The k-Version Finite Element Method for Singular Boundary-Value Problems with Application to Linear Fracture Mechanics

This paper presents an application of the k-version finite element method to the numerical simulation of boundary value problems that contain singularity of the solution derivatives at certain point(s) in the domain. The theoretical solutions of such problems contain extremely isolated high solution...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computational methods in engineering science and mechanics Ročník 7; číslo 3; s. 217 - 239
Hlavní autori: Surana, K. S., Rajwani, A., Reddy, J. N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis Group 01.07.2006
Predmet:
ISSN:1550-2287, 1550-2295
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents an application of the k-version finite element method to the numerical simulation of boundary value problems that contain singularity of the solution derivatives at certain point(s) in the domain. The theoretical solutions of such problems contain extremely isolated high solution gradients that approach infinity at the singular point(s); i.e., the solutions are not analytic at the singular point(s) but are analytic everywhere else. It is demonstrated that when numerical solutions of such problems are simulated in progressively increasing order scalar product spaces k , p ( e ), they approach the same characteristics in terms of differentiability as the theoretical solution as k is increased and in the limit k → ∞ , the numerical solutions have exactly the same global differentiability characteristics as the theoretical solutions. A two-dimensional linear elastic fracture mechanics problem is used as a model problem to illustrate the salient features of the k-version finite element method.
AbstractList This paper presents an application of the k-version finite element method to the numerical simulation of boundary value problems that contain singularity of the solution derivatives at certain point(s) in the domain. The theoretical solutions of such problems contain extremely isolated high solution gradients that approach infinity at the singular point(s); i.e., the solutions are not analytic at the singular point(s) but are analytic everywhere else. It is demonstrated that when numerical solutions of such problems are simulated in progressively increasing order scalar product spaces k,p(e), they approach the same characteristics in terms of differentiability as the theoretical solution as k is increased and in the limit k, the numerical solutions have exactly the same global differentiability characteristics as the theoretical solutions. A two-dimensional linear elastic fracture mechanics problem is used as a model problem to illustrate the salient features of the k-version finite element method.
This paper presents an application of the k-version finite element method to the numerical simulation of boundary value problems that contain singularity of the solution derivatives at certain point(s) in the domain. The theoretical solutions of such problems contain extremely isolated high solution gradients that approach infinity at the singular point(s); i.e., the solutions are not analytic at the singular point(s) but are analytic everywhere else. It is demonstrated that when numerical solutions of such problems are simulated in progressively increasing order scalar product spaces k , p ( e ), they approach the same characteristics in terms of differentiability as the theoretical solution as k is increased and in the limit k → ∞ , the numerical solutions have exactly the same global differentiability characteristics as the theoretical solutions. A two-dimensional linear elastic fracture mechanics problem is used as a model problem to illustrate the salient features of the k-version finite element method.
Author Surana, K. S.
Rajwani, A.
Reddy, J. N.
Author_xml – sequence: 1
  givenname: K. S.
  surname: Surana
  fullname: Surana, K. S.
  organization: Department of Mechanical Engineering , University of Kansas
– sequence: 2
  givenname: A.
  surname: Rajwani
  fullname: Rajwani, A.
  organization: Department of Mechanical Engineering , University of Kansas
– sequence: 3
  givenname: J. N.
  surname: Reddy
  fullname: Reddy, J. N.
  organization: Department of Mechanical Engineering , Texas A&M University, College Station
BookMark eNqNkE9rGzEQxUVJoLaTD5CbTr1tO6vNrrTQi2viJuDSQEyuQivN1kplyZW0-fPts45LDwmEnmYY3u_NzJuSIx88EnJWwucSBHwp6xoYE9AANFUjGPtAJvtZwVhbH_3rBf9IpindAVQNa2BC7tcbpL-LW4zJBk-X1tuM9MLhFn2mPzBvgqF9iPTG-l-DU5F-C4M3Kj4Vt8oNSK9j6EZ1og82b-h8t3NWq7z3yoGurMcRWUal8xBx9NMb5a1OJ-S4Vy7h6d86I-vlxXpxWax-fr9azFeFrjjPxXgjVzXUpjZCIDS1hkY0Zad4x7tSt7VBbrSqGJ6DMCU35xpMBx2wlvemqmbk08F2F8OfAVOWW5s0Oqc8hiFJ1oqWsTGxGSkPQh1DShF7uYt2O34pS5D7gOWbgEeGv2K0zS-v56ise5f8eiCtH6PdqocQnZFZPbkQ-6i8tklW_7H4HfwNJfNjrp4Blx-mww
CitedBy_id crossref_primary_10_1080_15502280802623297
crossref_primary_10_1080_15502280701587999
crossref_primary_10_1108_02644401111178785
crossref_primary_10_1080_15502280701752635
crossref_primary_10_1002_nme_2390
crossref_primary_10_1007_s42405_022_00551_7
crossref_primary_10_1016_j_compstruc_2008_01_010
Cites_doi 10.1002/nme.1620120313
10.1115/1.3601206
10.1002/nme.1620090302
10.1115/1.3422926
10.1142/S1465876302000605
10.1002/nme.1620080310
10.1002/nme.1620141008
10.1142/S1465876301000362
10.1007/BF00017129
10.1002/nme.1620170312
10.1002/nme.1620110117
10.1137/0718033
10.1002/nme.1620180713
10.1002/nme.1620100103
10.1002/nme.1620200302
10.1002/nme.1620200907
10.1142/S1465876304002307
10.1016/0898-1221(79)90063-4
10.1002/nme.1620120609
10.1142/S1465876303002179
10.1115/1.4010553
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2006
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2006
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/15502280600636822
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1550-2295
EndPage 239
ExternalDocumentID 10_1080_15502280600636822
163661
GroupedDBID .7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ACTTO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFBWG
AFION
AFKVX
AFRVT
AGDLA
AGMYJ
AGVKY
AGWUF
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
BWMZZ
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DGEBU
DKSSO
EBS
EJD
E~A
E~B
FPAXQ
GEVLZ
GTTXZ
H13
H~P
J.P
KYCEM
M4Z
NA5
OPCYK
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
ADUMR
AGBKS
ARCSS
CITATION
HF~
LJTGL
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c377t-6267a505d5d88e065c06861ba7b7b1c95de7dca32e408d17d4c0db0b0297fd33
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000212985700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1550-2287
IngestDate Fri Sep 05 09:05:26 EDT 2025
Sat Nov 29 02:34:40 EST 2025
Tue Nov 18 22:20:42 EST 2025
Mon May 13 12:10:07 EDT 2019
Mon Oct 20 23:50:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-6267a505d5d88e065c06861ba7b7b1c95de7dca32e408d17d4c0db0b0297fd33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29892206
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_29892206
informaworld_taylorfrancis_310_1080_15502280600636822
crossref_primary_10_1080_15502280600636822
crossref_citationtrail_10_1080_15502280600636822
PublicationCentury 2000
PublicationDate 2006-07-01
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-01
  day: 01
PublicationDecade 2000
PublicationTitle International journal of computational methods in engineering science and mechanics
PublicationYear 2006
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Babuska I. (CIT0002) 1979
CIT0010
CIT0012
Reddy J. N. (CIT0027) 2006
CIT0011
Timoshenko S. P. (CIT0029) 1934
Carey G. F. (CIT0032) 1983
Wang C. (CIT0030) 1953
CIT0014
CIT0036
Gallagher R. H. (CIT0006)
CIT0013
CIT0035
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Zienkiewicz O. C. (CIT0031) 1977
Szabo B. (CIT0001) 1991
CIT0021
CIT0020
CIT0022
Babuska I. (CIT0005) 1986
Mikhlin S. G. (CIT0024) 1964
Reddy J. N. (CIT0028) 2002
Williams M. L. (CIT0023) 1952; 19
Johnson C. (CIT0033) 1987
Gelfand I. M. (CIT0025) 2000
Oden J. T. (CIT0034) 1983
CIT0003
Reddy J. N. (CIT0026) 1986
CIT0004
CIT0007
CIT0009
CIT0008
References_xml – ident: CIT0007
  doi: 10.1002/nme.1620120313
– ident: CIT0017
  doi: 10.1115/1.3601206
– volume-title: Accuracy Estimates and Adaptive Refinements in Finite Element Computation
  year: 1986
  ident: CIT0005
– ident: CIT0009
  doi: 10.1002/nme.1620090302
– ident: CIT0018
  doi: 10.1115/1.3422926
– volume-title: Numerical Solution of Partial Differential Equations by Finite Element Method
  year: 1987
  ident: CIT0033
– ident: CIT0020
  doi: 10.1142/S1465876302000605
– volume-title: Finite Elements: An Introduction
  year: 1983
  ident: CIT0032
– ident: CIT0008
  doi: 10.1002/nme.1620080310
– ident: CIT0012
  doi: 10.1002/nme.1620141008
– volume-title: Applied Elasticity
  year: 1953
  ident: CIT0030
– volume-title: Theory of Elasticity
  year: 1934
  ident: CIT0029
– ident: CIT0036
  doi: 10.1142/S1465876301000362
– ident: CIT0019
  doi: 10.1007/BF00017129
– ident: CIT0013
  doi: 10.1002/nme.1620170312
– volume-title: Functional Analysis and Variational Methods in Engineering
  year: 1986
  ident: CIT0026
– ident: CIT0011
  doi: 10.1002/nme.1620110117
– volume-title: Calculus of Variations
  year: 2000
  ident: CIT0025
– ident: CIT0004
  doi: 10.1137/0718033
– volume-title: Finite Element Analysis
  year: 1991
  ident: CIT0001
– ident: CIT0014
  doi: 10.1002/nme.1620180713
– ident: CIT0010
  doi: 10.1002/nme.1620100103
– ident: CIT0015
  doi: 10.1002/nme.1620200302
– volume-title: Proceedings of the Third IMACS International Symposium on Computer Methods for Partial Differential Equations
  year: 1979
  ident: CIT0002
– ident: CIT0016
  doi: 10.1002/nme.1620200907
– volume-title: Finite Elements: Mathematical Aspects
  year: 1983
  ident: CIT0034
– ident: CIT0022
  doi: 10.1142/S1465876304002307
– ident: CIT0003
  doi: 10.1016/0898-1221(79)90063-4
– ident: CIT0035
  doi: 10.1002/nme.1620120609
– ident: CIT0021
  doi: 10.1142/S1465876303002179
– volume-title: The Finite Element Method,
  year: 1977
  ident: CIT0031
– volume-title: 1st Int. Conf. Struct. Mech. Reactor Technology
  ident: CIT0006
– volume: 19
  start-page: 526
  year: 1952
  ident: CIT0023
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.4010553
– volume-title: Energy Principles and Variational Methods in Appled Mechanics,
  year: 2002
  ident: CIT0028
– volume-title: Variational Methods in Mathematical Physics
  year: 1964
  ident: CIT0024
– volume-title: An Introduction to the Finite Element Method,
  year: 2006
  ident: CIT0027
SSID ssj0036260
Score 1.6985996
Snippet This paper presents an application of the k-version finite element method to the numerical simulation of boundary value problems that contain singularity of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Fracture Mechanics
Higher-Order Global Differentiability
k-Version Finite Element Method
Least Squares Method
Variational Consistency
Title The k-Version Finite Element Method for Singular Boundary-Value Problems with Application to Linear Fracture Mechanics
URI https://www.tandfonline.com/doi/abs/10.1080/15502280600636822
https://www.proquest.com/docview/29892206
Volume 7
WOSCitedRecordID wos000212985700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1550-2295
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036260
  issn: 1550-2287
  databaseCode: TFW
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kePDiW6zPPXgSFjdN002OKg0etBQstbewTyhKK01a9N87k2x8UOlB77ObZTPv_WaGkAtrhLOhDJh2bQ4BCk9YErsO00pFoZMtI8sZS8N70evFo1HS99ic3MMqMYZ2VaOIUlejcEuV14i4K_SqsYtLB-1rBywcaGDw6hHQN0ifaj2MfVbKckigZkAu6jfN33b4YZV-9Cxd0tGl4Um3_nnkbbLpPU56XbHIDlmzk12y5b1P6mU73yML4Bj6zHwCjaZj9EZpt4KX04dy0jSFE9NHsHYIXqU35Uim2Tsbype5pf1qNk1OMbdLr79exmkxpRDzgkzRFIuy5jML-2HJ8Vjn-2SQdge3d8xPZWA6FKJgcK1Cgt9kIhPHFjwYjVUmgZJCCRXoJDJWGC3Dlm3z2ATCtDU3iiuckuVMGB6QxmQ6sYeEujhwXCUC-CFGmCsEU5o7J0PutIhku0l4_VMy7TuW4-CMlyzwjU2XrrVJLj-XvFbtOlYR8-9_OivKHImrBposk2fFW9Ek0Yol4YpPnddclIH84qOMnNjpPM-wA36rxTtHf9z5mGxUWSFEEJ-QRjGb21OyrhfFOJ-dlRLxAVwXCAw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54A33xLs7b8uCTEEzXdWkfVSyK2xAcureS5gJD2WTtRP-9OW2qjske9D1JQ3pOziXnfB_AqVbcaF94VJomswEKi2gUmhaVaRr4RjSUKDiWHtu82w37_ejeJdwyV1aJMbQpgSKKuxqVG5PRVUncObrVCOPSQgPbsiZuEZaRmQ6Dr178VN3EiLRSNETa4dSO59Wr5m9LTNmlKdTSmVu6MD3xxn83vQnrzukkF6WUbMGCHm7DhnNAiVPvbAferNCQZ-pyaCQeoENKrssKc9IpyKaJ3TJ5sAYP61fJZcHKNP6gj-Jlosl9SU-TEUzvkovvx3GSj4gNe61akRj7siZjbdfDruOBzHahF1_3rm6oI2ag0uc8p_ZcubCukwpUGGrrxEhsNPFSwVOeejIKlOZKCr-hmyxUHldNyVTKUiTKMsr392BpOBrqfSAm9AxLI25FIsRKVxtPSWaM8JmRPBDNGrDqryTSgZYjd8ZL4jls05ljrcHZ15TXErFj3mD281cneZEmMSWnyezwJH_PaxDMmeLP-VS9EqPEqjC-y4ihHk2yBEHwGw3WOvjjynVYvel12kn7tnt3CGtlkggLio9gKR9P9DGsyLd8kI1PCvX4BPjODC8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xsEJceOwuojx94IRkrdM0dXLkFYFgq0pULLfI8UOqQC1qUgT_npnEYUFFPbD3sWM5M54Ze-b7AA6tkc6GKuDadQQmKCLhSey6XOd5FDrVNqriWLq9lr1efHeX9H1tTuHLKimHdjVQRHVWk3E_GtdUxP2mqJpQXLrkX7vo4b7BEobNESn1IP3bHMQEtFL1Q6I4R3nZPGp-NsUHt_QBtHTmkK48T7r2n2teh1UfcrLjWkc2YMGOfsCaDz-ZN-7iJzyhyrB77m_QWDqkcJSd1_Xl7E9FNc1wxewG3R1Vr7KTipNp8sJv1cPUsn5NTlMwutxlx_-exlk5Zpj0olGxlLqyphOL81HP8VAXv2CQng9OL7inZeA6lLLkuK1SYeBkIhPHFkMYTW0mQa5kLvNAJ5Gx0mgVtm1HxCaQpqOFyUVONFnOhOEmLI7GI7sFzMWBE3kiUSFiqnPFbEoL51QonJaR6rRAND8l0x6ynJgzHrLAI5vObGsLjt6GPNZ4HfOExfs_nZXVJYmrGU1mxbPyuWxBNGdIOOdTB40WZWjA9CqjRnY8LTKCwG-3RXf7izMfwHL_LM2uL3tXO7BS3xBRNfEuLJaTqd2D7_qpHBaT_co4XgHDWgrh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+k+-Version+Finite+Element+Method+for+Singular+Boundary-Value+Problems+with+Application+to+Linear+Fracture+Mechanics&rft.jtitle=International+journal+of+computational+methods+in+engineering+science+and+mechanics&rft.au=Surana%2C+K.+S.&rft.au=Rajwani%2C+A.&rft.au=Reddy%2C+J.+N.&rft.date=2006-07-01&rft.issn=1550-2287&rft.eissn=1550-2295&rft.volume=7&rft.issue=3&rft.spage=217&rft.epage=239&rft_id=info:doi/10.1080%2F15502280600636822&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15502280600636822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-2287&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-2287&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-2287&client=summon