A comparative study on ILP-based concept discovery systems

►For a concept discovery task, the user should consider several points for selecting the most suitable system. ► If the target concept is not explicit, using WARMR is a wise choice in order to see various frequent clauses hidden in the data. ► If the user is familiar with mode declarations, search a...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 38; no. 9; pp. 11598 - 11607
Main Authors: Kavurucu, Y., Senkul, P., Toroslu, I.H.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2011
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ►For a concept discovery task, the user should consider several points for selecting the most suitable system. ► If the target concept is not explicit, using WARMR is a wise choice in order to see various frequent clauses hidden in the data. ► If the user is familiar with mode declarations, search and evaluation mechanisms, PROGOL and ALEPH are suitable choices. ► For a naive user, who has the data available in the data-base and who does not have information on inner working of concept discovery mechanisms, C 2D provides a simple, yet effective mechanism. Inductive Logic Programming (ILP) studies learning from examples, within the framework provided by clausal logic. ILP has become a popular subject in the field of data mining due to its ability to discover patterns in relational domains. Several ILP-based concept discovery systems are developed which employs various search strategies, heuristics and language pattern limitations. LINUS, GOLEM, CIGOL, MIS, FOIL, PROGOL, ALEPH and WARMR are well-known ILP-based systems. In this work, firstly introductory information about ILP is given, and then the above-mentioned systems and an ILP-based concept discovery system called C 2D are briefly described and the fundamentals of their mechanisms are demonstrated on a running example. Finally, a set of experimental results on real-world problems are presented in order to evaluate and compare the performance of the above-mentioned systems.
AbstractList ►For a concept discovery task, the user should consider several points for selecting the most suitable system. ► If the target concept is not explicit, using WARMR is a wise choice in order to see various frequent clauses hidden in the data. ► If the user is familiar with mode declarations, search and evaluation mechanisms, PROGOL and ALEPH are suitable choices. ► For a naive user, who has the data available in the data-base and who does not have information on inner working of concept discovery mechanisms, C 2D provides a simple, yet effective mechanism. Inductive Logic Programming (ILP) studies learning from examples, within the framework provided by clausal logic. ILP has become a popular subject in the field of data mining due to its ability to discover patterns in relational domains. Several ILP-based concept discovery systems are developed which employs various search strategies, heuristics and language pattern limitations. LINUS, GOLEM, CIGOL, MIS, FOIL, PROGOL, ALEPH and WARMR are well-known ILP-based systems. In this work, firstly introductory information about ILP is given, and then the above-mentioned systems and an ILP-based concept discovery system called C 2D are briefly described and the fundamentals of their mechanisms are demonstrated on a running example. Finally, a set of experimental results on real-world problems are presented in order to evaluate and compare the performance of the above-mentioned systems.
Inductive Logic Programming (ILP) studies learning from examples, within the framework provided by clausal logic. ILP has become a popular subject in the field of data mining due to its ability to discover patterns in relational domains. Several ILP-based concept discovery systems are developed which employs various search strategies, heuristics and language pattern limitations. LINUS, GOLEM, CIGOL, MIS, FOIL, PROGOL, ALEPH and WARMR are well-known ILP-based systems. In this work, firstly introductory information about ILP is given, and then the above-mentioned systems and an ILP-based concept discovery system called C[super]2D are briefly described and the fundamentals of their mechanisms are demonstrated on a running example. Finally, a set of experimental results on real-world problems are presented in order to evaluate and compare the performance of the above-mentioned systems.
Author Senkul, P.
Toroslu, I.H.
Kavurucu, Y.
Author_xml – sequence: 1
  givenname: Y.
  surname: Kavurucu
  fullname: Kavurucu, Y.
  email: yusuf.kavurucu@ceng.metu.edu.tr
– sequence: 2
  givenname: P.
  surname: Senkul
  fullname: Senkul, P.
  email: senkul@ceng.metu.edu.tr
– sequence: 3
  givenname: I.H.
  surname: Toroslu
  fullname: Toroslu, I.H.
  email: toroslu@ceng.metu.edu.tr
BookMark eNp9kE1rwzAMQM3oYF23P7BTjrukk-PETsYupeyjUNgO29k4tgIuadzZbkf-_Vy60w4FgQTSE9K7JpPBDUjIHYU5BcofNnMMP2peAKVzYCnqCzKltWA5Fw2bkCk0lchLKsorch3CBoAKADElj4tMu-1OeRXtAbMQ92bM3JCt1h95qwKa1B407mJmbNDugH7MwhgibsMNuexUH_D2L8_I18vz5_ItX7-_rpaLda6ZEDEvEHRlOOeFaGqsTEFbVhvsGHZlBcCFLusWGlBtLbjGVFSm06wpGC87roHNyP1p78677z2GKLfpFOx7NaDbB0m5oGlRWfE0WpxGtXcheOzkztut8qOkII-i5EYeRcmjKAksRZ2g-h-kbUw63BC9sv159OmEYvr_YNHLoC0mX8Z61FEaZ8_hv7ZphXI
CitedBy_id crossref_primary_10_1007_s10115_016_0921_4
crossref_primary_10_1016_j_cageo_2014_08_013
crossref_primary_10_4018_JITR_2019010107
crossref_primary_10_1016_j_knosys_2011_11_001
Cites_doi 10.1007/BFb0017020
10.1145/959242.959245
10.1145/959242.959252
10.1007/11853886_1
10.1007/3540635149_56
10.1016/B978-0-934613-64-4.50040-2
10.1007/BF03037227
10.1007/BF00117105
10.1016/j.eswa.2009.02.100
10.1007/s10994-007-5029-3
10.1007/978-3-642-02319-4_27
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2011.03.038
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 11607
ExternalDocumentID 10_1016_j_eswa_2011_03_038
S0957417411004465
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c377t-2e0c5d6662798e5d21b38def3ef450067c48b090ab876ce90a5dfc392364f6c03
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291118500099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Sep 27 18:40:56 EDT 2025
Sat Nov 29 04:44:25 EST 2025
Tue Nov 18 21:32:25 EST 2025
Fri Feb 23 02:26:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Concept discovery
ILP
Multi-relational data mining
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-2e0c5d6662798e5d21b38def3ef450067c48b090ab876ce90a5dfc392364f6c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hdl.handle.net/11511/32734
PQID 1671500456
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1671500456
crossref_primary_10_1016_j_eswa_2011_03_038
crossref_citationtrail_10_1016_j_eswa_2011_03_038
elsevier_sciencedirect_doi_10_1016_j_eswa_2011_03_038
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kavurucu, Y., Senkul, P., Toroslu, I. H. (2009a). Analyzing transitive rules on a hybrid concept discovery system. In
Tech. rep., PRG-TR-8-95 Oxford University Computing Laboratory.
(pp. 446–451). Hong Kong.
Srinivasan, A., King, R. D., Muggleton, S., Sternberg, M. J. E. (1997). Carcinogenesis predictions using ILP. In
Muggleton, S., Feng, C. (1990). Efficient induction of logic programs. In
New Generation Computing, Special issue on Inductive Logic Programming 13(3–4) (pp. 245–286).
Džeroski (b0030) 2003; 5
(pp. 399–411).
Ph.D. thesis, Utrecht, Netherlands: Utrecht University.
Dolsak, Muggleton (b0020) 1992
(pp. 339–351). Morgan Kaufmann.
Kavurucu, Y., Senkul, P., Toroslu, I. H. (2008a). Aggregation in confidence-based concept discovery for multi-relational data mining. In
Knobbe, A. J. (2004).
Michalski, R., Larson, J. (1997). Inductive inference of VL decision rules. In
(pp. 125–132.) London, UK: Springer-Verlag.
Dehaspe, L., Raedt, L. D. (1997). Mining association rules in multiple relations. In ILP’97
Muggleton, Tamaddoni-Nezhad (b0105) 2008; 70
Yankova, Boytcheva (b0140) 2002
Muggleton, S., 1999. Inductive Logic Programming. In
Lavrač, Džeroski (b0070) 1994
(pp. 1–14).
Lavrač, N., Džeroski, S., Grobelnik, M. (1991). Learning nonrecursive definitions of relations with LINUS. In Y. Kodratoff (Ed.)
Kavurucu, Y., Senkul, P., Toroslu, I. H., March 2008b. Confidence-based concept discovery in multi-relational data mining. In
(Vol. 482, pp. 265–281.) Lecture Notes in Artificial Intelligence. Springer-Verlag.
Srinivasan, A. (1999). The aleph manual.
Dzeroski (b0035) 2001
(pp. 368–381). Tokyo, Japan: Ohmsma
(Vol. 63, pp. 33–44.). SIGART Newsletter, ACM, Hawaii.
Srinivasan, King, Muggleton (b0125) 1996
Yin, X., Han, J., Yang, J., Yu, P. S. (2004). Crossmine: Efficient classification across multiple database relations. In
Shapiro (b0115) 1983
(Vol. 1297, pp. 273–287). Springer-Verlag
Srinivasan, A., Muggleton, S., King, R., Sternberg, M. (1995).
Dehaspe, Toivonen (b0015) 2001
MIT Press.
.
Kavurucu, Senkul, Toroslu (b0060) 2009; 36
Muggleton, S. (1995).
(pp. 307–328) AAAI/MIT Press.
(Vol. 5572/2009, pp. 227–234). Springer Berlin/Heidelberg.
(pp. 43–50). Netherland: Amsterdam.
Muggleton, S., Buntine, W. (1988). Machine invention of first order predicates by inverting resolution. In
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I. (1996). Fast discovery of association rules. In
Domingos (b0025) 2003; 5
Dzeroski, S. (2006). From inductive logic programming to relational data mining. In
Quinlan (b0110) 1990; 5
10.1016/j.eswa.2011.03.038_b0050
10.1016/j.eswa.2011.03.038_b0095
Yankova (10.1016/j.eswa.2011.03.038_b0140) 2002
Quinlan (10.1016/j.eswa.2011.03.038_b0110) 1990; 5
10.1016/j.eswa.2011.03.038_b0010
10.1016/j.eswa.2011.03.038_b0055
Dehaspe (10.1016/j.eswa.2011.03.038_b0015) 2001
10.1016/j.eswa.2011.03.038_b0075
10.1016/j.eswa.2011.03.038_b0130
10.1016/j.eswa.2011.03.038_b0135
Dzeroski (10.1016/j.eswa.2011.03.038_b0035) 2001
Kavurucu (10.1016/j.eswa.2011.03.038_b0060) 2009; 36
Džeroski (10.1016/j.eswa.2011.03.038_b0030) 2003; 5
10.1016/j.eswa.2011.03.038_b0080
Srinivasan (10.1016/j.eswa.2011.03.038_b0125) 1996
Domingos (10.1016/j.eswa.2011.03.038_b0025) 2003; 5
10.1016/j.eswa.2011.03.038_b0040
10.1016/j.eswa.2011.03.038_b0065
10.1016/j.eswa.2011.03.038_b0120
10.1016/j.eswa.2011.03.038_b0085
Shapiro (10.1016/j.eswa.2011.03.038_b0115) 1983
10.1016/j.eswa.2011.03.038_b0045
10.1016/j.eswa.2011.03.038_b0100
10.1016/j.eswa.2011.03.038_b0145
10.1016/j.eswa.2011.03.038_b0005
Dolsak (10.1016/j.eswa.2011.03.038_b0020) 1992
Muggleton (10.1016/j.eswa.2011.03.038_b0105) 2008; 70
Lavrač (10.1016/j.eswa.2011.03.038_b0070) 1994
10.1016/j.eswa.2011.03.038_b0090
References_xml – reference: (Vol. 63, pp. 33–44.). SIGART Newsletter, ACM, Hawaii.
– reference: Yin, X., Han, J., Yang, J., Yu, P. S. (2004). Crossmine: Efficient classification across multiple database relations. In
– volume: 70
  start-page: 121
  year: 2008
  end-page: 133
  ident: b0105
  article-title: QG/GA: A stochastic search for progol
  publication-title: Machine Learning
– year: 1983
  ident: b0115
  article-title: Algorithmic Program Debugging
– reference: (Vol. 1297, pp. 273–287). Springer-Verlag (
– reference: (pp. 339–351). Morgan Kaufmann.
– reference: (pp. 399–411).
– reference: (pp. 446–451). Hong Kong.
– volume: 5
  start-page: 1
  year: 2003
  end-page: 16
  ident: b0030
  article-title: Multi-relational data mining: An introduction
  publication-title: SIGKDD Explorations
– reference: Srinivasan, A., King, R. D., Muggleton, S., Sternberg, M. J. E. (1997). Carcinogenesis predictions using ILP. In
– reference: Srinivasan, A. (1999). The aleph manual.
– reference: (pp. 43–50). Netherland: Amsterdam.
– volume: 36
  start-page: 11418
  year: 2009
  end-page: 11428
  ident: b0060
  article-title: ILP-based concept discovery in multi-relational data mining
  publication-title: Expert Systems with Applications
– year: 2001
  ident: b0035
  article-title: Relational Data Mining
– reference: (pp. 1–14).
– reference: Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I. (1996). Fast discovery of association rules. In
– year: 1996
  ident: b0125
  publication-title: The role of background knowledge: Using a problem from chemistry to examine the performance of an ILP program
– reference: Kavurucu, Y., Senkul, P., Toroslu, I. H. (2009a). Analyzing transitive rules on a hybrid concept discovery system. In:
– reference: Lavrač, N., Džeroski, S., Grobelnik, M. (1991). Learning nonrecursive definitions of relations with LINUS. In Y. Kodratoff (Ed.),
– volume: 5
  start-page: 239
  year: 1990
  end-page: 266
  ident: b0110
  article-title: Learning logical definitions from relations
  publication-title: Machine Learning
– reference: . Ph.D. thesis, Utrecht, Netherlands: Utrecht University.
– reference: . MIT Press.
– reference: Knobbe, A. J. (2004).
– reference: Muggleton, S., 1999. Inductive Logic Programming. In
– start-page: 345
  year: 2002
  end-page: 359
  ident: b0140
  publication-title: Overview of inductive logic programming (ILP) systems
– reference: . Tech. rep., PRG-TR-8-95 Oxford University Computing Laboratory.
– reference: Srinivasan, A., Muggleton, S., King, R., Sternberg, M. (1995).
– reference: (pp. 368–381). Tokyo, Japan: Ohmsma,
– reference: Muggleton, S., Buntine, W. (1988). Machine invention of first order predicates by inverting resolution. In
– reference: (Vol. 5572/2009, pp. 227–234). Springer Berlin/Heidelberg.
– reference: Kavurucu, Y., Senkul, P., Toroslu, I. H. (2008a). Aggregation in confidence-based concept discovery for multi-relational data mining. In
– reference: Dehaspe, L., Raedt, L. D. (1997). Mining association rules in multiple relations. In ILP’97:
– year: 1994
  ident: b0070
  article-title: Inductive logic programming: Techniques and applications
– reference: Muggleton, S. (1995).
– volume: 5
  start-page: 80
  year: 2003
  end-page: 81
  ident: b0025
  article-title: Prospects and challenges for multi-relational data mining
  publication-title: SIGKDD Explorations
– reference: (pp. 307–328) AAAI/MIT Press.
– reference: Muggleton, S., Feng, C. (1990). Efficient induction of logic programs. In
– reference: Michalski, R., Larson, J. (1997). Inductive inference of VL decision rules. In
– reference: (pp. 125–132.) London, UK: Springer-Verlag.
– reference: Kavurucu, Y., Senkul, P., Toroslu, I. H., March 2008b. Confidence-based concept discovery in multi-relational data mining. In
– reference: . New Generation Computing, Special issue on Inductive Logic Programming 13(3–4) (pp. 245–286).
– start-page: 189
  year: 2001
  end-page: 212
  ident: b0015
  article-title: Discovery of relational association rules
  publication-title: Relational data mining
– year: 1992
  ident: b0020
  article-title: The application of inductive logic programming to finite element mesh design
  publication-title: Inductive logic programming
– reference: (Vol. 482, pp. 265–281.) Lecture Notes in Artificial Intelligence. Springer-Verlag.
– reference: .
– reference: ).
– reference: Dzeroski, S. (2006). From inductive logic programming to relational data mining. In
– ident: 10.1016/j.eswa.2011.03.038_b0135
– ident: 10.1016/j.eswa.2011.03.038_b0075
  doi: 10.1007/BFb0017020
– ident: 10.1016/j.eswa.2011.03.038_b0005
– volume: 5
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2011.03.038_b0030
  article-title: Multi-relational data mining: An introduction
  publication-title: SIGKDD Explorations
  doi: 10.1145/959242.959245
– year: 1983
  ident: 10.1016/j.eswa.2011.03.038_b0115
– year: 1992
  ident: 10.1016/j.eswa.2011.03.038_b0020
  article-title: The application of inductive logic programming to finite element mesh design
– year: 1996
  ident: 10.1016/j.eswa.2011.03.038_b0125
– volume: 5
  start-page: 80
  year: 2003
  ident: 10.1016/j.eswa.2011.03.038_b0025
  article-title: Prospects and challenges for multi-relational data mining
  publication-title: SIGKDD Explorations
  doi: 10.1145/959242.959252
– ident: 10.1016/j.eswa.2011.03.038_b0040
  doi: 10.1007/11853886_1
– ident: 10.1016/j.eswa.2011.03.038_b0120
– ident: 10.1016/j.eswa.2011.03.038_b0145
– year: 1994
  ident: 10.1016/j.eswa.2011.03.038_b0070
– ident: 10.1016/j.eswa.2011.03.038_b0080
– start-page: 345
  year: 2002
  ident: 10.1016/j.eswa.2011.03.038_b0140
  publication-title: Overview of inductive logic programming (ILP) systems
– ident: 10.1016/j.eswa.2011.03.038_b0130
  doi: 10.1007/3540635149_56
– ident: 10.1016/j.eswa.2011.03.038_b0065
– ident: 10.1016/j.eswa.2011.03.038_b0050
– start-page: 189
  year: 2001
  ident: 10.1016/j.eswa.2011.03.038_b0015
  article-title: Discovery of relational association rules
– ident: 10.1016/j.eswa.2011.03.038_b0010
– ident: 10.1016/j.eswa.2011.03.038_b0095
  doi: 10.1016/B978-0-934613-64-4.50040-2
– ident: 10.1016/j.eswa.2011.03.038_b0085
  doi: 10.1007/BF03037227
– ident: 10.1016/j.eswa.2011.03.038_b0090
– volume: 5
  start-page: 239
  issue: 3
  year: 1990
  ident: 10.1016/j.eswa.2011.03.038_b0110
  article-title: Learning logical definitions from relations
  publication-title: Machine Learning
  doi: 10.1007/BF00117105
– ident: 10.1016/j.eswa.2011.03.038_b0100
– year: 2001
  ident: 10.1016/j.eswa.2011.03.038_b0035
– volume: 36
  start-page: 11418
  issue: 9
  year: 2009
  ident: 10.1016/j.eswa.2011.03.038_b0060
  article-title: ILP-based concept discovery in multi-relational data mining
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.100
– ident: 10.1016/j.eswa.2011.03.038_b0045
– volume: 70
  start-page: 121
  issue: 2–3
  year: 2008
  ident: 10.1016/j.eswa.2011.03.038_b0105
  article-title: QG/GA: A stochastic search for progol
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5029-3
– ident: 10.1016/j.eswa.2011.03.038_b0055
  doi: 10.1007/978-3-642-02319-4_27
SSID ssj0017007
Score 2.0854099
Snippet ►For a concept discovery task, the user should consider several points for selecting the most suitable system. ► If the target concept is not explicit, using...
Inductive Logic Programming (ILP) studies learning from examples, within the framework provided by clausal logic. ILP has become a popular subject in the field...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11598
SubjectTerms Concept discovery
Expert systems
Foils
ILP
Learning
Logic programming
Management information systems
Multi-relational data mining
Running
Searching
Strategy
Title A comparative study on ILP-based concept discovery systems
URI https://dx.doi.org/10.1016/j.eswa.2011.03.038
https://www.proquest.com/docview/1671500456
Volume 38
WOSCitedRecordID wos000291118500099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu4e97Hus-yga7K3I2JZtSXsLo6MZpRSWjbwZWZZgXXBKHWfdf7-TJStuWctWGBhjHNtxdL_cnU53v0PovUkzwwsqSW1MRcAEcMK5ViQTUvFCFjnrufS-HbOTE75YiNPJxAy1MJslaxp-eSnO_6uo4RwI25bO_oO4w0PhBByD0GEPYof9Xwl-6vPKHaN360ijm4PZ8SmxJstWsfWVinZtRtkEzl-ezrm9EqW3FMjr4RNfAjda7A6KWm46gEfXq_IoxGt086NzzZHDufkKDPKyv3AWHUXjcIONn4pxuCHUwWyTjlwwkZEscf12Iu1UKWeUFMz1Pxx0LeUjTImR4gTH1HWj9lY4scR3f1TxLtpwFun2p_QUrBQ2vjVoIc3wi30v-1qOF6_I76HdlOUCtN_udHa4-BzWm1jsCuuH3-HLq1wm4PVvusmFuWbMew9l_hg99FMLPHWQeIImunmKHg1tO7DX4s_QhykeIQT3CMGrBgeEYI8QHBCCPQ6eo6-fDucfj4hvoUEUZWxNUh2rvC4sy7_gOq_TpKK81oZqk-XWU1EZr2IRywqsotJwkNdGgc9Mi8wUKqYv0E6zavRLhJlJWVanFVW1zLSBmYVMuV1mFyJV4AbuoWQYlVJ5fnnb5mRZDomEZ6UdydKOZBlT2PgeOgj3nDt2lVuvzofBLr1_6Py-ErBx633vBsmUoDztiphs9Kpry6RgMCGys5pXd3z2a_Rg-y95g3bWF51-i-6rzfp7e7HvYfYb6L2UAg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+on+ILP-based+concept+discovery+systems&rft.jtitle=Expert+systems+with+applications&rft.au=Kavurucu%2C+Y.&rft.au=Senkul%2C+P.&rft.au=Toroslu%2C+I.H.&rft.date=2011-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=38&rft.issue=9&rft.spage=11598&rft.epage=11607&rft_id=info:doi/10.1016%2Fj.eswa.2011.03.038&rft.externalDocID=S0957417411004465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon