Rare Event Sampling Improves Mercury Instability Statistics

Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury’s orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Astrophysical journal Ročník 923; číslo 2; s. 236 - 244
Hlavní autoři: Abbot, Dorian S., Webber, Robert J., Hadden, Sam, Seligman, Darryl, Weare, Jonathan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia The American Astronomical Society 01.12.2021
IOP Publishing
Témata:
ISSN:0004-637X, 1538-4357
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury’s orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations with an N -body code, but were not able to obtain accurate estimates before 3 billion years in the future because Mercury instability events are too rare. In this paper we use a new rare-event sampling technique, Quantile Diffusion Monte Carlo (QDMC), to estimate that the probability of a Mercury instability event in the next 2 billion years is approximately 10 −4 in the REBOUND N -body code. We show that QDMC provides unbiased probability estimates at a computational cost of up to 100 times less than direct numerical simulation. QDMC is easy to implement and could be applied to many problems in planetary dynamics in which it is necessary to estimate the probability of a rare event.
AbstractList Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury’s orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations with an N -body code, but were not able to obtain accurate estimates before 3 billion years in the future because Mercury instability events are too rare. In this paper we use a new rare-event sampling technique, Quantile Diffusion Monte Carlo (QDMC), to estimate that the probability of a Mercury instability event in the next 2 billion years is approximately 10 −4 in the REBOUND N -body code. We show that QDMC provides unbiased probability estimates at a computational cost of up to 100 times less than direct numerical simulation. QDMC is easy to implement and could be applied to many problems in planetary dynamics in which it is necessary to estimate the probability of a rare event.
Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury’s orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations with an N-body code, but were not able to obtain accurate estimates before 3 billion years in the future because Mercury instability events are too rare. In this paper we use a new rare-event sampling technique, Quantile Diffusion Monte Carlo (QDMC), to estimate that the probability of a Mercury instability event in the next 2 billion years is approximately 10−4 in the REBOUND N-body code. We show that QDMC provides unbiased probability estimates at a computational cost of up to 100 times less than direct numerical simulation. QDMC is easy to implement and could be applied to many problems in planetary dynamics in which it is necessary to estimate the probability of a rare event.
Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury's orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations with an N-body code, but were not able to obtain accurate estimates before 3 billion years in the future because Mercury instability events are too rare. In this paper we use a new rare-event sampling technique, Quantile Diffusion Monte Carlo (QDMC), to estimate that the probability of a Mercury instability event in the next 2 billion years is approximately 10–4 in the REBOUND N-body code. We show that QDMC provides unbiased probability estimates at a computational cost of up to 100 times less than direct numerical simulation. QDMC is easy to implement and could be applied to many problems in planetary dynamics in which it is necessary to estimate the probability of a rare event.
Author Hadden, Sam
Weare, Jonathan
Abbot, Dorian S.
Seligman, Darryl
Webber, Robert J.
Author_xml – sequence: 1
  givenname: Dorian S.
  orcidid: 0000-0001-8335-6560
  surname: Abbot
  fullname: Abbot, Dorian S.
  organization: Department of the Geophysical Sciences, The University of Chicago, Chicago , IL 60637 ; USA
– sequence: 2
  givenname: Robert J.
  orcidid: 0000-0001-8286-6315
  surname: Webber
  fullname: Webber, Robert J.
