Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining

Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorith...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent information systems Ročník 31; číslo 3; s. 243 - 264
Hlavní autoři: Alhajj, Reda, Kaya, Mehmet
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.12.2008
Springer Nature B.V
Témata:
ISSN:0925-9902, 1573-7675
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorithm, like CURE, to decide on fuzzy sets; for both cases the number of fuzzy sets is pre-specified. In this paper, we propose an automated method to decide on the number of fuzzy sets and for the autonomous mining of both fuzzy sets and fuzzy association rules. We achieve this by developing an automated clustering method based on multi-objective Genetic Algorithms (GA); the aim of the proposed approach is to automatically cluster values of a quantitative attribute in order to obtain large number of large itemsets in less time. We compare the proposed multi-objective GA based approach with two other approaches, namely: 1) CURE-based approach, which is known as one of the most efficient clustering algorithms; 2) Chien et al. clustering approach, which is an automatic interval partition method based on variation of density. Experimental results on 100 K transactions extracted from the adult data of USA census in year 2000 showed that the proposed automated clustering method exhibits good performance over both CURE-based approach and Chien et al.’s work in terms of runtime, number of large itemsets and number of association rules.
AbstractList Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorithm, like CURE, to decide on fuzzy sets; for both cases the number of fuzzy sets is pre-specified. In this paper, we propose an automated method to decide on the number of fuzzy sets and for the autonomous mining of both fuzzy sets and fuzzy association rules. We achieve this by developing an automated clustering method based on multi-objective Genetic Algorithms (GA); the aim of the proposed approach is to automatically cluster values of a quantitative attribute in order to obtain large number of large itemsets in less time. We compare the proposed multi-objective GA based approach with two other approaches, namely: 1) CURE-based approach, which is known as one of the most efficient clustering algorithms; 2) Chien et al. clustering approach, which is an automatic interval partition method based on variation of density. Experimental results on 100 K transactions extracted from the adult data of USA census in year 2000 showed that the proposed automated clustering method exhibits good performance over both CURE-based approach and Chien et al.’s work in terms of runtime, number of large itemsets and number of association rules.
Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorithm, like CURE, to decide on fuzzy sets; for both cases the number of fuzzy sets is pre-specified. In this paper, we propose an automated method to decide on the number of fuzzy sets and for the autonomous mining of both fuzzy sets and fuzzy association rules. We achieve this by developing an automated clustering method based on multi-objective Genetic Algorithms (GA); the aim of the proposed approach is to automatically cluster values of a quantitative attribute in order to obtain large number of large itemsets in less time. We compare the proposed multi-objective GA based approach with two other approaches, namely: 1) CURE-based approach, which is known as one of the most efficient clustering algorithms; 2) Chien et al. clustering approach, which is an automatic interval partition method based on variation of density. Experimental results on 100 K transactions extracted from the adult data of USA census in year 2000 showed that the proposed automated clustering method exhibits good performance over both CURE-based approach and Chien et al.'s work in terms of runtime, number of large itemsets and number of association rules.
Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorithm, like CURE, to decide on fuzzy sets; for both cases the number of fuzzy sets is pre-specified. In this paper, we propose an automated method to decide on the number of fuzzy sets and for the autonomous mining of both fuzzy sets and fuzzy association rules. We achieve this by developing an automated clustering method based on multi-objective Genetic Algorithms (GA); the aim of the proposed approach is to automatically cluster values of a quantitative attribute in order to obtain large number of large itemsets in less time. We compare the proposed multi-objective GA based approach with two other approaches, namely: 1) CURE-based approach, which is known as one of the most efficient clustering algorithms; 2) Chien et al. clustering approach, which is an automatic interval partition method based on variation of density. Experimental results on 100 K transactions extracted from the adult data of USA census in year 2000 showed that the proposed automated clustering method exhibits good performance over both CURE-based approach and Chien et al.'s work in terms of runtime, number of large itemsets and number of association rules. [PUBLICATION ABSTRACT]
Author Alhajj, Reda
Kaya, Mehmet
Author_xml – sequence: 1
  givenname: Reda
  surname: Alhajj
  fullname: Alhajj, Reda
  email: alhajj@cpsc.ucalgary.ca
  organization: Department of Computer Science, University of Calgary, Department of Computer Science, Global University
– sequence: 2
  givenname: Mehmet
  surname: Kaya
  fullname: Kaya, Mehmet
  organization: Department of Computer Engineering, Firat University
BookMark eNqFkU9r3DAQxUVJoJs_HyA30UNvTkeWbUnHENokkJJLe3bH8nirxbY2klxIPn3kbqAQaIsY9A6_N0jvnbCj2c_E2IWASwGgPkUBuqqKLPNkId6xjaiVLFSj6iO2AVPWhTFQvmcnMe4AwOgGNuzH12VMrvDdjmxyv4hvaabkLMdx64NLP6fIO4zUc1ySnzBlZcclJgpu3vLBBz4sz89PHGP01mFyfuZhGSnyyc0ZOWPHA46Rzl_vU_b9y-dv17fF_cPN3fXVfWGlUqmQZA2S6gw0tsTB9n2lgcD0SgHapumozkdDh7oaalSSjO4JpZC6RDMM8pR9POzdB_-4UEzt5KKlccSZ_BJbWWktmkb-FyxzfqqsVvDDG3DnlzDnT6yMULoGkSF1gGzwMQYaWuvS7xRSQDe2Atq1n_bQT7vKtZ92dYo3zn1wE4anf3rKgyfu1_gp_HnS300v9PKmfQ
CitedBy_id crossref_primary_10_1007_s10489_009_0160_4
crossref_primary_10_1109_TSMCC_2009_2033566
crossref_primary_10_1186_s41044_016_0003_3
crossref_primary_10_3233_IFS_151968
crossref_primary_10_1109_ACCESS_2019_2933505
crossref_primary_10_1155_2012_258476
crossref_primary_10_1007_s10796_016_9690_6
crossref_primary_10_1016_j_eswa_2020_113781
crossref_primary_10_1080_13658816_2018_1434525
crossref_primary_10_1002_widm_40
crossref_primary_10_1007_s00500_021_06613_4
crossref_primary_10_1016_j_ins_2020_02_073
crossref_primary_10_1109_TEVC_2013_2290082
crossref_primary_10_1007_s00500_010_0670_3
crossref_primary_10_1016_j_asoc_2019_105518
crossref_primary_10_1016_j_knosys_2013_11_003
crossref_primary_10_1109_TFUZZ_2010_2060200
crossref_primary_10_1080_18756891_2012_685314
crossref_primary_10_1109_TFUZZ_2012_2201338
crossref_primary_10_1007_s10489_009_0206_7
crossref_primary_10_1016_j_datak_2009_10_001
crossref_primary_10_1080_1206212X_2019_1612993
Cites_doi 10.1016/S0019-9958(65)90241-X
10.1016/S0306-4379(01)00008-4
10.1109/4235.797969
10.1016/S0165-0114(96)00377-6
10.1023/A:1006504901164
10.1145/273244.273257
10.1016/S1088-467X(99)00028-1
10.1016/S0165-0114(99)00065-2
10.1007/3-540-46146-9_14
10.7551/mitpress/1090.001.0001
10.1109/ISIE.2001.931767
10.1109/FUZZY.1996.552395
10.1007/978-3-662-02830-8
10.1145/253260.253361
10.1109/CAIA.1995.378813
10.1145/233269.233311
10.1109/ICDE.1997.581756
10.1145/266714.266898
10.1109/TAI.1999.809772
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2007
Springer Science+Business Media, LLC 2008
Copyright_xml – notice: Springer Science+Business Media, LLC 2007
– notice: Springer Science+Business Media, LLC 2008
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
FR3
P64
RC3
DOI 10.1007/s10844-007-0044-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
Genetics Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Genetics Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7675
EndPage 264
ExternalDocumentID 1591121491
10_1007_s10844_007_0044_1
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
FR3
P64
PUEGO
RC3
ID FETCH-LOGICAL-c377t-3ec9ae7b906c2afcdd480e09d770ac66be5e5e80ba84f5a73e98dea31382a9ff3
IEDL.DBID M0C
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260769100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-9902
IngestDate Fri Sep 05 06:53:29 EDT 2025
Thu Oct 02 14:22:37 EDT 2025
Tue Nov 04 16:32:12 EST 2025
Sat Nov 29 06:21:33 EST 2025
Tue Nov 18 21:49:55 EST 2025
Fri Feb 21 02:36:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multi-objective genetic algorithms
CURE
Fuzziness
Automated clustering
Data mining
Fuzzy association rules
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-3ec9ae7b906c2afcdd480e09d770ac66be5e5e80ba84f5a73e98dea31382a9ff3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 200178501
PQPubID 30807
PageCount 22
ParticipantIDs proquest_miscellaneous_34881663
proquest_miscellaneous_20047243
proquest_journals_200178501
crossref_citationtrail_10_1007_s10844_007_0044_1
crossref_primary_10_1007_s10844_007_0044_1
springer_journals_10_1007_s10844_007_0044_1
PublicationCentury 2000
PublicationDate 20081200
2008-12-00
20081201
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 20081200
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationSubtitle Integrating Artificial Intelligence and Database Technologies
PublicationTitle Journal of intelligent information systems
PublicationTitleAbbrev J Intell Inf Syst
PublicationYear 2008
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Pedrycz (CR23) 1998; 98
Zitzler, Thiele (CR30) 1999; 3
CR19
CR17
CR16
CR14
CR13
Hirota, Pedrycz (CR11) 1996; 2
Kuok, Fu, Wong (CR18) 1998; 17
Guha, Rastogi, Shim (CR8) 2001; 26
CR2
CR4
Zadeh (CR28) 1965; 8
CR3
CR6
CR5
CR29
CR9
Herrera, Lozano, Verdegay (CR10) 1998; 12
CR27
CR26
CR25
CR24
CR22
Arslan, Kaya (CR1) 2001; 118
Goldberg (CR7) 1989
CR21
CR20
Holland (CR12) 1992
Hong, Kuo, Chi (CR15) 1999; 3
S. Guha (44_CR8) 2001; 26
W. Pedrycz (44_CR23) 1998; 98
44_CR26
44_CR27
F. Herrera (44_CR10) 1998; 12
44_CR24
44_CR25
D. E. Goldberg (44_CR7) 1989
T. P. Hong (44_CR15) 1999; 3
K. Hirota (44_CR11) 1996; 2
L. A. Zadeh (44_CR28) 1965; 8
44_CR29
A. Arslan (44_CR1) 2001; 118
J. H. Holland (44_CR12) 1992
44_CR22
44_CR20
44_CR21
44_CR2
44_CR3
44_CR4
44_CR5
44_CR16
44_CR13
44_CR14
44_CR6
44_CR19
44_CR17
44_CR9
C. M. Kuok (44_CR18) 1998; 17
E. Zitzler (44_CR30) 1999; 3
References_xml – ident: CR22
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: CR28
  article-title: Fuzzy sets
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 26
  start-page: 35
  issue: 1
  year: 2001
  end-page: 58
  ident: CR8
  article-title: Cure: An efficient clustering algorithm for large databases
  publication-title: Information Systems
  doi: 10.1016/S0306-4379(01)00008-4
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  end-page: 271
  ident: CR30
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– ident: CR6
– ident: CR29
– ident: CR25
– ident: CR27
– volume: 2
  start-page: 1488
  year: 1996
  end-page: 1496
  ident: CR11
  article-title: Linguistic data mining and fuzzy modelling
  publication-title: Proceedings of IEEE International Conference on Fuzzy Systems
– volume: 98
  start-page: 279
  year: 1998
  end-page: 290
  ident: CR23
  article-title: Fuzzy sets technology in knowledge discovery
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(96)00377-6
– ident: CR21
– ident: CR19
– volume: 12
  start-page: 265
  issue: 4
  year: 1998
  end-page: 319
  ident: CR10
  article-title: Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1006504901164
– ident: CR3
– ident: CR17
– ident: CR13
– ident: CR9
– year: 1992
  ident: CR12
  publication-title: Adaptation in natural and artificial systems
– volume: 17
  start-page: 41
  issue: 1
  year: 1998
  end-page: 46
  ident: CR18
  article-title: Mining fuzzy association rules in databases
  publication-title: SIGMOD Record
  doi: 10.1145/273244.273257
– volume: 3
  start-page: 363
  year: 1999
  end-page: 376
  ident: CR15
  article-title: Mining association rules from quantitative data
  publication-title: Intelligent Data Analysis
  doi: 10.1016/S1088-467X(99)00028-1
– volume: 118
  start-page: 297
  issue: 2
  year: 2001
  end-page: 306
  ident: CR1
  article-title: Determination of fuzzy logic membership functions using genetic algorithms
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(99)00065-2
– ident: CR5
– year: 1989
  ident: CR7
  publication-title: Genetic algorithms in search, optimization, and machine learning
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 12
  start-page: 265
  issue: 4
  year: 1998
  ident: 44_CR10
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1006504901164
– volume: 8
  start-page: 338
  year: 1965
  ident: 44_CR28
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(65)90241-X
– ident: 44_CR25
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 44_CR7
– ident: 44_CR17
  doi: 10.1007/3-540-46146-9_14
– volume: 98
  start-page: 279
  year: 1998
  ident: 44_CR23
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(96)00377-6
– volume-title: Adaptation in natural and artificial systems
  year: 1992
  ident: 44_CR12
  doi: 10.7551/mitpress/1090.001.0001
– ident: 44_CR16
  doi: 10.1109/ISIE.2001.931767
– volume: 2
  start-page: 1488
  year: 1996
  ident: 44_CR11
  publication-title: Proceedings of IEEE International Conference on Fuzzy Systems
  doi: 10.1109/FUZZY.1996.552395
– ident: 44_CR20
  doi: 10.1007/978-3-662-02830-8
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 44_CR30
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– ident: 44_CR5
– volume: 118
  start-page: 297
  issue: 2
  year: 2001
  ident: 44_CR1
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(99)00065-2
– ident: 44_CR9
– volume: 26
  start-page: 35
  issue: 1
  year: 2001
  ident: 44_CR8
  publication-title: Information Systems
  doi: 10.1016/S0306-4379(01)00008-4
– volume: 3
  start-page: 363
  year: 1999
  ident: 44_CR15
  publication-title: Intelligent Data Analysis
– ident: 44_CR21
  doi: 10.1145/253260.253361
– ident: 44_CR27
  doi: 10.1109/CAIA.1995.378813
– ident: 44_CR14
– ident: 44_CR24
  doi: 10.1145/233269.233311
– ident: 44_CR22
– ident: 44_CR19
  doi: 10.1109/ICDE.1997.581756
– ident: 44_CR26
– volume: 17
  start-page: 41
  issue: 1
  year: 1998
  ident: 44_CR18
  publication-title: SIGMOD Record
  doi: 10.1145/273244.273257
– ident: 44_CR2
– ident: 44_CR3
  doi: 10.1145/266714.266898
– ident: 44_CR6
– ident: 44_CR13
– ident: 44_CR4
– ident: 44_CR29
  doi: 10.1109/TAI.1999.809772
SSID ssj0009860
Score 1.984877
Snippet Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 243
SubjectTerms Artificial Intelligence
Associations
Automation
Chromosomes
Clustering
Computer Science
Data mining
Data Structures and Information Theory
Fuzzy logic
Fuzzy sets
Genetic algorithms
Information Storage and Retrieval
IT in Business
Natural Language Processing (NLP)
Optimization
Set theory
Studies
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQcOgFKFB1y8sHTiBL3thZ28eqYsUJVbSgvQXHnrRUywZtkkrw6xl7EwIIKhXlYsmTZGSPZ8Yez3yEHCqf2FQVkjk0lrhB8YpZKRUbCdCgUkBBchFsQp2d6cnEfG_zuKvutnsXkoya-kmym5aSxaM1jg3c8qygtdMBr-H8x2VfaVfH1GBukpShqk26UOZrn3hujHoP80VQNNqa8fq7uNwga61rSb8uZOEjWYLZJlnvYBtou4q3yFVMumVl_meh7CjKUEhlpHb6q5xf179vKhqMm6e2qUv0aLHlpk2oqICcUPRyadHc399R208tnTdTqOhNhJvYJhfjk5_fTlkLtMCcUKpmApyxoHLDRy6xhfNeag7ceKW4daNRDik-mudWyyK1SoDRHqwI9QutKQrxiSzPyhl8JhRy4w3oXIDi0mpjcycCllmS5sKnPBkQ3o145toq5AEMY5r19ZPDCGahGUYwGw7I0eMrt4sSHP8i3ummMWtXYxWgNodKpxx7Dx57cRmF2IidQdlEEqkSKd6mEKjqhuifDchxN_P9H97k58t_Ue-QD_E-Srwus0uW63kDe2TV_a2vq_l-lPMH3Mv5Og
  priority: 102
  providerName: Springer Nature
Title Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining
URI https://link.springer.com/article/10.1007/s10844-007-0044-1
https://www.proquest.com/docview/200178501
https://www.proquest.com/docview/20047243
https://www.proquest.com/docview/34881663
Volume 31
WOSCitedRecordID wos000260769100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: 7WY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: M0C
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: P5Z
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: K7-
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgOXlqdY2i4-cAJZeGNnbZ8QrVohIVar8ipcgmM7QLXdlE2CRH99x06yEUjtBUWyHMVJRpnxzMSemQ_gmXSJSWUhqEVjiT8oTlIjhKRT7pWXqUdBshFsQs5m6vRUz7vYnKoLq-x1YlTUrrRhjfxl0gLJs8mri180gEaFzdUOQWMDtoJjEyL63rHDoeauiknCTCcpRaWb9JuabeacEoLGdTqGncnfZmnwNf_ZHo1W53jnP-m9C9udu0let_JxD2755X3Y6aEcSDezH8C3mIhLy_ysVYAE5SqkNxKz-I6PrX-cVyQYPEdMU5fo5WLPLppQZQHpJuj5kqK5vPxDzMBusmoWviLnEYLiIXw8Pvpw-IZ24AvUcilryr3Vxstcs6lNTGGdE4p5pp2UzNjpNPcpHorlRokiNZJ7rZw3PNQ0NLoo-CPYXJZL_xiIz7XTXuXcSyaM0ia3POCbJWnOXcqSEbD-22e2q0weADIW2VBTObArC93ArmwygufrWy7ashw3Dd7tWZR1M7TK1vwZwdP1VZxaYb_ELH3ZxCFCJoJfP4Kj-pugzzaCF72cDG-4lp4nN9KzC3diTEoMmdmDzXrV-H24bX_XP6vVGDbk5y9j2Do4ms1P8OytpOMo9djO06_Ynrz_dAVAgwig
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqFQuhX6JLQV8aC-trHptZ20fqqoqINDSVQ9U4hYc26Gtlg3dJK3gP_U_1naSjUCCG4cqF0txEtt5nhl7PPMAXgtLdSJyjo1Xln6BYgXWnAs8Yk46kTgPJBPJJsRkIk9O1Ncl-NvFwoRjlZ1MjILaFibskb-nDZE8GX68-IUDaVRwrnYMGg0qxu7yj1-xlR8Od_3vfUPp_t7x5wPckgpgw4SoMHNGaScyRUaG6txYyyVxRFkhiDajUeYSf0mSacnzRAvmlLROs5CrT6s8Z_69D2CFMynCtBoL3Of4lTEomSiaYC_kaedEbSL1JOc47gsSXxheV4O9bXvDHRu13P7afzY-6_C4NafRpwb_T2DJzZ7CWkdVgVrJ9QxOY6AxLrKfjYBHft6E8E2kp2e-G9X38xIFhW6RrqvCW_G-ZKZ1yCLhxwl5yx7l9dXVJdI9nNG8nroSnUeKjefw7V76-QKWZ8XMbQBymbLKyYw5QbiWSmeGBf42mmTMJoQOgHT_OjVt5vVAADJN-5zRAR5pKAZ4pMMBvF08ctGkHbmr8mYHibSVQGW6wMMAdhZ3vegI_iA9c0Udq3BBObu9BvPifeht0gG863DZf-HW9ry8sz078Ojg-MtRenQ4GW_Cajx_E48HvYLlal67LXhoflc_yvl2nF0ITu8brv8A0h9jMg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXylMsBeoDXEBWvbazdg4IIcqKqmi1B5AqLqljOwW03ZRNAmr_Gf-OsZNsBFJ76wHlYilOYjufx2PP4wN4rhw3iSoktbhY4gbFKWqkVHQivPYq8QgkG8km1GymDw_T-Qb87mNhgltlLxOjoHalDWfku7wlkmfj3aLzipjvTd-c_qCBQCoYWns2jRYhB_7sF-7eqtf7e_irX3A-ff_p3QfaEQxQK5SqqfA2NV7lKZtYbgrrnNTMs9QpxYydTHKf4KVZbrQsEqOET7XzRoS8fSYtCoHvvQbXFW4xgzfhPPky5PvVMUCZpTyhKPB5b1Bto_a0lDSeETIsjP9eEgc99x_TbFzxplv_8Vjdgdudmk3etvPiLmz45T3Y6iksSCfR7sNRDECmZf69FfwE51MI6yRmcYzdqL-eVCQs9I6Ypi5Ru8eSXTQhuwSOGUGNnxTN-fkZMQPMyapZ-IqcROqNB_D5Svr5EDaX5dI_AuLz1KVe58IrJo1OTW5F4HXjSS5cwvgIWP_fM9tlZA_EIItsyCUdoJKFYoBKNh7By_Ujp206kssqb_fwyDrJVGVrbIxgZ30XRUqwE5mlL5tYRSouxcU1BIr9MeqqI3jVY3T4woXteXxpe3bgJqI0-7g_O9iGW9EtJ3oNPYHNetX4p3DD_qy_VatncaIROLpqtP4BIFRsVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+genetic+algorithms+based+automated+clustering+for+fuzzy+association+rules+mining&rft.jtitle=Journal+of+intelligent+information+systems&rft.au=Alhajj%2C+Reda&rft.au=Kaya%2C+Mehmet&rft.date=2008-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-9902&rft.eissn=1573-7675&rft.volume=31&rft.issue=3&rft.spage=243&rft_id=info:doi/10.1007%2Fs10844-007-0044-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1591121491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9902&client=summon