Sparse non-negative signal reconstruction using fraction function penalty

Many practical problems in the real world can be formulated as the non-negative $\ell _0$ℓ0-minimisation problems, which seek the sparsest non-negative signals to underdetermined linear equations. They have been widely applied in signal and image processing, machine learning, pattern recognition and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET signal processing Ročník 13; číslo 2; s. 125 - 132
Hlavní autoři: Cui, Angang, Peng, Jigen, Li, Haiyang, Wen, Meng
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 01.04.2019
Témata:
ISSN:1751-9675, 1751-9683, 1751-9683
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many practical problems in the real world can be formulated as the non-negative $\ell _0$ℓ0-minimisation problems, which seek the sparsest non-negative signals to underdetermined linear equations. They have been widely applied in signal and image processing, machine learning, pattern recognition and computer vision. Unfortunately, this non-negative $\ell _0$ℓ0-minimisation problem is non-deterministic polynomial hard (NP-hard) because of the discrete and discontinuous nature of the $\ell _0$ℓ0-norm. Inspired by the good performances of the fraction function in the authors’ former work, in this paper, the authors replace the $\ell _0$ℓ0-norm with the non-convex fraction function and study the minimisation problem of the fraction function in recovering the sparse non-negative signal from an underdetermined linear equation. They discuss the equivalence between non-negative $\ell _0$ℓ0-minimisation problem and non-negative fraction function minimisation problem, and the equivalence between non-negative fraction function minimisation problem and regularised non-negative fraction function minimisation problem. It is proved that the optimal solution to the non-negative $\ell _0$ℓ0-minimisation problem could be approximately obtained by solving their regularised non-negative fraction function minimisation problem if some specific conditions are satisfied. Then, they propose a non-negative iterative thresholding algorithm to solve their regularised non-negative fraction function minimisation problem. At last, numerical experiments on some sparse non-negative signal recovery problems are reported.
AbstractList Many practical problems in the real world can be formulated as the non‐negative ‐minimisation problems, which seek the sparsest non‐negative signals to underdetermined linear equations. They have been widely applied in signal and image processing, machine learning, pattern recognition and computer vision. Unfortunately, this non‐negative ‐minimisation problem is non‐deterministic polynomial hard (NP‐hard) because of the discrete and discontinuous nature of the ‐norm. Inspired by the good performances of the fraction function in the authors’ former work, in this paper, the authors replace the ‐norm with the non‐convex fraction function and study the minimisation problem of the fraction function in recovering the sparse non‐negative signal from an underdetermined linear equation. They discuss the equivalence between non‐negative ‐minimisation problem and non‐negative fraction function minimisation problem, and the equivalence between non‐negative fraction function minimisation problem and regularised non‐negative fraction function minimisation problem. It is proved that the optimal solution to the non‐negative ‐minimisation problem could be approximately obtained by solving their regularised non‐negative fraction function minimisation problem if some specific conditions are satisfied. Then, they propose a non‐negative iterative thresholding algorithm to solve their regularised non‐negative fraction function minimisation problem. At last, numerical experiments on some sparse non‐negative signal recovery problems are reported.
Many practical problems in the real world can be formulated as the non-negative $\ell _0$ℓ0-minimisation problems, which seek the sparsest non-negative signals to underdetermined linear equations. They have been widely applied in signal and image processing, machine learning, pattern recognition and computer vision. Unfortunately, this non-negative $\ell _0$ℓ0-minimisation problem is non-deterministic polynomial hard (NP-hard) because of the discrete and discontinuous nature of the $\ell _0$ℓ0-norm. Inspired by the good performances of the fraction function in the authors’ former work, in this paper, the authors replace the $\ell _0$ℓ0-norm with the non-convex fraction function and study the minimisation problem of the fraction function in recovering the sparse non-negative signal from an underdetermined linear equation. They discuss the equivalence between non-negative $\ell _0$ℓ0-minimisation problem and non-negative fraction function minimisation problem, and the equivalence between non-negative fraction function minimisation problem and regularised non-negative fraction function minimisation problem. It is proved that the optimal solution to the non-negative $\ell _0$ℓ0-minimisation problem could be approximately obtained by solving their regularised non-negative fraction function minimisation problem if some specific conditions are satisfied. Then, they propose a non-negative iterative thresholding algorithm to solve their regularised non-negative fraction function minimisation problem. At last, numerical experiments on some sparse non-negative signal recovery problems are reported.
Many practical problems in the real world can be formulated as the non‐negative ℓ0 ‐minimisation problems, which seek the sparsest non‐negative signals to underdetermined linear equations. They have been widely applied in signal and image processing, machine learning, pattern recognition and computer vision. Unfortunately, this non‐negative ℓ0 ‐minimisation problem is non‐deterministic polynomial hard (NP‐hard) because of the discrete and discontinuous nature of the ℓ0 ‐norm. Inspired by the good performances of the fraction function in the authors’ former work, in this paper, the authors replace the ℓ0 ‐norm with the non‐convex fraction function and study the minimisation problem of the fraction function in recovering the sparse non‐negative signal from an underdetermined linear equation. They discuss the equivalence between non‐negative ℓ0 ‐minimisation problem and non‐negative fraction function minimisation problem, and the equivalence between non‐negative fraction function minimisation problem and regularised non‐negative fraction function minimisation problem. It is proved that the optimal solution to the non‐negative ℓ0 ‐minimisation problem could be approximately obtained by solving their regularised non‐negative fraction function minimisation problem if some specific conditions are satisfied. Then, they propose a non‐negative iterative thresholding algorithm to solve their regularised non‐negative fraction function minimisation problem. At last, numerical experiments on some sparse non‐negative signal recovery problems are reported.
Author Cui, Angang
Li, Haiyang
Peng, Jigen
Wen, Meng
Author_xml – sequence: 1
  givenname: Angang
  surname: Cui
  fullname: Cui, Angang
  organization: 1School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
– sequence: 2
  givenname: Jigen
  surname: Peng
  fullname: Peng, Jigen
  email: jgpengxjtu@126.com
  organization: 2School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, People's Republic of China
– sequence: 3
  givenname: Haiyang
  surname: Li
  fullname: Li, Haiyang
  organization: 2School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, People's Republic of China
– sequence: 4
  givenname: Meng
  surname: Wen
  fullname: Wen, Meng
  organization: 3School of Science, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
BookMark eNqFkLFOwzAQhi1UJNrCA7DlBVxsx45tNqgoVKrEUJgtJ7ErV8GJ7ATUt8dREANDme5O-r-707cAM996A8AtRiuMqLxzpoexCyuCsFgxxIoLMMecYSgLkc9-e86uwCLGI0oJhskcbPedDtFkaR305qB792my6A5eN1kwVetjH4aqd63Phuj8IbNBT6Md_NR0JoX70zW4tLqJ5uanLsH75ult_QJ3r8_b9cMOVjnnEuqyFmVRYVHbkiFCCoo1sxzVFglKNBFaUk14bk3N8rw0tJaCGlpgWRhGLM-XAE97q9DGGIxVXXAfOpwURmp0oZILlVyo0YUaXSSG_2Eq1-vx-z5o15wl7yfyyzXm9P8ptd_uyOMGIY5kguEEj7FjO4QkKp459g1nWYsj
CitedBy_id crossref_primary_10_1049_ell2_13243
Cites_doi 10.1109/34.120331
10.1007/s00454-009-9221-z
10.1073/pnas.0502269102
10.1109/CVPR.2011.5995487
10.1016/j.cam.2017.12.048
10.1023/A:1018361916442
10.1287/ijoc.11.3.217
10.1137/060657704
10.1109/TSP.2010.2089624
10.1109/TSP.2010.2082536
10.1137/S0036139997327794
10.1080/02331939908844431
10.1007/s40305-014-0043-1
10.1007/978-1-4612-1009-2
10.1007/978-3-642-99789-1_13
10.1007/978-1-4419-7011-4
10.1007/978-0-8176-4948-7
10.1007/978-3-642-01513-7_49
10.1137/040615043
10.1109/TSP.2013.2281030
10.1214/aos/1176344136
10.1109/TIT.2008.929920
10.1109/ICIP.2010.5651881
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-spr.2018.5056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage 132
ExternalDocumentID 10_1049_iet_spr_2018_5056
SIL2BF00709
Genre article
GrantInformation_xml – fundername: Science Foundations of Shaanxi Province of China
  grantid: 2015JM1012
– fundername: Science Foundations of Shaanxi Province of China
  grantid: 2016JQ1029
– fundername: National Natural Science Foundations of China
  grantid: 91730306
– fundername: National Natural Science Foundations of China
  grantid: 11771347
– fundername: National Natural Science Foundations of China
  grantid: 41390454
– fundername: National Natural Science Foundations of China
  grantid: 11271297
– fundername: Science Foundations of Shaanxi Province of China
  funderid: 2015JM1012
– fundername: National Natural Science Foundations of China
  funderid: 11771347
– fundername: National Natural Science Foundations of China
  funderid: 41390454
– fundername: National Natural Science Foundations of China
  funderid: 91730306
– fundername: Science Foundations of Shaanxi Province of China
  funderid: 2016JQ1029
– fundername: National Natural Science Foundations of China
  funderid: 11271297
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
MCNEO
OK1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3779-abd8b6c18dfb5022641a5f70df0842a28a94a273fed533be4d984e46196e52f73
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467406600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9675
1751-9683
IngestDate Wed Oct 29 21:26:58 EDT 2025
Tue Nov 18 22:38:59 EST 2025
Wed Jan 22 16:31:07 EST 2025
Tue Jan 05 21:44:08 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords image processing
iterative methods
NP-hard
nonnegative iterative thresholding
signal processing
nonnegative signal recovery problems
machine learning
fraction function penalty
nonnegative fraction function minimisation problem
computer vision
underdetermined linear equations
signal reconstruction
sparse nonnegative signal reconstruction
minimisation
learning (artificial intelligence)
nonconvex fraction function
computational complexity
pattern recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3779-abd8b6c18dfb5022641a5f70df0842a28a94a273fed533be4d984e46196e52f73
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2018.5056
PageCount 8
ParticipantIDs crossref_primary_10_1049_iet_spr_2018_5056
crossref_citationtrail_10_1049_iet_spr_2018_5056
wiley_primary_10_1049_iet_spr_2018_5056_SIL2BF00709
iet_journals_10_1049_iet_spr_2018_5056
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationTitle IET signal processing
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Bardsley, J.M.; Nagy, J.G. (C2) 2006; 27
Khajehnejad, M.A.; Dimakis, A.G.; Xu, W.Y. (C5) 2011; 59
Bradley, P.S.; Mangasarian, O.L.; Rosen, J.B. (C9) 1998; 11
Donoho, D.L.; Tanner, J. (C4) 2010; 43
Zhao, Y.B. (C18) 2014; 2
Donoho, D.L.; Tanner, J. (C19) 2005; 102
Bruckstein, A.M.; Elad, M.; Zibulevsky, M. (C3) 2008; 54
Bruckstein, A.M.; Donoho, D.L.; Elad, M. (C15) 2009; 51
Zhao, Y.B. (C20) 2013; 61
Donoho, D.L.; Tanner, J. (C1) 2005; 102
Wang, M.; Xu, W.Y.; Tang, A. (C8) 2011; 59
Mangasarian, O.L. (C13) 1999; 45
Nikolova, M. (C25) 2000; 61
Geman, D.; Reynolds, G. (C24) 1992; 14
Bradley, P.S.; Fayyad, U.M.; Mangasarian, O.L. (C10) 1999; 11
Cui, A.G.; Peng, J.G.; Li, H.Y. (C23) 2018; 336
Schwarz, G. (C26) 1978; 6
2010; 43
2009; 51
2014; 2
2018; 336
2010
2005; 102
2006; 27
2013; 61
2011; 42
2000; 61
1999; 45
1999; 11
1996
2008; 54
1992; 14
2011; 59
2013
2009; 5553
1998; 11
1989
1978; 6
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – volume: 59
  start-page: 1007
  issue: 3
  year: 2011
  end-page: 1016
  ident: C8
  article-title: A unique non-negative solution to an underdetermined system: from vectors to matrices
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 5
  year: 1998
  end-page: 21
  ident: C9
  article-title: Parsimonious least norm approximation
  publication-title: Comput. Optim. Appl.
– volume: 11
  start-page: 217
  year: 1999
  end-page: 238
  ident: C10
  article-title: Mathematical programming for data mining: formulations and challenges
  publication-title: INFORMS J. Comput.
– volume: 59
  start-page: 196
  issue: 1
  year: 2011
  end-page: 208
  ident: C5
  article-title: Sparse recovery of non-negative signals with minima expansion
  publication-title: IEEE Trans. Signal Process.
– volume: 45
  start-page: 149
  issue: 1–4
  year: 1999
  end-page: 162
  ident: C13
  article-title: Minimum-support solutions of polyhedral concave programs
  publication-title: Optimization
– volume: 2
  start-page: 171
  issue: 2
  year: 2014
  end-page: 193
  ident: C18
  article-title: Equivalence and strong equivalence between the sparsest and least -norm non-negative solutions of linear systems and their applications
  publication-title: J. Oper. Res. Soc. China
– volume: 102
  start-page: 9446
  issue: 27
  year: 2005
  end-page: 9451
  ident: C1
  article-title: Sparse nonnegative solution of underdetermined linear equations by linear programming
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 1184
  issue: 4
  year: 2006
  end-page: 1197
  ident: C2
  article-title: Covariance-preconditioned iterative methods for non-negativity constrained astronomical imaging
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 61
  start-page: 633
  issue: 2
  year: 2000
  end-page: 658
  ident: C25
  article-title: Local strong homogeneity of a regularized estimator
  publication-title: SIAM J. Appl. Math.
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  end-page: 464
  ident: C26
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 43
  start-page: 522
  issue: 3
  year: 2010
  end-page: 541
  ident: C4
  article-title: Counting the faces of randomly projected hypercubes and orthants with applications
  publication-title: Discrete Comput. Geom.
– volume: 102
  start-page: 9446
  issue: 27
  year: 2005
  end-page: 9451
  ident: C19
  article-title: Sparse non-negative solutions of underdetermined linear equations by linear programming
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 61
  start-page: 5777
  issue: 22
  year: 2013
  end-page: 5788
  ident: C20
  article-title: RSP-based analysis for sparsest and least -norm solutions to underdetermined linear systems
  publication-title: IEEE Trans. Signal Process.
– volume: 54
  start-page: 4813
  issue: 11
  year: 2008
  end-page: 4820
  ident: C3
  article-title: On the uniqueness of non-negative sparse solutions to underdetermined systems of equations
  publication-title: IEEE Trans. Inf. Theory
– volume: 336
  start-page: 353
  year: 2018
  end-page: 374
  ident: C23
  article-title: Affine matrix rank minimization problem via non-convex fraction function penalty
  publication-title: J. Comput. Appl. Math.
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  end-page: 81
  ident: C15
  article-title: From sparse solutions of systems of equations to sparse modelling of signals and images
  publication-title: SIAM Rev.
– volume: 14
  start-page: 367
  issue: 3
  year: 1992
  end-page: 383
  ident: C24
  article-title: Constrained restoration and the recovery of discontinuities
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 43
  start-page: 522
  issue: 3
  year: 2010
  end-page: 541
  article-title: Counting the faces of randomly projected hypercubes and orthants with applications
  publication-title: Discrete Comput. Geom.
– start-page: 1917
  year: 2010
  end-page: 1920
  article-title: A split Bregman method for non‐negative sparsity penalized least squares with applications to hyperspectral demixing
– volume: 102
  start-page: 9446
  issue: 27
  year: 2005
  end-page: 9451
  article-title: Sparse nonnegative solution of underdetermined linear equations by linear programming
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 59
  start-page: 196
  issue: 1
  year: 2011
  end-page: 208
  article-title: Sparse recovery of non‐negative signals with minima expansion
  publication-title: IEEE Trans. Signal Process.
– volume: 2
  start-page: 171
  issue: 2
  year: 2014
  end-page: 193
  article-title: Equivalence and strong equivalence between the sparsest and least ‐norm non‐negative solutions of linear systems and their applications
  publication-title: J. Oper. Res. Soc. China
– volume: 59
  start-page: 1007
  issue: 3
  year: 2011
  end-page: 1016
  article-title: A unique non‐negative solution to an underdetermined system: from vectors to matrices
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 217
  year: 1999
  end-page: 238
  article-title: Mathematical programming for data mining: formulations and challenges
  publication-title: INFORMS J. Comput.
– volume: 14
  start-page: 367
  issue: 3
  year: 1992
  end-page: 383
  article-title: Constrained restoration and the recovery of discontinuities
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 54
  start-page: 4813
  issue: 11
  year: 2008
  end-page: 4820
  article-title: On the uniqueness of non‐negative sparse solutions to underdetermined systems of equations
  publication-title: IEEE Trans. Inf. Theory
– volume: 42
  start-page: 2849
  issue: 7
  year: 2011
  end-page: 2856
  article-title: Non‐negative sparse coding for discriminative semi‐supervised learning
– volume: 45
  start-page: 149
  issue: 1–4
  year: 1999
  end-page: 162
  article-title: Minimum‐support solutions of polyhedral concave programs
  publication-title: Optimization
– year: 1989
– volume: 61
  start-page: 633
  issue: 2
  year: 2000
  end-page: 658
  article-title: Local strong homogeneity of a regularized estimator
  publication-title: SIAM J. Appl. Math.
– volume: 61
  start-page: 5777
  issue: 22
  year: 2013
  end-page: 5788
  article-title: RSP‐based analysis for sparsest and least ‐norm solutions to underdetermined linear systems
  publication-title: IEEE Trans. Signal Process.
– start-page: 175
  year: 1996
  end-page: 188
– volume: 27
  start-page: 1184
  issue: 4
  year: 2006
  end-page: 1197
  article-title: Covariance‐preconditioned iterative methods for non‐negativity constrained astronomical imaging
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  end-page: 81
  article-title: From sparse solutions of systems of equations to sparse modelling of signals and images
  publication-title: SIAM Rev.
– volume: 11
  start-page: 5
  year: 1998
  end-page: 21
  article-title: Parsimonious least norm approximation
  publication-title: Comput. Optim. Appl.
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 5553
  start-page: 449
  year: 2009
  end-page: 456
  article-title: Non‐negative‐least‐square classifier for face recognition
– volume: 102
  start-page: 9446
  issue: 27
  year: 2005
  end-page: 9451
  article-title: Sparse non‐negative solutions of underdetermined linear equations by linear programming
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2010
– volume: 336
  start-page: 353
  year: 2018
  end-page: 374
  article-title: Affine matrix rank minimization problem via non‐convex fraction function penalty
  publication-title: J. Comput. Appl. Math.
– year: 2013
– ident: e_1_2_8_25_2
  doi: 10.1109/34.120331
– ident: e_1_2_8_5_2
  doi: 10.1007/s00454-009-9221-z
– ident: e_1_2_8_2_2
  doi: 10.1073/pnas.0502269102
– ident: e_1_2_8_12_2
  doi: 10.1109/CVPR.2011.5995487
– ident: e_1_2_8_24_2
  doi: 10.1016/j.cam.2017.12.048
– ident: e_1_2_8_10_2
  doi: 10.1023/A:1018361916442
– ident: e_1_2_8_11_2
  doi: 10.1287/ijoc.11.3.217
– ident: e_1_2_8_16_2
  doi: 10.1137/060657704
– ident: e_1_2_8_9_2
  doi: 10.1109/TSP.2010.2089624
– ident: e_1_2_8_6_2
  doi: 10.1109/TSP.2010.2082536
– ident: e_1_2_8_26_2
  doi: 10.1137/S0036139997327794
– ident: e_1_2_8_23_2
– ident: e_1_2_8_14_2
  doi: 10.1080/02331939908844431
– ident: e_1_2_8_18_2
– ident: e_1_2_8_19_2
  doi: 10.1007/s40305-014-0043-1
– ident: e_1_2_8_20_2
  doi: 10.1073/pnas.0502269102
– ident: e_1_2_8_22_2
  doi: 10.1007/978-1-4612-1009-2
– ident: e_1_2_8_13_2
  doi: 10.1007/978-3-642-99789-1_13
– ident: e_1_2_8_17_2
  doi: 10.1007/978-1-4419-7011-4
– ident: e_1_2_8_28_2
  doi: 10.1007/978-0-8176-4948-7
– ident: e_1_2_8_8_2
  doi: 10.1007/978-3-642-01513-7_49
– ident: e_1_2_8_7_2
– ident: e_1_2_8_3_2
  doi: 10.1137/040615043
– ident: e_1_2_8_21_2
  doi: 10.1109/TSP.2013.2281030
– ident: e_1_2_8_27_2
  doi: 10.1214/aos/1176344136
– ident: e_1_2_8_4_2
  doi: 10.1109/TIT.2008.929920
– ident: e_1_2_8_15_2
  doi: 10.1109/ICIP.2010.5651881
SSID ssj0056512
Score 2.1384268
Snippet Many practical problems in the real world can be formulated as the non-negative $\ell _0$ℓ0-minimisation problems, which seek the sparsest non-negative signals...
Many practical problems in the real world can be formulated as the non‐negative ℓ0 ‐minimisation problems, which seek the sparsest non‐negative signals to...
Many practical problems in the real world can be formulated as the non‐negative ‐minimisation problems, which seek the sparsest non‐negative signals to...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 125
SubjectTerms computational complexity
computer vision
fraction function penalty
image processing
iterative methods
learning (artificial intelligence)
machine learning
minimisation
nonconvex fraction function
nonnegative fraction function minimisation problem
nonnegative iterative thresholding
nonnegative signal recovery problems
NP‐hard
pattern recognition
Research Article
signal processing
signal reconstruction
sparse nonnegative signal reconstruction
underdetermined linear equations
Title Sparse non-negative signal reconstruction using fraction function penalty
URI http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2018.5056
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2018.5056
Volume 13
WOSCitedRecordID wos000467406600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Open Access: Wiley-Blackwell Open Access Journals
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA9z-qAPfovziz6ID0K1H2mTPOpwOJQxmOLeStokYyCzbEPwzT_Bv9G_xLumKw5hgvhSSnoJ4S6Xu2tyvyPkVMZZpKIYFImp2KWYoytTFrlhBluhMSIw1BabYJ0O7_dFt0aas1wYiw9R_XBDzSj2a1RwmdoqJODUghCHeupOcoT09PkF2vElsuz7IcOlHdDubDsGh8UeeTKsJx_zsDraFJc_hpgzTkvwed5lLWxOa-NfZrtJ1kuX07mya2SL1PRom6x9AyLcIXe9HAJc7YxeRp_vHyM9KODAHbzcAT2LoLkCmnXwqvzAMWObEuGgZSxecg3E07dd8ti6eWjeumWZBTdDtEGQjeJpnPlcmTTyMLHWl5FhnjIep4EMuBRUgpdjtALfMNVUCU41hcgr1lFgWLhH6jA9vU8crShF6fqYcutRxalkSEipgcBI0wbxZvxNshKDHEthPCfFWTgVCfApAT4lyKcE-dQg51WX3AJwLCI-w7ZSDSeLCMNCWr8PmfTa98F1C2GRxMGfeh2SVWgX9rrPEamDuPQxWclep8PJ-KRYrPB8ane-ABZt7j0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB7aKqgH32J95iAehGiaTpLdo6_S0loKrdBbSLO7pSCxtEXw5k_wN_pLnEnaYhEUxFtIZpcws7MzszvzDcBZ5Mee8nxSpED5NnKNbtQLPLsc01ZojHQNZs0mgmZTdLuylYO7WS1Mhg8xP3BjzUj3a1ZwPpDOAk5kkMyBntjjIWN6lsQlG_I8LCFZJ07sc7E124_JY8nuPANuKO-L8vxuU159m2LBOuXp86LPmhqdysb__O4mrE-dTus6WyVbkNPJNqx9gSLcgXp7SCGutpLn5OPtPdH9FBDc4vQOGpmGzXOoWYuT5fuWGWVFERbbxvRhqIl48roLj5X7zm3VnjZasGPGGyTpKNHz45JQpuc5XFpbijwTOMo4At3IFZHEiPwcoxV5hz2NSgrUxGvpa881QXkPCvR7eh8srRBZviUuunVQCYwCJkQ0FBppLIIzY3AYT1HIuRnGU5jehqMMiU8h8SlkPoXMpyJczIcMMwiOn4jP-d1UEcc_EZZTcf0-ZdiuNdybCgMjyYM_jTqFlWrnoRE2as36IawSjcySf46gQKLTx7Acv0wG49FJunI_AZ678RI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fS8NADA_bFNEH_4vzbx_EB6HadWl7fVTncGyMwRT2Vrre3RhILdsQfPMj-Bn9JCbXbTgEBfGttLnjSC6XpLn8AnAW-4knPZ8UKZC-jVyjG_cDz64mdBRqHboa82YTQbster2wU4DarBYmx4eY_3BjzTDnNSu4yqTOA05kkMyhmtjjjDE9K-KSDXkRltALjHq62Jmdx-Sx5DnPgBvK-6I6z22GV9-mWLBORfq86LMao1Pf-J_lbsL61Om0rvNdsgUFlW7D2hcowh1odjMKcZWVPqcfb--pGhhAcIuvd9BIEzbPoWYtviw_sPQoL4qw2Daah0wR8eR1Fx7rdw-39_a00YKdMN4gSUeKvp9UhNR9z-HS2krs6cCR2hHoxq6IQ4zJz9FKknfYVyhDgQop9vKV5-qgugclWp7aB0tJRJZvhYtuHZQC44AJETWFRgrL4MwYHCVTFHJuhvEUmWw4hhHxKSI-RcyniPlUhov5kCyH4PiJ-JzfTRVx_BNh1Yjr9ymjbqPl3tQZGCk8-NOoU1jp1OpRq9FuHsIqkYT53Z8jKJHk1DEsJy-T4Xh0YjbuJz9i8I0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+non-negative+signal+reconstruction+using+fraction+function+penalty&rft.jtitle=IET+signal+processing&rft.au=Cui%2C+Angang&rft.au=Peng%2C+Jigen&rft.au=Li%2C+Haiyang&rft.au=Wen%2C+Meng&rft.date=2019-04-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=13&rft.issue=2&rft.spage=125&rft.epage=132&rft_id=info:doi/10.1049%2Fiet-spr.2018.5056&rft.externalDocID=10_1049_iet_spr_2018_5056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon