A nodal based high order nonlinear stabilization for finite element approximation of Magnetohydrodynamics
We present a novel high-order nodal artificial viscosity approach designed for solving Magnetohydrodynamics (MHD) equations. Unlike conventional methods, our approach eliminates the need for ad hoc parameters. The viscosity is mesh-dependent, yet explicit definition of the mesh size is unnecessary....
Saved in:
| Published in: | Journal of computational physics Vol. 512; p. 113146 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.09.2024
|
| Subjects: | |
| ISSN: | 0021-9991, 1090-2716, 1090-2716 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present a novel high-order nodal artificial viscosity approach designed for solving Magnetohydrodynamics (MHD) equations. Unlike conventional methods, our approach eliminates the need for ad hoc parameters. The viscosity is mesh-dependent, yet explicit definition of the mesh size is unnecessary. Our method employs a multimesh strategy: the viscosity coefficient is constructed from a linear polynomial space constructed on the fine mesh, corresponding to the nodal values of the finite element approximation space. The residual of MHD is utilized to introduce high-order viscosity in a localized fashion near shocks and discontinuities. This approach is designed to precisely capture and resolve shocks. Then, high-order Runge-Kutta methods are employed to discretize the temporal domain. Through a comprehensive set of challenging test problems, we validate the robustness and high-order accuracy of our proposed approach for solving MHD equations.
•New nodal-based artificial viscosity method for MHD.•The method does not include any ad hoc parameters or explicit definition of the mesh size.•The viscosity coefficient is built in a multigrid strategy.•The method is proven to preserve positivity for scalar conservation laws using linear finite elements. |
|---|---|
| ISSN: | 0021-9991 1090-2716 1090-2716 |
| DOI: | 10.1016/j.jcp.2024.113146 |