Beyond Max-Cut: λ-extendible properties parameterized above the Poljak–Turzík bound
We define strong λ-extendibility as a variant of the notion of λ-extendible properties of graphs (Poljak and Turzík, Discrete Mathematics, 1986). We show that the parameterized APT(Π) problem — given a connected graph G on n vertices and m edges and an integer parameter k, does there exist a spannin...
Uloženo v:
| Vydáno v: | Journal of computer and system sciences Ročník 80; číslo 7; s. 1384 - 1403 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.11.2014
|
| Témata: | |
| ISSN: | 0022-0000, 1090-2724 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We define strong λ-extendibility as a variant of the notion of λ-extendible properties of graphs (Poljak and Turzík, Discrete Mathematics, 1986). We show that the parameterized APT(Π) problem — given a connected graph G on n vertices and m edges and an integer parameter k, does there exist a spanning subgraph H of G such that H∈Π and H has at least λm+1−λ2(n−1)+k edges — is fixed-parameter tractable (FPT) for all 0<λ<1, for all strongly λ-extendible graph properties Π for which the APT(Π) problem is FPT on graphs which are O(k) vertices away from being a graph in which each block is a clique. Our results hold for properties of oriented graphs and graphs with edge labels, generalize the recent result of Crowston et al. (ICALP 2012) on Max-Cut parameterized above the Edwards–Erdős bound, and yield FPT algorithms for several graph problems parameterized above lower bounds.
•We derive fixed-parameter algorithms for a generalization of above-guarantee Max-Cut.•The generalization also captures properties of oriented/edge-labelled graphs.•Our results build on and generalize the work of Crowston et al. (ICALP 2012) on Max-Cut.•As a corollary we solve an open question of Raman and Saurabh (Theor. Comput. Sci. 2006). |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0022-0000 1090-2724 |
| DOI: | 10.1016/j.jcss.2014.04.011 |