Recursive formulation of the relativistic law of superposition of multiple collinear velocities

We study the recursive formulation of the law of superposition of multiple collinear velocities. We start with the non-linear equation, transform it into two linear coupled difference equations with variable cofficients, and then decouple these latter equations. The coupled difference equations are...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of difference equations and applications Ročník 13; číslo 7; s. 563 - 575
Hlavní autor: Antippa, Adel F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 01.07.2007
Témata:
ISSN:1023-6198, 1563-5120
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the recursive formulation of the law of superposition of multiple collinear velocities. We start with the non-linear equation, transform it into two linear coupled difference equations with variable cofficients, and then decouple these latter equations. The coupled difference equations are solved by three different, but interrelated, methods: (i) via the graph theoretic discrete path approach, (ii) by using the general closed form solution of two coupled first order difference equations with variable coefficients, and (iii) in terms of the symmetric functions via the pochhammers of 2 × 2 non-autonomous matrices. The solutions of the decoupled equations are factorial polynomials.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1023-6198
1563-5120
DOI:10.1080/10236190701264701