  organization: Courant Institute of Mathematical Sciences, New York University, New York , NY 10012 USA
– sequence: 3
  givenname: Sam
  orcidid: 0000-0002-1032-0783
  surname: Hadden
  fullname: Hadden, Sam
  organization: Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, Cambridge, MA 02138, USA
– sequence: 4
  givenname: Darryl
  surname: Seligman
  fullname: Seligman, Darryl
  organization: Department of the Geophysical Sciences, The University of Chicago, Chicago , IL 60637 ; USA
– sequence: 5
  givenname: Jonathan
  surname: Weare
  fullname: Weare, Jonathan
  organization: Courant Institute of Mathematical Sciences, New York University, New York , NY 10012 USA
BackLink https://www.osti.gov/servlets/purl/1981236$$D View this record in Osti.gov
BookMark eNp9kEFLwzAYhoNMcJvePRa9Wpf0S5sWTyJTBxPB7eAtpFmqGVtSk2ywf29KRUHQU0h4ni_v947QwFijEDon-BpKyiYkhzKlkLOJkFkjyiM0_H4aoCHGmKYFsNcTNPJ-3V2zqhqimxfhVDLdKxOShdi2G23ektm2dXavfPKknNy5QzIzPohab3Q4JIsggvZBS3-Kjhux8ers6xyj5f10efeYzp8fZne381QCYyHNKS6LoqmB4ppVQpJarFgNLIcVbkBSVlclqWoJFIAWCmQJCkq5IhUldUNgjC76sTb-yr3UQcl3aY1RMnAS3QyKCF32UEz-sVM-8LXdORNj8awgtMRZwVikip6SznrvVMPjtLiONcEJveEE865M3jXHu-Z4X2YU8S-xdXor3OE_5apXtG1_wvyJfwLa44Zm
CitedBy_id crossref_primary_10_1093_mnras_stac750
crossref_primary_10_1088_1742_5468_ac7aa7
crossref_primary_10_1093_mnras_stac1763
crossref_primary_10_1073_pnas_2420914122
crossref_primary_10_1093_mnras_stab3664
crossref_primary_10_3847_2515_5172_ad18a6
crossref_primary_10_3847_1538_4357_ad3e5f
crossref_primary_10_1007_s10955_022_02983_7
crossref_primary_10_3847_1538_3881_add5dc
crossref_primary_10_3847_1538_4357_acb6ff
crossref_primary_10_1093_mnras_stad719
crossref_primary_10_1029_2023AV000881
crossref_primary_10_1109_MC_2024_3486959
crossref_primary_10_1093_mnras_stac1299
crossref_primary_10_3847_1538_3881_ac80f8
Cites_doi 10.1002/cpa.21428
10.1063/1.2784118
10.1103/PhysRevE.56.3682
10.1051/0004-6361/201219991
10.1086/115978
10.1051/0004-6361/201118085
10.1002/2015JD023302
10.1088/0004-637X/739/1/31
10.1051/0004-6361/201731576
10.1051/0004-6361/202141007
10.1088/0004-6256/150/4/127
10.1016/S0032-0633(00)00006-4
10.1086/500829
10.1214/105051605000000566
10.1016/j.spa.2008.02.017
10.1088/0004-637X/798/1/8
10.1007/s10479-009-0664-7
10.1021/acs.jpcb.0c03521
10.1016/0019-1035(90)90084-M
10.1002/cpa.20005
10.1063/1.2140273
10.1016/0019-1035(92)90196-E
10.1103/PhysRevLett.125.021101
10.1111/j.2517-6161.1996.tb02080.x
10.1063/1.1741967
10.1063/1.5081461
10.1080/07362990601139628
10.1103/PhysRevLett.96.120603
10.1080/10451120410001733845
10.3847/2515-5172/abd103
10.1073/pnas.1308261110
10.1073/pnas.1712645115
10.1038/nature08096
10.1145/333296.333349
10.1093/mnras/stz2503
10.1214/19-STS730
10.1126/science.257.5066.56
10.1088/0004-637X/811/1/9
10.1093/biomet/85.1.89
10.1088/0004-637X/799/2/120
10.1061/(ASCE)0733-9399(2008)134:8(628)
10.1063/1.4724301
10.1086/589232
10.1029/2020GL091197
10.1016/j.icarus.2008.02.017
10.1038/338237a0
10.1016/S0006-3495(96)79552-8
10.1029/2018MS001419
10.1093/mnras/stz2870
ContentType Journal Article
Copyright 2021. The Author(s). Published by the American Astronomical Society.
Copyright IOP Publishing Dec 01, 2021
Copyright_xml – notice: 2021. The Author(s). Published by the American Astronomical Society.
– notice: Copyright IOP Publishing Dec 01, 2021
CorporateAuthor New York Univ. (NYU), NY (United States)
CorporateAuthor_xml – name: New York Univ. (NYU), NY (United States)
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OIOZB
OTOTI
DOI 10.3847/1538-4357/ac2fa8
DatabaseName Institute of Physics Journals Open Access
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 1981236
10_3847_1538_4357_ac2fa8
apjac2fa8
GrantInformation_xml – fundername: NSF
  grantid: DMS-1646339
– fundername: NASA
  grantid: 80NSSC18K082
– fundername: DOE
  grantid: E-SC0020427
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c377t-540866fb340b79ac1bad7b3753d0f3c47b9819bc343346e3c83e38cd1941bf13
IEDL.DBID O3W
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733977500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-637X
IngestDate Mon Jan 15 05:22:49 EST 2024
Wed Aug 13 08:46:14 EDT 2025
Tue Nov 18 22:41:04 EST 2025
Sat Nov 29 05:31:10 EST 2025
Wed Aug 21 03:34:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-540866fb340b79ac1bad7b3753d0f3c47b9819bc343346e3c83e38cd1941bf13
Notes AAS32684
The Solar System, Exoplanets, and Astrobiology
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0020427
USDOE Office of Science (SC)
ORCID 0000-0001-8335-6560
0000-0001-8286-6315
0000-0002-1032-0783
0000000182866315
0000000210320783
0000000183356560
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ac2fa8
PQID 2614802677
PQPubID 4562441
PageCount 9
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_ac2fa8
crossref_primary_10_3847_1538_4357_ac2fa8
osti_scitechconnect_1981236
proquest_journals_2614802677
iop_journals_10_3847_1538_4357_ac2fa8
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Batygin (apjac2fa8bib3) 2008; 683
Lithwick (apjac2fa8bib28) 2011; 739
Brown (apjac2fa8bib7) 2020; 4
Greene (apjac2fa8bib17) 2021
Zeebe (apjac2fa8bib59) 2015b; 798
Woillez (apjac2fa8bib55) 2017; 607
Huber (apjac2fa8bib20) 1996; 70
Ragone (apjac2fa8bib37) 2018; 115
Antoszewski (apjac2fa8bib2) 2020; 124
Laskar (apjac2fa8bib22) 1989; 338
Moral (apjac2fa8bib32) 2005; 15
Dean (apjac2fa8bib11) 2011; 189
Wisdom (apjac2fa8bib51) 2006; 131
Laskar (apjac2fa8bib27) 1992; 95
Rosenbluth (apjac2fa8bib40) 1955; 23
Mogavero (apjac2fa8bib31) 2021; 655
Binzel (apjac2fa8bib5) 2000; 48
Laskar (apjac2fa8bib24) 1994; 287
Dupuis (apjac2fa8bib13) 2004; 76
De Haan (apjac2fa8bib9) 2006; Vol. 21
Kahn (apjac2fa8bib21) 1951; 12
Plotkin (apjac2fa8bib35) 2019; 11
Lithwick (apjac2fa8bib29) 2014; 111
Dean (apjac2fa8bib10) 2009; 119
Giardina (apjac2fa8bib15) 2006; 96
Rein (apjac2fa8bib38) 2012; 537
Woillez (apjac2fa8bib56) 2020; 125
Wolf (apjac2fa8bib57) 2015; 120
Tamayo (apjac2fa8bib43) 2020; 491
Wisdom (apjac2fa8bib52) 2015; 150
Deville (apjac2fa8bib12) 1998; 85
Allen (apjac2fa8bib1) 2006; 124
Cérou (apjac2fa8bib8) 2007; 25
Boué (apjac2fa8bib6) 2012; 548
Laskar (apjac2fa8bib26) 2009; 459
Vanden-Eijnden (apjac2fa8bib45) 2012; 65
Ragone (apjac2fa8bib36) 2021; 48
Rein (apjac2fa8bib39) 2019; 489
Grassberger (apjac2fa8bib16) 1997; 56
Stein (apjac2fa8bib41) 2020; 35
Naess (apjac2fa8bib33) 2008; 134
Guttenberg (apjac2fa8bib18) 2012; 136
Webber (apjac2fa8bib48) 2022
Batygin (apjac2fa8bib4) 2015; 799
E (apjac2fa8bib14) 2004; 57
Wisdom (apjac2fa8bib54) 1996; 10
Wisdom (apjac2fa8bib53) 1991; 102
Laskar (apjac2fa8bib25) 2008; 196
Liu (apjac2fa8bib30) 2008; Vol. 10
Laskar (apjac2fa8bib23) 1990; 88
Pedregosa (apjac2fa8bib34) 2011; 12
Warmflash (apjac2fa8bib47) 2007; 127
Zeebe (apjac2fa8bib58) 2015a; 811
Villen-Altamirano (apjac2fa8bib46) 1991
Webber (apjac2fa8bib49) 2020
Webber (apjac2fa8bib50) 2019; 29
Tibshirani (apjac2fa8bib44) 1996; 58
Sussman (apjac2fa8bib42) 1992; 257
Haraszti (apjac2fa8bib19) 1999; 9
References_xml – volume: 65
  start-page: 1770
  year: 2012
  ident: apjac2fa8bib45
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21428
– start-page: 71
  year: 1991
  ident: apjac2fa8bib46
– volume: 127
  start-page: 154112
  year: 2007
  ident: apjac2fa8bib47
  publication-title: JChPh
  doi: 10.1063/1.2784118
– volume: 56
  start-page: 3682
  year: 1997
  ident: apjac2fa8bib16
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.56.3682
– volume: 548
  start-page: A43
  year: 2012
  ident: apjac2fa8bib6
  publication-title: A&A
  doi: 10.1051/0004-6361/201219991
– volume: 102
  start-page: 1528
  year: 1991
  ident: apjac2fa8bib53
  publication-title: AJ
  doi: 10.1086/115978
– volume: 537
  start-page: A128
  year: 2012
  ident: apjac2fa8bib38
  publication-title: A&A
  doi: 10.1051/0004-6361/201118085
– volume: 120
  start-page: 5775
  year: 2015
  ident: apjac2fa8bib57
  publication-title: JGRD
  doi: 10.1002/2015JD023302
– volume: 739
  start-page: 31
  year: 2011
  ident: apjac2fa8bib28
  publication-title: ApJ
  doi: 10.1088/0004-637X/739/1/31
– volume: 607
  start-page: A62
  year: 2017
  ident: apjac2fa8bib55
  publication-title: A&A
  doi: 10.1051/0004-6361/201731576
– volume: 655
  start-page: A1
  year: 2021
  ident: apjac2fa8bib31
  publication-title: A&A
  doi: 10.1051/0004-6361/202141007
– volume: Vol. 21
  year: 2006
  ident: apjac2fa8bib9
– volume: 150
  start-page: 127
  year: 2015
  ident: apjac2fa8bib52
  publication-title: AJ
  doi: 10.1088/0004-6256/150/4/127
– volume: 48
  start-page: 297
  year: 2000
  ident: apjac2fa8bib5
  publication-title: P&SS
  doi: 10.1016/S0032-0633(00)00006-4
– volume: 131
  start-page: 2294
  year: 2006
  ident: apjac2fa8bib51
  publication-title: AJ
  doi: 10.1086/500829
– volume: Vol. 10
  start-page: 978
  year: 2008
  ident: apjac2fa8bib30
– volume: 15
  start-page: 2496
  year: 2005
  ident: apjac2fa8bib32
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/105051605000000566
– volume: 10
  start-page: 217
  year: 1996
  ident: apjac2fa8bib54
  publication-title: Fields Inst. Comm.
– volume: 119
  start-page: 562587
  year: 2009
  ident: apjac2fa8bib10
  publication-title: Stoch. Anal. Appl.
  doi: 10.1016/j.spa.2008.02.017
– volume: 798
  start-page: 8
  year: 2015b
  ident: apjac2fa8bib59
  publication-title: ApJ
  doi: 10.1088/0004-637X/798/1/8
– volume: 189
  start-page: 63
  year: 2011
  ident: apjac2fa8bib11
  publication-title: Ann. Oper. Res
  doi: 10.1007/s10479-009-0664-7
– volume: 124
  start-page: 5571
  year: 2020
  ident: apjac2fa8bib2
  publication-title: JPCB
  doi: 10.1021/acs.jpcb.0c03521
– volume: 88
  start-page: 266
  year: 1990
  ident: apjac2fa8bib23
  publication-title: Icar
  doi: 10.1016/0019-1035(90)90084-M
– volume: 57
  start-page: 637
  year: 2004
  ident: apjac2fa8bib14
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20005
– volume: 124
  year: 2006
  ident: apjac2fa8bib1
  publication-title: JChPh
  doi: 10.1063/1.2140273
– volume: 95
  start-page: 148
  year: 1992
  ident: apjac2fa8bib27
  publication-title: Icar
  doi: 10.1016/0019-1035(92)90196-E
– volume: 125
  start-page: 021101
  year: 2020
  ident: apjac2fa8bib56
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.125.021101
– volume: 58
  start-page: 267
  year: 1996
  ident: apjac2fa8bib44
  publication-title: J. R. Stat. Soc. Series. B. Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– year: 2020
  ident: apjac2fa8bib49
– year: 2021
  ident: apjac2fa8bib17
– volume: 23
  start-page: 356
  year: 1955
  ident: apjac2fa8bib40
  publication-title: JChPh
  doi: 10.1063/1.1741967
– volume: 29
  year: 2019
  ident: apjac2fa8bib50
  publication-title: Chaos
  doi: 10.1063/1.5081461
– volume: 25
  start-page: 417
  year: 2007
  ident: apjac2fa8bib8
  publication-title: Stoch. Anal. Appl.
  doi: 10.1080/07362990601139628
– volume: 96
  start-page: 120603
  year: 2006
  ident: apjac2fa8bib15
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.96.120603
– volume: 76
  start-page: 481
  year: 2004
  ident: apjac2fa8bib13
  publication-title: Stochastics
  doi: 10.1080/10451120410001733845
– volume: 4
  start-page: 221
  year: 2020
  ident: apjac2fa8bib7
  publication-title: RNAAS
  doi: 10.3847/2515-5172/abd103
– volume: 287
  start-page: L9
  year: 1994
  ident: apjac2fa8bib24
  publication-title: A&A
– volume: 111
  start-page: 12610
  year: 2014
  ident: apjac2fa8bib29
  publication-title: PNAS
  doi: 10.1073/pnas.1308261110
– volume: 115
  start-page: 24
  year: 2018
  ident: apjac2fa8bib37
  publication-title: PNAS
  doi: 10.1073/pnas.1712645115
– year: 2022
  ident: apjac2fa8bib48
– volume: 459
  start-page: 817
  year: 2009
  ident: apjac2fa8bib26
  publication-title: Natur
  doi: 10.1038/nature08096
– volume: 9
  start-page: 105
  year: 1999
  ident: apjac2fa8bib19
  publication-title: ACM Trans. Model. Comput. Simul.
  doi: 10.1145/333296.333349
– volume: 489
  start-page: 4632
  year: 2019
  ident: apjac2fa8bib39
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2503
– volume: 35
  start-page: 31
  year: 2020
  ident: apjac2fa8bib41
  publication-title: StaSc
  doi: 10.1214/19-STS730
– volume: 257
  start-page: 56
  year: 1992
  ident: apjac2fa8bib42
  publication-title: Sci
  doi: 10.1126/science.257.5066.56
– volume: 811
  start-page: 9
  year: 2015a
  ident: apjac2fa8bib58
  publication-title: ApJ
  doi: 10.1088/0004-637X/811/1/9
– volume: 12
  start-page: 2825
  year: 2011
  ident: apjac2fa8bib34
  publication-title: JMLR
– volume: 85
  start-page: 89
  year: 1998
  ident: apjac2fa8bib12
  publication-title: Biometrika
  doi: 10.1093/biomet/85.1.89
– volume: 799
  start-page: 120
  year: 2015
  ident: apjac2fa8bib4
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/2/120
– volume: 12
  start-page: 27
  year: 1951
  ident: apjac2fa8bib21
  publication-title: Natl. Bureau Stand. Appl. Math. Ser.
– volume: 134
  start-page: 628
  year: 2008
  ident: apjac2fa8bib33
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2008)134:8(628)
– volume: 136
  start-page: 06B609
  year: 2012
  ident: apjac2fa8bib18
  publication-title: JChPh
  doi: 10.1063/1.4724301
– volume: 683
  start-page: 1207
  year: 2008
  ident: apjac2fa8bib3
  publication-title: ApJ
  doi: 10.1086/589232
– volume: 48
  start-page: e2020GL091197
  year: 2021
  ident: apjac2fa8bib36
  publication-title: GeoRL
  doi: 10.1029/2020GL091197
– volume: 196
  start-page: 1
  year: 2008
  ident: apjac2fa8bib25
  publication-title: Icar
  doi: 10.1016/j.icarus.2008.02.017
– volume: 338
  start-page: 237
  year: 1989
  ident: apjac2fa8bib22
  publication-title: Natur
  doi: 10.1038/338237a0
– volume: 70
  start-page: 97
  year: 1996
  ident: apjac2fa8bib20
  publication-title: BpJ
  doi: 10.1016/S0006-3495(96)79552-8
– volume: 11
  start-page: 863
  year: 2019
  ident: apjac2fa8bib35
  publication-title: JAMES
  doi: 10.1029/2018MS001419
– volume: 491
  start-page: 2885
  year: 2020
  ident: apjac2fa8bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2870
SSID ssj0004299
Score 2.5062795
Snippet Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury’s orbit will become unstable in the future. Previous efforts have...
Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury's orbit will become unstable in the future. Previous efforts have...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 236
SubjectTerms ASTRONOMY AND ASTROPHYSICS
Astrophysics
Computer simulation
Direct numerical simulation
Dynamic stability
Estimates
Instability
Mercury
Mercury (planet)
Numerical simulations
Orbital mechanics
Planetary dynamics
Sampling methods
Sampling techniques
Title Rare Event Sampling Improves Mercury Instability Statistics
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac2fa8
https://www.proquest.com/docview/2614802677
https://www.osti.gov/servlets/purl/1981236
Volume 923
WOSCitedRecordID wos000733977500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: O3W
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: M~E
  dateStart: 18950101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xC0i98CoVy1LkA1TqId1Nxo1jcUJoEQdeAkT3FvkVLu0u2t0iceG3MxMHECpClbj54NjJjOdh5_M3ADs-VcoY2p1klkuYSekSLY1PKqMpvhTaF_VF2utjdXpaDIf6fA72nu_CjG8b1_-DmpEoOIqQ7RvJl_ZqG6Uor3rGZZUpWjCPxc-cF_kZ_nq5FJnpJveVSY5qGP9RvjnCq5jUonnJP4_Jwv7xz3XQOVz-0OuuwFKTa4r92HUV5sJoDTb2p3z6Pf5zL76Juh0PN6ZrsHgeW59h78JMghgwFlJcGgadj25EPH8IU3ESJo5UIRhoEGm-7wUnrZHzeR2uDgdXB0dJU2YhcajUjKERRZ5XFmXfKm1cao1XFmkf4_sVOqmsprTBOpSIMg_oCgxYOJ9qmdoqxS_QHo1HYQNEP9i-D1ppbwIlZrmpfEX-IqDNfRZ82oHek5xL11CQcyWM3yVtRVhYJQurZGGVUVgd-P78xG2k33in7y7poGxscPpOvy4rtyTFMU-uY0CRm5UpfWWGeQe2nnT-MlTGdKlcq0tt_uckXfiUMfqlBr5sQXs2-Ru-woK7I11MtqF18jDYrtfrI38b6Fw
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxQxFH8RFMIFFTC7gtiDmngYdmdemU7DiSAbjLhulOjemn6NF9jd7K4m_Pe-Nx0gRkNMvPXQaWfem_fR9tffA3gVcqWspdVJ4biEmZQ-09KGrLaa4kulQ9VcpP16robDajzWo7bOaXMXZjprXf8BNRNRcBIh2zeSL-01NkpRXvWsL2pb9WahXoGHh3iIXLvhE367uxhZ6Db_lVmJapzOKf86ym9xaYXmJh89JSv7w0c3gWfw-L9f-QlstjmnOE7dn8KDONmCzvGCd8GnV9fijWjaaZNjsQVro9TahqPPdh7FKWMixRfL4PPJd5H2IeJCfIxzTyoRDDhIdN_XgpPXxP28AxeD04uTs6wtt5B5VGrJEImqLGuHsu-Utj53NiiHtJ4J_Rq9VE5T-uA8SkRZRvQVRqx8yLXMXZ3jM1idTCexA6IfXT9ErXSwkRK00tahJr8R0ZWhiCHvQu9G1sa3VORcEePS0JKEBWZYYIYFZpLAuvD29olZouG4p-9r0oNpbXFxT79dVrAh5TFfrmdgkV-anL6ywLILezd6vxuqYNpUrtmlnv_jJC9hffRuYM7fDz_swkbBgJgGC7MHq8v5j_gCHvmfpJb5fvPj_gKPTOyK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rare+Event+Sampling+Improves+Mercury+Instability+Statistics&rft.jtitle=The+Astrophysical+journal&rft.au=Abbot%2C+Dorian+S.&rft.au=Webber%2C+Robert+J.&rft.au=Hadden%2C+Sam&rft.au=Seligman%2C+Darryl&rft.date=2021-12-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=923&rft.issue=2&rft.spage=236&rft_id=info:doi/10.3847%2F1538-4357%2Fac2fa8&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ac2fa8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon