Data filtering-based recursive identification for an exponential autoregressive moving average model by using the multi-innovation theory

This study employs the data filtering technique to investigate the recursive identification problems for a non-linear exponential autoregressive model with moving average noise, i.e. the ExpARMA model. Whitening the ExpARMA model by a linear filter, the original identification model is divided into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET control theory & applications Jg. 14; H. 17; S. 2526 - 2534
Hauptverfasser: Xu, Huan, Ma, Fengying, Ding, Feng, Xu, Ling, Alsaedi, Ahmed, Hayat, Tasawar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 26.11.2020
Schlagworte:
ISSN:1751-8644, 1751-8652
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study employs the data filtering technique to investigate the recursive identification problems for a non-linear exponential autoregressive model with moving average noise, i.e. the ExpARMA model. Whitening the ExpARMA model by a linear filter, the original identification model is divided into a filtered identification model and a coloured noise model, then a filtering-based extended stochastic gradient algorithm is derived. In order to improve the parameter estimation accuracy, the multi-innovation identification theory is used to develop a filtering-based multi-innovation extended stochastic gradient algorithm for the ExpARMA model. A simulation example is given to demonstrate the superiority of the proposed filtering-based multi-innovation algorithm over the existing algorithms.
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2020.0673