S8kDpSl7hL3ylawIYSm_QCM65QQXnIjBPz9E4xC2hFDOCL1CQ05FKqYsG6Gvso--ldEoae0heYJg1s64dfIeZQTsNY4bwGUXk2Vvo8GJdE2ylO6AV_UWVDR7SOZ7b_tovJPdISnt2ncmbtpwjS61tAFuzjpBn8_zj9krXqxe3mblAiueZRHnnHKZEy1Swutcac5prjKmKTQ1p-q0VBeEFRp4possl7KgjSASQEBzCiiboPvf3l3nv3sIsWpNUGCtdOD7UDGWMyGmGflB785oX7fQVLvOtKfR1d8f7AjSpWQg
CitedBy_id crossref_primary_10_1162_artl_a_00402
crossref_primary_10_1145_3612933
crossref_primary_10_1145_3465335
crossref_primary_10_1007_s40747_023_01288_w
crossref_primary_10_1080_10630732_2025_2462491
crossref_primary_10_1016_j_asoc_2023_110187
crossref_primary_10_1016_j_swevo_2024_101838
crossref_primary_10_1111_itor_12902
crossref_primary_10_1109_TEVC_2023_3314152
crossref_primary_10_1007_s11721_023_00227_2
crossref_primary_10_1016_j_cor_2023_106432
crossref_primary_10_1016_j_eswa_2023_119548
crossref_primary_10_3390_electronics12224639
crossref_primary_10_3390_mca27060103
crossref_primary_10_1016_j_knosys_2021_107819
crossref_primary_10_1016_j_swevo_2023_101248
crossref_primary_10_1016_j_ejor_2020_07_059
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/evco_a_00263
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
ExternalDocumentID 31464527
Genre Journal Article
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
ABAZT
ABDBF
ABJNI
ABVLG
ACM
ACUHS
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CCLIF
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
RMI
SV3
TUS
ZWS
7X8
ID FETCH-LOGICAL-c377t-8313a80f4603b8cf3318c72f1edb31c146f9029fe37f978aa91d40aee4ed90212
IEDL.DBID 7X8
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539231700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-9304
IngestDate Thu Jul 10 19:15:54 EDT 2025
Mon Jul 21 06:03:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords automatic algorithm design
Multiobjective optimization
evolutionary algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-8313a80f4603b8cf3318c72f1edb31c146f9029fe37f978aa91d40aee4ed90212
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://direct.mit.edu/evco/article/doi/10.1162/evco_a_00263
PMID 31464527
PQID 2282445701
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2282445701
pubmed_primary_31464527
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2020
SSID ssj0013201
Score 2.394865
Snippet A recent comparison of well-established multiobjective evolutionary algorithms (MOEAs) has helped better identify the current state-of-the-art by considering...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 195
SubjectTerms Algorithms
Automation
Biological Evolution
Title Automatically Designing State-of-the-Art Multi- and Many-Objective Evolutionary Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/31464527
https://www.proquest.com/docview/2282445701
Volume 28
WOSCitedRecordID wos000539231700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMsBAobzKS0ZiterESR1PqIJWLC0dQKpYIscPHipJ6Uvqv-fspqILEhJLFiuRdb4733d3uQ-hm5DHOpBNMKQ4YwBQGHM0L5rwzIZxZoxIQuvJJnivlwwGol8m3CZlW-XKJ3pHrQvlcuSNELBBFMWcBrejL-JYo1x1taTQ2EQVBqGM02o-WK8i0HJeKiUCcPuq8b0ZNsxcFalMHQRhvweX_pLpVP-7vX20V4aXuLXUhwO0YfIaqq6oG3BpyTW0uzaH8BC9tGbTws9ulcPhAt_7rg5YwT4UJYUlECYS-Cj2_-sSLHONu-BGyGP2sfSYuD0vlViOF7g1fIXNTd8-J0foudN-unsgJekCUYzzKUlAkDKhNmpSliXKMjB6xUMbGJ2xQIFjtYKGwhrGLSBQKUWgIyqNiYwWbl78MdrKi9ycIkylYNpmgWYmilRTi0AYoeBUmNSxplEdXa9kmYJSu0qFzE0xm6Q_0qyjk-WBpKPl9I2UBb4Yy8_-8PY52gkdPvZZkwtUsWDS5hJtq_n0fTK-8toCz16_-w18ksq-
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatically+Designing+State-of-the-Art+Multi-+and+Many-Objective+Evolutionary+Algorithms&rft.jtitle=Evolutionary+computation&rft.au=Bezerra%2C+Leonardo+C+T&rft.au=L%C3%B3pez-Ib%C3%A1%C3%B1ez%2C+Manuel&rft.au=St%C3%BCtzle%2C+Thomas&rft.date=2020-06-01&rft.eissn=1530-9304&rft.volume=28&rft.issue=2&rft.spage=195&rft_id=info:doi/10.1162%2Fevco_a_00263&rft_id=info%3Apmid%2F31464527&rft_id=info%3Apmid%2F31464527&rft.externalDocID=31464527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon