Iterative receiver for the triple differential PSK modulation in the time-varying underwater acoustic communications

Due to the time-varying property of the underwater acoustic (UWA) channel, the significant Doppler spread will severely degrade the performance of direct-sequence spread-spectrum (DSSS) communications. The relative velocity variation between the transmitter and the receiver will cause both the phase...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET communications Ročník 14; číslo 16; s. 2813 - 2819
Hlavní autoři: Cui, Hongyu, Liu, Changxin, Si, Boyu, Wu, Jie, Sun, Dajun
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 06.10.2020
Témata:
ISSN:1751-8628, 1751-8636
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the time-varying property of the underwater acoustic (UWA) channel, the significant Doppler spread will severely degrade the performance of direct-sequence spread-spectrum (DSSS) communications. The relative velocity variation between the transmitter and the receiver will cause both the phase rotation and the magnitude loss of correlation peak, during the long transmission of the DSSS packet. To solve this problem, the authors propose a novel transceiver design for the UWA DSSS communications. At the transmitter, the triple differential phase shift keying (D$^3$3PSK) modulation is adopted to overcome the phase rotation, whereas the phase noise will be amplified resulting in the signal-to-noise ratio (SNR) loss. At the receiver, the improved bit-interleaved coded modulation with iterative decoding algorithm for D$^3$3PSK is used to recover the SNR loss, in which the D$^3$3PSK demodulator is treated as the convolutional decoder, and the linear prediction is adopted to track the channel variation. Furthermore, an adaptive selection of local reference signal is also applied to recover the correlation loss. Theoretical simulation shows that the proposed transceiver can effectively mitigate the performance loss caused by the motion acceleration, and the performance gain is significant over the conventional.
AbstractList Due to the time-varying property of the underwater acoustic (UWA) channel, the significant Doppler spread will severely degrade the performance of direct-sequence spread-spectrum (DSSS) communications. The relative velocity variation between the transmitter and the receiver will cause both the phase rotation and the magnitude loss of correlation peak, during the long transmission of the DSSS packet. To solve this problem, the authors propose a novel transceiver design for the UWA DSSS communications. At the transmitter, the triple differential phase shift keying (D$^3$3PSK) modulation is adopted to overcome the phase rotation, whereas the phase noise will be amplified resulting in the signal-to-noise ratio (SNR) loss. At the receiver, the improved bit-interleaved coded modulation with iterative decoding algorithm for D$^3$3PSK is used to recover the SNR loss, in which the D$^3$3PSK demodulator is treated as the convolutional decoder, and the linear prediction is adopted to track the channel variation. Furthermore, an adaptive selection of local reference signal is also applied to recover the correlation loss. Theoretical simulation shows that the proposed transceiver can effectively mitigate the performance loss caused by the motion acceleration, and the performance gain is significant over the conventional.
Due to the time‐varyingproperty of the underwater acoustic (UWA) channel, the significant Doppler spread will severely degrade the performance of direct‐sequence spread‐spectrum (DSSS) communications. The relative velocity variation between the transmitter and the receiver will cause both the phase rotation and the magnitude loss of correlation peak, during the long transmission of the DSSS packet. To solve this problem, the authors propose a novel transceiver design for the UWA DSSS communications. At the transmitter, the triple differential phase shift keying (D PSK) modulation is adopted to overcome the phase rotation, whereas the phase noise will be amplified resulting in the signal‐to‐noise ratio (SNR) loss. At the receiver, the improved bit‐interleaved coded modulation with iterative decoding algorithm for D PSK is used to recover the SNR loss, in which the D PSK demodulator is treated as the convolutional decoder, and the linear prediction is adopted to track the channel variation. Furthermore, an adaptive selection of local reference signal is also applied to recover the correlation loss. Theoretical simulation shows that the proposed transceiver can effectively mitigate the performance loss caused by the motion acceleration, and the performance gain is significant over the conventional.
Due to the time‐varyingproperty of the underwater acoustic (UWA) channel, the significant Doppler spread will severely degrade the performance of direct‐sequence spread‐spectrum (DSSS) communications. The relative velocity variation between the transmitter and the receiver will cause both the phase rotation and the magnitude loss of correlation peak, during the long transmission of the DSSS packet. To solve this problem, the authors propose a novel transceiver design for the UWA DSSS communications. At the transmitter, the triple differential phase shift keying (D3PSK) modulation is adopted to overcome the phase rotation, whereas the phase noise will be amplified resulting in the signal‐to‐noise ratio (SNR) loss. At the receiver, the improved bit‐interleaved coded modulation with iterative decoding algorithm for D3PSK is used to recover the SNR loss, in which the D3PSK demodulator is treated as the convolutional decoder, and the linear prediction is adopted to track the channel variation. Furthermore, an adaptive selection of local reference signal is also applied to recover the correlation loss. Theoretical simulation shows that the proposed transceiver can effectively mitigate the performance loss caused by the motion acceleration, and the performance gain is significant over the conventional.
Author Cui, Hongyu
Si, Boyu
Wu, Jie
Liu, Changxin
Sun, Dajun
Author_xml – sequence: 1
  givenname: Hongyu
  surname: Cui
  fullname: Cui, Hongyu
  organization: 2College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Repulic of China
– sequence: 2
  givenname: Changxin
  surname: Liu
  fullname: Liu, Changxin
  organization: 2College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Repulic of China
– sequence: 3
  givenname: Boyu
  surname: Si
  fullname: Si, Boyu
  email: siby@sumhs.edu.cn
  organization: 3College of Medical Instrument, Shanghai University of Medicine & Health Sciences, Shanghai 201318, People's Republic of China
– sequence: 4
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
  organization: 2College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Repulic of China
– sequence: 5
  givenname: Dajun
  surname: Sun
  fullname: Sun, Dajun
  organization: 2College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Repulic of China
BookMark eNqFkMtOwzAQRS1UJNrCB7DzD6T40bzYQUWhoggk6Dpy7TG4SpzKcVr173EaxIJFWc0s5ty5OiM0sLUFhK4pmVAyzW8M-EjW1YQRRiYkpvwMDWka0yhLeDL43Vl2gUZNsyEkjpPpdIj8woMT3uwAO5AQpsO6dth_AfbObEvAymgNDqw3osRv78-4qlVbBqa22Nj-0lQQ7YQ7GPuJW6vA7UXIxULWbeONxKFa1Vojj1Rzic61KBu4-pljtJo_fMyeouXr42J2t4wkT9M80lzQjPKUrVXChNSE00Tla6V4zIUAToBLlSpBGSV6nYh1CjHXMo6znMoMBB8j2udKVzeNA11snalCzYKSotNWBG1F6FZ02opOW2DSP4w0_ljbO2HKk-RtT-5NCYf_XxWzlxW7nxOWsDzAUQ93Z5u6dTaIOfHsG1CCmzk
CitedBy_id crossref_primary_10_1016_j_apacoust_2023_109761
crossref_primary_10_1121_10_0036808
crossref_primary_10_3390_jmse12122151
crossref_primary_10_1121_10_0017116
Cites_doi 10.1109/JCN.2008.6388327
10.1109/PACRIM.2001.953535
10.1109/ICASSP.1997.599703
10.1109/LCOMM.2004.827436
10.1109/ICC.2005.1494441
10.1109/OCEANS.2018.8604711
10.1109/26.48887
10.1109/JOE.2013.2264994
10.1049/el:19970697
10.1109/26.771340
10.1109/ICoSP.2012.6491815
10.1109/MCOM.2009.4752682
10.1109/49.840198
10.1109/ICITBS.2018.00065
10.1109/SPAWC.2001.923832
10.1109/TCOMM.1994.577071
10.1109/TIT.2006.871048
10.1109/ICACCCT.2014.7019181
10.1109/ACSSC.2006.354996
10.1109/ICCS.2006.301475
10.1109/VETEC.1993.507490
10.1109/26.911452
10.1049/iet-com.2010.0031
10.1109/JSAC.1983.1145887
10.1109/4234.552139
10.1109/ACSSC.2011.6190149
10.1109/TIT.2004.825501
10.1109/PROC.1975.9792
10.1109/26.129190
10.1109/26.843126
10.1109/26.870016
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-com.2020.0513
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 2819
ExternalDocumentID 10_1049_iet_com_2020_0513
CMU2BF02629
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61601134
– fundername: National Natural Science Foundation of China
  funderid: 61701132; 61601134
– fundername: National Natural Science Foundation of Heilongjiang
  funderid: JC2016013; YQ2019D003
GroupedDBID 0R
24P
29I
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
ZL0
ZZ
.DC
0R~
0ZK
1OC
2QL
4.4
6OB
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3779-f3a181372bd62acf0316d9bdd353aae30e3cd7da1210fb6ab7e53fc55891c8ea3
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000577106700021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8628
IngestDate Tue Nov 18 22:44:06 EST 2025
Wed Oct 29 21:19:06 EDT 2025
Wed Jan 22 16:30:24 EST 2025
Tue Jan 05 21:45:20 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords triple differential phase shift keying modulation
differential phase shift keying
channel coding
time-varying property
SNR loss
adaptive selection
UWA DSSS communications
spread spectrum communication
improved bit-interleaved coded modulation
D3PSK demodulator
iterative receiver
motion acceleration
direct-sequence spread-spectrum communications
novel transceiver design
transceivers
time-varying channels
wireless channels
local reference signal
interleaved codes
phase noise
transmitter
Doppler spread
iterative decoding algorithm
modulation coding
signal detection
receiver
underwater acoustic channel
demodulation
signal-to-noise ratio loss
phase rotation
performance gain
underwater acoustic communication
magnitude loss
triple differential PSK modulation
correlation loss recovery
iterative decoding
UWA channel
DSSS packet
convolutional decoder
relative velocity variation
D3PSK modulation
channel variation
convolutional codes
performance loss mitigation
time-varying underwater acoustic communications
linear prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3779-f3a181372bd62acf0316d9bdd353aae30e3cd7da1210fb6ab7e53fc55891c8ea3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-com.2020.0513
PageCount 7
ParticipantIDs crossref_citationtrail_10_1049_iet_com_2020_0513
crossref_primary_10_1049_iet_com_2020_0513
iet_journals_10_1049_iet_com_2020_0513
wiley_primary_10_1049_iet_com_2020_0513_CMU2BF02629
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-10-06
PublicationDateYYYYMMDD 2020-10-06
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-06
  day: 06
PublicationDecade 2020
PublicationTitle IET communications
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Miller, S.L.; O'Dea, R.J. (C10) 1997; 1
Liu, Z.; Yoo, K.; Yang, T.C. (C12) 2014; 39
Schober, R.; Gerstacker, W.H. (C25) 2000; 18
Ryan, W.E. (C27) 2001; 49
Pauli, V.; Lampe, L.; Schober, R. (C21) 2006; 52
Makhoul, J. (C31) 1975; 63
Samejima, S.; Enomoto, K.; Watanabe, Y. (C6) 1983; 1
Marsland, I.D.; Mathiopoulos, P.T. (C23) 2000; 48
Hoeher, P.; Lodge, J. (C11) 1999; 47
Van Alphen, D.K.; Lindsey, W.C. (C28) 1994; 42
Vanichchanunt, P.; Sangwongngam, P.; Nakpeerayuth, S. (C24) 2008; 10
Colavolpe, G.; Ferrari, G.; Raheli, R. (C20) 2000; 48
Divsalar, D.; Simon, M.K. (C9) 1990; 38
Stoica, P.; Liu, J.; Li, J. (C15) 2004; 50
Liu, J.; Simon, M.; Stoica, P. (C14) 2004; 8
Stojanovic, M.; Preisig, J. (C1) 2009; 47
Jamshidi, A. (C26) 2011; 5
Simon, M.K.; Divsalar, D. (C13) 1992; 40
Peleg, M.; Shamai, S. (C19) 1997; 33
2009; 47
2006; 52
2012
2011
1990; 38
2000; 48
1983; 1
2004; 8
1999; 47
1997
2006
1997; 1
2005
2008; 10
1993
2001; 49
2011; 5
1994; 42
2004; 50
2000; 18
2001
1997; 33
2018
1975; 63
2014
2014; 39
1992; 40
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 49
  start-page: 445
  issue: 3
  year: 2001
  end-page: 454
  ident: C27
  article-title: Concatenated codes for class IV partial response channels
  publication-title: IEEE Trans. Commun.
– volume: 48
  start-page: 588
  issue: 4
  year: 2000
  end-page: 596
  ident: C23
  article-title: On the performance of iterative noncoherent detection of coded M-PSK signals
  publication-title: IEEE Trans. Commun.
– volume: 63
  start-page: 561
  issue: 4
  year: 1975
  end-page: 580
  ident: C31
  article-title: Linear prediction: a tutorial review
  publication-title: Proc. IEEE.
– volume: 1
  start-page: 2
  issue: 1
  year: 1997
  end-page: 4
  ident: C10
  article-title: Multiple symbol differential detection for trellis-coded MPSK over Rayleigh fading channels
  publication-title: IEEE Commun. Lett.
– volume: 18
  start-page: 391
  issue: 3
  year: 2000
  end-page: 402
  ident: C25
  article-title: Decision-feedback differential detection based on linear prediction for MDPSK signals transmitted over Ricean fading channels
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 47
  start-page: 837
  issue: 6
  year: 1999
  end-page: 843
  ident: C11
  article-title: Turbo DPSK: iterative differential PSK demodulation and channel decoding
  publication-title: IEEE Trans. Commun.
– volume: 5
  start-page: 456
  issue: 4
  year: 2011
  end-page: 466
  ident: C26
  article-title: Direct sequence spread spectrum point-to-point communication scheme in underwater acoustic sparse channels
  publication-title: IET Commun.
– volume: 39
  start-page: 482
  issue: 3
  year: 2014
  end-page: 490
  ident: C12
  article-title: Long-range double-differentially coded spread-spectrum acoustic communications with a towed array
  publication-title: IEEE J. Ocean. Eng.
– volume: 42
  start-page: 440
  issue: 234
  year: 1994
  end-page: 448
  ident: C28
  article-title: Higher-order differential phase shift keyed modulation
  publication-title: IEEE Trans. Commun.
– volume: 38
  start-page: 300
  issue: 3
  year: 1990
  end-page: 308
  ident: C9
  article-title: Multiple-symbol differential detection of MPSK
  publication-title: IEEE Trans. Commun.
– volume: 40
  start-page: 278
  issue: 2
  year: 1992
  end-page: 291
  ident: C13
  article-title: On the implementation and performance of single and double differential detection schemes
  publication-title: IEEE Trans. Commun.
– volume: 33
  start-page: 1018
  issue: 12
  year: 1997
  end-page: 1020
  ident: C19
  article-title: Iterative decoding of coded and interleaved noncoherent multiple symbol detected DPSK
  publication-title: Electr. Lett.
– volume: 47
  start-page: 84
  issue: 1
  year: 2009
  end-page: 89
  ident: C1
  article-title: Underwater acoustic communication channels: propagation models and statistical characterization
  publication-title: IEEE Commun. Mag.
– volume: 1
  start-page: 74
  issue: 1
  year: 1983
  end-page: 81
  ident: C6
  article-title: Differential PSK system with nonredundant error correction
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 52
  start-page: 1385
  issue: 4
  year: 2006
  end-page: 1398
  ident: C21
  article-title: Turbo DPSK using soft multiple-symbol differential sphere decoding
  publication-title: IEEE Trans. Inform. Theory.
– volume: 50
  start-page: 572
  issue: 3
  year: 2004
  end-page: 576
  ident: C15
  article-title: Maximum likelihood double differential detection clarified
  publication-title: IEEE Trans. Inform. Theory.
– volume: 10
  start-page: 44
  issue: 1
  year: 2008
  end-page: 54
  ident: C24
  article-title: Iterative multiple symbol differential detection for turbo coded differential unitary space-time modulation
  publication-title: J. Commun. Netw.
– volume: 8
  start-page: 296
  issue: 5
  year: 2004
  end-page: 298
  ident: C14
  article-title: A soft-detector based on multiple symbol detection for double differential modulation
  publication-title: IEEE Commun. Lett.
– volume: 48
  start-page: 1488
  issue: 9
  year: 2000
  end-page: 1498
  ident: C20
  article-title: Noncoherent iterative (turbo) decoding
  publication-title: IEEE Trans. Commun.
– start-page: 22
  year: 2001
  end-page: 25
– start-page: 693
  year: 2005
  end-page: 697
– start-page: 223
  year: 2018
  end-page: 226
– start-page: 376
  year: 1993
  end-page: 379
– volume: 1
  start-page: 74
  issue: 1
  year: 1983
  end-page: 81
  article-title: Differential PSK system with nonredundant error correction
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 49
  start-page: 445
  issue: 3
  year: 2001
  end-page: 454
  article-title: Concatenated codes for class IV partial response channels
  publication-title: IEEE Trans. Commun.
– start-page: 1303
  year: 2012
  end-page: 1306
– start-page: 702
  year: 2014
  end-page: 706
– volume: 5
  start-page: 456
  issue: 4
  year: 2011
  end-page: 466
  article-title: Direct sequence spread spectrum point‐to‐point communication scheme in underwater acoustic sparse channels
  publication-title: IET Commun.
– volume: 38
  start-page: 300
  issue: 3
  year: 1990
  end-page: 308
  article-title: Multiple‐symbol differential detection of MPSK
  publication-title: IEEE Trans. Commun.
– volume: 47
  start-page: 837
  issue: 6
  year: 1999
  end-page: 843
  article-title: Turbo DPSK: iterative differential PSK demodulation and channel decoding
  publication-title: IEEE Trans. Commun.
– volume: 33
  start-page: 1018
  issue: 12
  year: 1997
  end-page: 1020
  article-title: Iterative decoding of coded and interleaved noncoherent multiple symbol detected DPSK
  publication-title: Electr. Lett.
– volume: 39
  start-page: 482
  issue: 3
  year: 2014
  end-page: 490
  article-title: Long‐range double‐differentially coded spread‐spectrum acoustic communications with a towed array
  publication-title: IEEE J. Ocean. Eng.
– volume: 48
  start-page: 1488
  issue: 9
  year: 2000
  end-page: 1498
  article-title: Noncoherent iterative (turbo) decoding
  publication-title: IEEE Trans. Commun.
– volume: 50
  start-page: 572
  issue: 3
  year: 2004
  end-page: 576
  article-title: Maximum likelihood double differential detection clarified
  publication-title: IEEE Trans. Inform. Theory.
– start-page: 944
  year: 2011
  end-page: 946
– start-page: 111
  year: 2001
  end-page: 114
– volume: 42
  start-page: 440
  issue: 234
  year: 1994
  end-page: 448
  article-title: Higher‐order differential phase shift keyed modulation
  publication-title: IEEE Trans. Commun.
– start-page: 575
  year: 1997
  end-page: 578
– volume: 63
  start-page: 561
  issue: 4
  year: 1975
  end-page: 580
  article-title: Linear prediction: a tutorial review
  publication-title: Proc. IEEE.
– volume: 47
  start-page: 84
  issue: 1
  year: 2009
  end-page: 89
  article-title: Underwater acoustic communication channels: propagation models and statistical characterization
  publication-title: IEEE Commun. Mag.
– volume: 10
  start-page: 44
  issue: 1
  year: 2008
  end-page: 54
  article-title: Iterative multiple symbol differential detection for turbo coded differential unitary space‐time modulation
  publication-title: J. Commun. Netw.
– volume: 1
  start-page: 2
  issue: 1
  year: 1997
  end-page: 4
  article-title: Multiple symbol differential detection for trellis‐coded MPSK over Rayleigh fading channels
  publication-title: IEEE Commun. Lett.
– start-page: 1
  year: 2006
  end-page: 5
– volume: 8
  start-page: 296
  issue: 5
  year: 2004
  end-page: 298
  article-title: A soft‐detector based on multiple symbol detection for double differential modulation
  publication-title: IEEE Commun. Lett.
– start-page: 1440
  year: 2006
  end-page: 1444
– volume: 48
  start-page: 588
  issue: 4
  year: 2000
  end-page: 596
  article-title: On the performance of iterative noncoherent detection of coded M‐PSK signals
  publication-title: IEEE Trans. Commun.
– volume: 18
  start-page: 391
  issue: 3
  year: 2000
  end-page: 402
  article-title: Decision‐feedback differential detection based on linear prediction for MDPSK signals transmitted over Ricean fading channels
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 52
  start-page: 1385
  issue: 4
  year: 2006
  end-page: 1398
  article-title: Turbo DPSK using soft multiple‐symbol differential sphere decoding
  publication-title: IEEE Trans. Inform. Theory.
– start-page: 1
  year: 2018
  end-page: 5
– volume: 40
  start-page: 278
  issue: 2
  year: 1992
  end-page: 291
  article-title: On the implementation and performance of single and double differential detection schemes
  publication-title: IEEE Trans. Commun.
– ident: e_1_2_7_25_1
  doi: 10.1109/JCN.2008.6388327
– ident: e_1_2_7_31_1
  doi: 10.1109/PACRIM.2001.953535
– ident: e_1_2_7_4_1
  doi: 10.1109/ICASSP.1997.599703
– ident: e_1_2_7_15_1
  doi: 10.1109/LCOMM.2004.827436
– ident: e_1_2_7_19_1
  doi: 10.1109/ICC.2005.1494441
– ident: e_1_2_7_30_1
  doi: 10.1109/OCEANS.2018.8604711
– ident: e_1_2_7_10_1
  doi: 10.1109/26.48887
– ident: e_1_2_7_13_1
  doi: 10.1109/JOE.2013.2264994
– ident: e_1_2_7_20_1
  doi: 10.1049/el:19970697
– ident: e_1_2_7_12_1
  doi: 10.1109/26.771340
– ident: e_1_2_7_18_1
  doi: 10.1109/ICoSP.2012.6491815
– ident: e_1_2_7_2_1
  doi: 10.1109/MCOM.2009.4752682
– ident: e_1_2_7_26_1
  doi: 10.1109/49.840198
– ident: e_1_2_7_3_1
  doi: 10.1109/ICITBS.2018.00065
– ident: e_1_2_7_6_1
  doi: 10.1109/SPAWC.2001.923832
– ident: e_1_2_7_29_1
  doi: 10.1109/TCOMM.1994.577071
– ident: e_1_2_7_22_1
  doi: 10.1109/TIT.2006.871048
– ident: e_1_2_7_17_1
  doi: 10.1109/ICACCCT.2014.7019181
– ident: e_1_2_7_8_1
  doi: 10.1109/ACSSC.2006.354996
– ident: e_1_2_7_23_1
  doi: 10.1109/ICCS.2006.301475
– ident: e_1_2_7_9_1
  doi: 10.1109/VETEC.1993.507490
– ident: e_1_2_7_28_1
  doi: 10.1109/26.911452
– ident: e_1_2_7_27_1
  doi: 10.1049/iet-com.2010.0031
– ident: e_1_2_7_7_1
  doi: 10.1109/JSAC.1983.1145887
– ident: e_1_2_7_11_1
  doi: 10.1109/4234.552139
– ident: e_1_2_7_5_1
  doi: 10.1109/ACSSC.2011.6190149
– ident: e_1_2_7_16_1
  doi: 10.1109/TIT.2004.825501
– ident: e_1_2_7_32_1
  doi: 10.1109/PROC.1975.9792
– ident: e_1_2_7_14_1
  doi: 10.1109/26.129190
– ident: e_1_2_7_24_1
  doi: 10.1109/26.843126
– ident: e_1_2_7_21_1
  doi: 10.1109/26.870016
SSID ssj0055644
Score 2.2597373
Snippet Due to the time-varying property of the underwater acoustic (UWA) channel, the significant Doppler spread will severely degrade the performance of...
Due to the time‐varyingproperty of the underwater acoustic (UWA) channel, the significant Doppler spread will severely degrade the performance of...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 2813
SubjectTerms adaptive selection
channel coding
channel variation
convolutional codes
convolutional decoder
correlation loss recovery
D3PSK demodulator
D3PSK modulation
demodulation
differential phase shift keying
direct‐sequence spread‐spectrum communications
Doppler spread
DSSS packet
improved bit‐interleaved coded modulation
interleaved codes
iterative decoding
iterative decoding algorithm
iterative receiver
linear prediction
local reference signal
magnitude loss
modulation coding
motion acceleration
novel transceiver design
performance gain
performance loss mitigation
phase noise
phase rotation
receiver
relative velocity variation
Research Article
signal detection
signal‐to‐noise ratio loss
SNR loss
spread spectrum communication
time‐varying channels
time‐varying property
time‐varying underwater acoustic communications
transceivers
transmitter
triple differential phase shift keying modulation
triple differential PSK modulation
underwater acoustic channel
underwater acoustic communication
UWA channel
UWA DSSS communications
wireless channels
Title Iterative receiver for the triple differential PSK modulation in the time-varying underwater acoustic communications
URI http://digital-library.theiet.org/content/journals/10.1049/iet-com.2020.0513
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-com.2020.0513
Volume 14
WOSCitedRecordID wos000577106700021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA2-FrrwLb7JQlwI0cwk81pqsVjEUlDR3ZBJMlCoVaa1bv0Ev9Ev8d7MTGkRFMTNLDJJCDfJvSevcwg5yrUXJlZzBvHUMGllzpSUkkXC85WnDURM7sQmonY7fnxMOjOkUb-FKfkhxhtuODOcv8YJrrJShQRALXRi1w4ZXviA1Ts_haElZsm854kY9Rt82andcRCETtEVwqTHAL7H46PN5OxbFVPBaRZ-T0NWF3OaK__S2lWyXEFOel6OkTUyY_vrZGmCiHCDjFqOXBk8HwUPaPGuBgU0SwEd0mGBe_G0VlIBj9Cjndtr-vRsKukv2u2XObtP9vP9YwSthFopPk8r3gDLFhTcrlMNo3ryPcpgk9w3L-8aV6xSZGAaiQlZLhQgAhH5mQl9pXPwCKFJMmNEIJSygluhTWQUspLlWaiyyAYi1wFKF-rYKrFF5vrPfbtNqJQ64Sq3WQ4gIuBcBb5WIa6PtFRc2B3C665IdUVXjqoZvdQdm8skBZOm0OoUTZqiSXfIybjIS8nV8VPmY0yrZuzgp4zCdezvVaaNm3v_Aok6_GT3T6X2yCKmu8uC4T6ZGxav9oAs6NGwOygO3biG70Or_QWd-_6_
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60CurBt_g2B_EgRLeb7G736BOLbRFU9LZkkywUtJVtrVd_gr_RX-JMdlsUQUG87k5CyGPmSzL5PoDdTFfD2GqPYzw1XFqZcSWl5JGo-qqqDUZMz4lNRK1W7f4-vhqD0-FbmIIfYnTgRivD-Wta4HQgXWw4JZFktm2fU8YHbt-9A5xbYhwmJAIOEnC4q7eG_jgIQifpinGyyhG_10Z3m_Hhtyq-RKdx_P0Vs7qgcz73P82dh9kSdLKjYpYswJjtLMLMJyrCJRjUHb0y-j6GPtBStgZDPMsQH7J-TqfxbKilgj7hgV1dX7LHrinFv1i7U1i2H-3769sAm4m1Mnqglr8gms0ZOl6nG8b05xcpvWW4PT-7ObngpSYD10RNyDOhEBOIyE9N6CudoU8ITZwaIwKhlBWeFdpERhEvWZaGKo1sIDIdkHihrlklVqDS6XbsKjApdeypzKYZwggcNhX4WoW0Q9JSecKugTcci0SXhOWkm_GQuItzGSfYpQm2OqEuTahL12B_VOSpYOv4yXiPvpVrtveToXAj-3uVyUnz1j8mqg4_Xv9TqR2YurhpNpJGvXW5AdNk41IHw02o9PNnuwWTetBv9_JtN8k_AGJ8Ahc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSxwxFD7oWqQ-eJeurTUP0odCNDPJzOw81stSUZeFVvBtyOQCC7rK7Lq--hP6G_tLPCczuygFC-LrzEkIyck5X27fB7DnTZTmzgiO-dRy5ZTnWinFMxnFOjIWM6YIYhNZr9e5usr7c3A8fQtT80PMNtxoZoR4TRPc3VlfLzgVkWQO3JjTjQ9cvot99C05DwsqySLy7Vj1p_E4SdIg6Yp5MuKI3zuzs8384J8qXmSnefz9ErOGpNNdeZ_mrsJyAzrZj9pL1mDODddh6RkV4QZMTgO9MsY-hjHQ0W0NhniWIT5k44p249lUSwVjwjXr_zpjN7e2Ef9ig2FtObhxfx__TLCZWCujB2rVA6LZimHgDbphzDx_kTLahMvuye-jn7zRZOCGqAm5lxoxgczi0qaxNh5jQmrz0lqZSK2dFE4am1lNvGS-THWZuUR6k5B4oek4LbegNbwduk_AlDK50N6VHmFEIoROYqNTWiEZpYV0bRDTsShMQ1hOuhnXRTg4V3mBXVpgqwvq0oK6tA3fZ0XuaraO14y_0bdmzo5eM5RhZP9fZXF0cRkfElVHnG-_qdQuLPaPu8X5ae_sM3wkk3BzMP0CrXF173bgg5mMB6Pqa_DxJ2teAS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+receiver+for+the+triple+differential+PSK+modulation+in+the+time%E2%80%90varying+underwater+acoustic+communications&rft.jtitle=IET+communications&rft.au=Cui%2C+Hongyu&rft.au=Liu%2C+Changxin&rft.au=Si%2C+Boyu&rft.au=Wu%2C+Jie&rft.date=2020-10-06&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=14&rft.issue=16&rft.spage=2813&rft.epage=2819&rft_id=info:doi/10.1049%2Fiet-com.2020.0513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_com_2020_0513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon