Non-iterative blind deconvolution algorithm based on power-law distribution

The spectral amplitude of most natural images is approximately isotropic and follows the power law. In this study, the authors propose a new non-iterative blind image deconvolution algorithm that builds an isosceles curve model to approximate the spectrum amplitude of the real image. In the authors’...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 14; číslo 17; s. 4499 - 4506
Hlavní autoři: Gao, Weizhe, Xu, Xuebin, Yang, Yikang, Zhang, Zhiguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 24.12.2020
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The spectral amplitude of most natural images is approximately isotropic and follows the power law. In this study, the authors propose a new non-iterative blind image deconvolution algorithm that builds an isosceles curve model to approximate the spectrum amplitude of the real image. In the authors’ proposed algorithm, the optical transfer function (OTF) is obtained by comparing the reconstructed and degraded spectra. Then they employ the integrated multidirectional comprehensive estimation to reduce the OTF estimation error. The restored image is then obtained by applying the estimated OTF and the Wiener filter. Experiments on image deconvolution tasks indicate that the proposed algorithm provides a significant performance gain by obtaining an accurate OTF, reducing ringing artefacts compared with existing algorithms, and realising real-time image restoration.
ISSN:1751-9659
1751-9667
DOI:10.1049/iet-ipr.2020.0647