Analysis of distributed ADMM algorithm for consensus optimisation over lossy networks

Alternating direction method of multipliers (ADMM) is a popular convex optimisation algorithm, which is implemented in a distributed manner. Applying this algorithm to consensus optimisation problem, where a number of agents cooperatively try to solve an optimisation problem using locally available...

Full description

Saved in:
Bibliographic Details
Published in:IET signal processing Vol. 12; no. 6; pp. 786 - 794
Main Authors: Majzoobi, Layla, Shah-Mansouri, Vahid, Lahouti, Farshad
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 01.08.2018
Subjects:
ISSN:1751-9675, 1751-9683, 1751-9683
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Alternating direction method of multipliers (ADMM) is a popular convex optimisation algorithm, which is implemented in a distributed manner. Applying this algorithm to consensus optimisation problem, where a number of agents cooperatively try to solve an optimisation problem using locally available data, leads to a fully distributed algorithm which relies on local computations and communication between neighbours. In this study, the authors analyse the convergence of the distributed ADMM algorithm for solving a consensus optimisation problem over a lossy network, whose links are subject to failure. They present and analyse two different distributed ADMM-based algorithms. The algorithms are different in their network connectivity, storage and computational resource requirements. The first one converges over a sequence of networks which are not the same but remains connected over all iterations. The second algorithm is convergent over a sequence of different networks whose union is connected. The former algorithm, compared to the latter, has lower computational complexity and storage requirements. Numerical experiments confirm the proposed theoretical analysis.
AbstractList Alternating direction method of multipliers (ADMM) is a popular convex optimisation algorithm, which is implemented in a distributed manner. Applying this algorithm to consensus optimisation problem, where a number of agents cooperatively try to solve an optimisation problem using locally available data, leads to a fully distributed algorithm which relies on local computations and communication between neighbours. In this study, the authors analyse the convergence of the distributed ADMM algorithm for solving a consensus optimisation problem over a lossy network, whose links are subject to failure. They present and analyse two different distributed ADMM-based algorithms. The algorithms are different in their network connectivity, storage and computational resource requirements. The first one converges over a sequence of networks which are not the same but remains connected over all iterations. The second algorithm is convergent over a sequence of different networks whose union is connected. The former algorithm, compared to the latter, has lower computational complexity and storage requirements. Numerical experiments confirm the proposed theoretical analysis.
Author Shah-Mansouri, Vahid
Majzoobi, Layla
Lahouti, Farshad
Author_xml – sequence: 1
  givenname: Layla
  surname: Majzoobi
  fullname: Majzoobi, Layla
  organization: 1School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Vahid
  surname: Shah-Mansouri
  fullname: Shah-Mansouri, Vahid
  email: vmansouri@ut.ac.ir
  organization: 1School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: Farshad
  surname: Lahouti
  fullname: Lahouti, Farshad
  organization: 2Electrical Engineering Department, California Institute of Technology, Pasadena, USA
BookMark eNqFkLFOwzAURS1UJNrCB7D5B1LsOLYTtlIoVGrFAJ0tx7HBJY0r26XK35NQxMBQpveGe959OiMwaFyjAbjGaIJRVtxYHZOw85MU4XyCECFnYIg5xUnBcjL43Tm9AKMQNghRRnE6BOtpI-s22ACdgZUN0dtyH3UFp_erFZT1m_M2vm-hcR4q1wTdhH2X3UW7tUFG6xroPrWHtQuhhY2OB-c_wiU4N7IO-upnjsF6_vA6e0qWz4-L2XSZKMI5SwjVWhJDc1aQipV5JrlESGlcVDk2NFNcZZwylJucVJVOK5WprNBFyRUtsTZkDPjxrvJdv9dGKBu_v4pe2lpgJHo7orMjOjuityN6Ox2J_5A7b7fStyeZ2yNzsLVu_wfEy2KZ3s0RYhnr4OQI97GN2_vOezhR9gU2Ao_C
CitedBy_id crossref_primary_10_1109_TSP_2019_2896266
crossref_primary_10_1109_TSG_2021_3139450
crossref_primary_10_1111_biom_13684
crossref_primary_10_1109_TAC_2024_3441723
crossref_primary_10_1016_j_jobe_2025_112806
crossref_primary_10_3389_fenrg_2025_1609210
crossref_primary_10_1049_iet_spr_2020_0276
crossref_primary_10_1109_TAC_2020_3011358
Cites_doi 10.1109/TAC.2014.2298712
10.1109/TIP.2010.2047910
10.1109/TSP.2014.2367458
10.1109/TAC.2008.2009515
10.1137/08073038X
10.1109/TSP.2012.2197395
10.1109/TSP.2016.2537271
10.1109/GlobalSIP.2013.6736937
10.1109/TAC.2017.2713046
10.1145/984622.984626
10.1109/ALLERTON.2014.7028466
10.1109/TSP.2016.2537261
10.1109/ICASSP.2016.7472455
10.1137/120896219
10.1109/TSP.2013.2254478
10.1137/110836936
10.1109/TAC.2017.2677879
10.1109/CDC.2008.4739339
10.1109/Allerton.2012.6483403
10.1109/TSP.2009.2038417
10.1561/2200000016
10.1109/TAC.2014.2364096
10.1109/ICASSP.2016.7472595
10.1049/iet-cta.2015.1051
10.1109/TSP.2015.2436358
10.1109/TSP.2010.2055862
10.1007/s10915-015-0048-x
10.1109/TSP.2014.2304432
10.1109/CDC.2013.6760448
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-spr.2018.0033
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage 794
ExternalDocumentID 10_1049_iet_spr_2018_0033
SIL2BF00646
Genre article
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
MCNEO
OK1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3776-35eea3f58693d6b84a7a00ce19d81f54c7c475608f83dde2dc4c49e9b7c5b1ef3
IEDL.DBID 24P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441398500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9675
1751-9683
IngestDate Wed Oct 29 21:27:57 EDT 2025
Tue Nov 18 20:42:54 EST 2025
Wed Jan 22 16:31:06 EST 2025
Tue Jan 05 21:45:44 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords lossy network
convex optimisation algorithm
alternating direction method of multipliers
distributed algorithms
distributed ADMM algorithm
network connectivity
convex programming
storage requirements
consensus optimisation problem
computational complexity
computational resource requirements
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3776-35eea3f58693d6b84a7a00ce19d81f54c7c475608f83dde2dc4c49e9b7c5b1ef3
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2018.0033
PageCount 9
ParticipantIDs crossref_citationtrail_10_1049_iet_spr_2018_0033
wiley_primary_10_1049_iet_spr_2018_0033_SIL2BF00646
crossref_primary_10_1049_iet_spr_2018_0033
iet_journals_10_1049_iet_spr_2018_0033
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20180800
August 2018
2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 8
  year: 2018
  text: 20180800
PublicationDecade 2010
PublicationTitle IET signal processing
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Ling, Q.; Shi, W.; Wu, G. (C20) 2015; 63
Makhdoumi, A.; Ozdaglar, A. (C19) 2017; 62
Boyd, S.; Parikh, N.; Chu, E. (C10) 2011; 3
Johansson, B.; Rabi, M.; Johansson, M. (C7) 2009; 20
Mateos, G.; Bazerque, J.A.; Giannakis, G.B. (C2) 2010; 58
Nedic, A.; Ozdaglar, A. (C6) 2009; 54
Shi, W.; Ling, Q.; Yuan, K. (C14) 2014; 62
Chang, T.-H.; Hong, M.; Liao, W.-C. (C28) 2015; 64
He, B.; Yuan, X. (C12) 2012; 50
Aybat, N.S.; Wang, Z.; Lin, T. (C18) 2017; 63
Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A. (C15) 2010; 19
Song, Y.; Chen, W. (C9) 2016; 10
Nedić, A.; Olshevsky, A. (C22) 2015; 60
Deng, W.; Yin, W. (C11) 2016; 66
Chang, T.-H.; Hong, M.; Wang, X. (C21) 2015; 63
Jakovetic, D.; Moura, J.M.; Xavier, J. (C4) 2012; 60
Jakovetić, D.; Xavier, J.; Moura, J.M. (C8) 2014; 59
Goldstein, T.; O'Donoghue, B.; Setzer, S. (C13) 2014; 7
Mota, J. F.; Xavier, J. M.; Aguiar, P. M. (C16) 2013; 61
Bazerque, J.A.; Giannakis, G.B. (C3) 2010; 58
Chang, T.-H.; Liao, W.-C.; Hong, M. (C29) 2016; 64
2017; 62
2012; 60
2017; 63
2010; 58
2009; 20
2012
2010; 19
2013; 61
2016; 10
2009
2008
2004
2011; 3
2014; 62
2012; 50
2009; 54
2015; 60
2015; 64
2015; 63
2014; 59
2016; 64
2016
2015
2014
2013
2014; 7
2016; 66
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
References_xml – volume: 63
  start-page: 5
  year: 2017
  end-page: 20
  ident: C18
  article-title: Distributed linearized alternating direction method of multipliers for composite convex consensus optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 60
  start-page: 4306
  issue: 8
  year: 2012
  end-page: 4320
  ident: C4
  article-title: Distributed detection over noisy networks: large deviations analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 2345
  issue: 9
  year: 2010
  end-page: 2356
  ident: C15
  article-title: Fast image recovery using variable splitting and constrained optimization
  publication-title: IEEE Trans. Image Process.
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  end-page: 61
  ident: C6
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 20
  start-page: 1157
  issue: 3
  year: 2009
  end-page: 1170
  ident: C7
  article-title: A randomized incremental subgradient method for distributed optimization in networked systems
  publication-title: SIAM J. Optim.
– volume: 50
  start-page: 700
  issue: 2
  year: 2012
  end-page: 709
  ident: C12
  article-title: On the o(1/n) convergence rate of the douglas-rachford alternating direction method
  publication-title: SIAM J. Numer. Anal.
– volume: 10
  start-page: 1314
  issue: 11
  year: 2016
  end-page: 1318
  ident: C9
  article-title: Finite-time convergent distributed consensus optimisation over networks
  publication-title: IET Control Theory Applic.
– volume: 59
  start-page: 1131
  issue: 5
  year: 2014
  end-page: 1146
  ident: C8
  article-title: Fast distributed gradient methods
  publication-title: IEEE Trans. Autom. Control
– volume: 64
  start-page: 3131
  issue: 12
  year: 2016
  end-page: 3144
  ident: C29
  article-title: Asynchronous distributed admm for large-scale optimization—part ii: linear convergence analysis and numerical performance
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 3118
  issue: 12
  year: 2015
  end-page: 3130
  ident: C28
  article-title: Asynchronous distributed admm for large-scale optimization—part i: algorithm and convergence analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 61
  start-page: 2718
  issue: 10
  year: 2013
  end-page: 2723
  ident: C16
  article-title: D-admm: a communication-efficient distributed algorithm for separable optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 62
  start-page: 5082
  year: 2017
  end-page: 5095
  ident: C19
  article-title: Convergence rate of distributed ADMM over networks
  publication-title: IEEE Trans. Autom. Control
– volume: 66
  start-page: 889
  issue: 3
  year: 2016
  end-page: 916
  ident: C11
  article-title: On the global and linear convergence of the generalized alternating direction method of multipliers
  publication-title: J. Sci. Comput.
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  end-page: 5276
  ident: C2
  article-title: Distributed sparse linear regression
  publication-title: IEEE Trans. Signal Process.
– volume: 7
  start-page: 1588
  issue: 3
  year: 2014
  end-page: 1623
  ident: C13
  article-title: Fast alternating direction optimization methods
  publication-title: SIAM J. Imaging Sci.
– volume: 63
  start-page: 4051
  issue: 15
  year: 2015
  end-page: 4064
  ident: C20
  article-title: Dlm: decentralized linearized alternating direction method of multipliers
  publication-title: IEEE Trans. Signal Process.
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  ident: C10
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 58
  start-page: 1847
  issue: 3
  year: 2010
  end-page: 1862
  ident: C3
  article-title: Distributed spectrum sensing for cognitive radio networks by exploiting sparsity
  publication-title: IEEE Trans. Signal Process.
– volume: 60
  start-page: 601
  issue: 3
  year: 2015
  end-page: 615
  ident: C22
  article-title: Distributed optimization over time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 62
  start-page: 1750
  issue: 7
  year: 2014
  end-page: 1761
  ident: C14
  article-title: On the linear convergence of the admm in decentralized consensus optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 63
  start-page: 482
  issue: 2
  year: 2015
  end-page: 497
  ident: C21
  article-title: Multi-agent distributed optimization via inexact consensus admm
  publication-title: IEEE Trans. Signal Process.
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  end-page: 5276
  article-title: Distributed sparse linear regression
  publication-title: IEEE Trans. Signal Process.
– volume: 59
  start-page: 1131
  issue: 5
  year: 2014
  end-page: 1146
  article-title: Fast distributed gradient methods
  publication-title: IEEE Trans. Autom. Control
– year: 2016
  article-title: Analysis of distributed admm algorithm for consensus optimization in presence of error
– volume: 63
  start-page: 482
  issue: 2
  year: 2015
  end-page: 497
  article-title: Multi‐agent distributed optimization via inexact consensus admm
  publication-title: IEEE Trans. Signal Process.
– start-page: 146
  year: 2009
  end-page: 154
  article-title: Distributed consensus over network with noisy links
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 50
  start-page: 700
  issue: 2
  year: 2012
  end-page: 709
  article-title: On the o(1/n) convergence rate of the douglas‐rachford alternating direction method
  publication-title: SIAM J. Numer. Anal.
– volume: 60
  start-page: 4306
  issue: 8
  year: 2012
  end-page: 4320
  article-title: Distributed detection over noisy networks: large deviations analysis
  publication-title: IEEE Trans. Signal Process.
– start-page: 1701
  year: 2014
  end-page: 1709
  article-title: Asynchronous distributed admm for consensus optimization
– start-page: 2454
  year: 2015
  end-page: 2462
  article-title: An asynchronous distributed proximal gradient method for composite convex optimization
– year: 2013
  article-title: On the o (1/k) convergence of asynchronous distributed alternating direction method of multipliers
– year: 2016
  article-title: Quantized consensus admm for multi‐agent distributed optimization
– start-page: 1543
  year: 2012
  end-page: 1550
  article-title: Consensus‐based distributed optimization: practical issues and applications in large‐scale machine learning
– volume: 61
  start-page: 2718
  issue: 10
  year: 2013
  end-page: 2723
  article-title: D‐admm: a communication‐efficient distributed algorithm for separable optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 7
  start-page: 1588
  issue: 3
  year: 2014
  end-page: 1623
  article-title: Fast alternating direction optimization methods
  publication-title: SIAM J. Imaging Sci.
– volume: 60
  start-page: 601
  issue: 3
  year: 2015
  end-page: 615
  article-title: Distributed optimization over time‐varying directed graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  end-page: 61
  article-title: Distributed subgradient methods for multi‐agent optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 20
  start-page: 1157
  issue: 3
  year: 2009
  end-page: 1170
  article-title: A randomized incremental subgradient method for distributed optimization in networked systems
  publication-title: SIAM J. Optim.
– volume: 10
  start-page: 1314
  issue: 11
  year: 2016
  end-page: 1318
  article-title: Finite‐time convergent distributed consensus optimisation over networks
  publication-title: IET Control Theory Applic.
– year: 2008
  article-title: Subgradient methods and consensus algorithms for solving convex optimization problems
– volume: 58
  start-page: 1847
  issue: 3
  year: 2010
  end-page: 1862
  article-title: Distributed spectrum sensing for cognitive radio networks by exploiting sparsity
  publication-title: IEEE Trans. Signal Process.
– volume: 66
  start-page: 889
  issue: 3
  year: 2016
  end-page: 916
  article-title: On the global and linear convergence of the generalized alternating direction method of multipliers
  publication-title: J. Sci. Comput.
– volume: 62
  start-page: 1750
  issue: 7
  year: 2014
  end-page: 1761
  article-title: On the linear convergence of the admm in decentralized consensus optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 2345
  issue: 9
  year: 2010
  end-page: 2356
  article-title: Fast image recovery using variable splitting and constrained optimization
  publication-title: IEEE Trans. Image Process.
– start-page: 3671
  year: 2013
  end-page: 3676
  article-title: Asynchronous distributed optimization using a randomized alternating direction method of multipliers
– start-page: 270
  year: 2014
  end-page: 277
  article-title: Broadcast‐based distributed alternating direction method of multipliers
– volume: 63
  start-page: 4051
  issue: 15
  year: 2015
  end-page: 4064
  article-title: Dlm: decentralized linearized alternating direction method of multipliers
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 3118
  issue: 12
  year: 2015
  end-page: 3130
  article-title: Asynchronous distributed admm for large‐scale optimization—part i: algorithm and convergence analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 62
  start-page: 5082
  year: 2017
  end-page: 5095
  article-title: Convergence rate of distributed ADMM over networks
  publication-title: IEEE Trans. Autom. Control
– volume: 64
  start-page: 3131
  issue: 12
  year: 2016
  end-page: 3144
  article-title: Asynchronous distributed admm for large‐scale optimization—part ii: linear convergence analysis and numerical performance
  publication-title: IEEE Trans. Signal Process.
– year: 2004
  article-title: Distributed optimization in sensor networks
– volume: 63
  start-page: 5
  year: 2017
  end-page: 20
  article-title: Distributed linearized alternating direction method of multipliers for composite convex consensus optimization
  publication-title: IEEE Trans. Autom. Control
– ident: e_1_2_7_9_2
  doi: 10.1109/TAC.2014.2298712
– ident: e_1_2_7_16_2
  doi: 10.1109/TIP.2010.2047910
– ident: e_1_2_7_22_2
  doi: 10.1109/TSP.2014.2367458
– ident: e_1_2_7_7_2
  doi: 10.1109/TAC.2008.2009515
– ident: e_1_2_7_8_2
  doi: 10.1137/08073038X
– ident: e_1_2_7_5_2
  doi: 10.1109/TSP.2012.2197395
– ident: e_1_2_7_24_2
– ident: e_1_2_7_32_2
– ident: e_1_2_7_29_2
  doi: 10.1109/TSP.2016.2537271
– ident: e_1_2_7_31_2
  doi: 10.1109/GlobalSIP.2013.6736937
– ident: e_1_2_7_19_2
  doi: 10.1109/TAC.2017.2713046
– ident: e_1_2_7_2_2
  doi: 10.1145/984622.984626
– ident: e_1_2_7_18_2
  doi: 10.1109/ALLERTON.2014.7028466
– ident: e_1_2_7_30_2
  doi: 10.1109/TSP.2016.2537261
– ident: e_1_2_7_27_2
  doi: 10.1109/ICASSP.2016.7472455
– ident: e_1_2_7_14_2
  doi: 10.1137/120896219
– ident: e_1_2_7_17_2
  doi: 10.1109/TSP.2013.2254478
– ident: e_1_2_7_13_2
  doi: 10.1137/110836936
– ident: e_1_2_7_20_2
  doi: 10.1109/TAC.2017.2677879
– ident: e_1_2_7_6_2
  doi: 10.1109/CDC.2008.4739339
– ident: e_1_2_7_26_2
  doi: 10.1109/Allerton.2012.6483403
– ident: e_1_2_7_4_2
  doi: 10.1109/TSP.2009.2038417
– ident: e_1_2_7_11_2
  doi: 10.1561/2200000016
– ident: e_1_2_7_23_2
  doi: 10.1109/TAC.2014.2364096
– ident: e_1_2_7_28_2
  doi: 10.1109/ICASSP.2016.7472595
– ident: e_1_2_7_10_2
  doi: 10.1049/iet-cta.2015.1051
– ident: e_1_2_7_21_2
  doi: 10.1109/TSP.2015.2436358
– ident: e_1_2_7_25_2
– ident: e_1_2_7_3_2
  doi: 10.1109/TSP.2010.2055862
– ident: e_1_2_7_12_2
  doi: 10.1007/s10915-015-0048-x
– ident: e_1_2_7_15_2
  doi: 10.1109/TSP.2014.2304432
– ident: e_1_2_7_33_2
  doi: 10.1109/CDC.2013.6760448
SSID ssj0056512
Score 2.1751559
Snippet Alternating direction method of multipliers (ADMM) is a popular convex optimisation algorithm, which is implemented in a distributed manner. Applying this...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 786
SubjectTerms alternating direction method of multipliers
computational complexity
computational resource requirements
consensus optimisation problem
convex optimisation algorithm
convex programming
distributed ADMM algorithm
distributed algorithms
lossy network
network connectivity
Research Article
storage requirements
Title Analysis of distributed ADMM algorithm for consensus optimisation over lossy networks
URI http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2018.0033
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2018.0033
Volume 12
WOSCitedRecordID wos000441398500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Backfiles
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFB7cDnpwF-vGHMSDEGzyJrMc3YqCLQUVvYXMEi20aWlSwX_vTJZiESqIlxwmM0Py5r03H5mX70PolHLFpE39Hm0C8YgC3-MKtKcDGvPYbtgy4YXYBOt0-Our6C6g6_pfmJIfYvrBzUVGka9dgMeyVCGxoNYuYs_kXjZylJ6-K4cEWETLvg_MuXZAunU6toClPPJkTk-ecpgebYqLH1PMbE6L9vYsZC32nNbGvzztJlqvICe-LH1kCy2YdButfSMi3EHPNTcJHiZYOy5dJ4NlNL68abdx3H8bjnv5-wBbhIuVq79Os4nta9PNoCoHwq4UFPftW33itCwtz3bRc-v26frOqwQXPAWMUQ9CY2JIQk4FaCo5iVncbCrjC839JCSKKcIsROIJB5sWA62IIsIIyVQofZPAHlpKh6nZR5iAnUNKLRMlCJOaq5CJ0CRUhqACbRqoWVs6UhUbuRPF6EfFqTgRkbVYZC0WOYs5BlNooPPpkFFJxTGv85lrqwIym9cRinX7fcro8f4huGo5EEcP_jTqEK269rJ-8Agt5eOJOUYr6iPvZeOTwm3t9eW-8wU-C_J6
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB68QH3wFm_3QXwQgk12s8ejV1Fsi6CCbyF7RAs1laYK_nt3krQogoL4mswOyWR35svO7DcAB1waob3rD3iDsoAZGgbSUBvYiKcy9QFbZ7JsNiE6HfnwoG4m4Hx0FqbihxhvuOHKKP01LnDckK5-OBmSZHbdMChekNMzxHpISidhmvlog30MInYz8scesVQ5T4EN5bmk49ymOv6m4kt0mvS3v2LWMug0F__ncZdgoQad5KSaJcsw4fIVmP9ERbgK9yN2EtLPiEU2XWyE5Sw5OW-3Sdp77A-6w6dn4jEuMViBnRevXtY7nOe6IIhgMSjp-dd6J3lVXF6swX3z4u7sMqhbLgSGCsEDGjuX0iyWXFHLtWSpSBsN40JlZZjFzAjDhAdJMpPUO8bIGmaYckoLE-vQZXQdpvJ-7jaAMOp1aG11ZhQT2koTCxW7jOuYmsi6TWiMTJ2Ymo8c22L0kjIvzlTiLZZ4iyVoMeQwpZtwNB7yUpFx_CR8iNfqJVn8JEjLD_e7yuT2qhWdNhHG8a0_jdqH2cu7ditpXXWut2EOZapqwh2YGg5e3S7MmLdhtxjslXP4A-OU9U0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-NQEB68IbsP3hd1vZwH8UEINj0n5_Lo2i2KWgoq-BZyblpo09JUYf-9Z5K0KIKC7GsyZ0gmZ2a-ZCbfABxxaYQOoT_iDcoiZmgcSUNtZJs8k1lI2NrLctiE6HTkw4PqzkFr-i9MxQ8x--CGnlHGa3RwN7K-euFkSJLZc5OoGCGnZ4z9kJTOwyJLQqxFfmfWncbjgFiqmqfAgfJc0lltU51-UPEuO82H0-8xa5l02qv_53LXYKUGneSs2iXrMOfyDfj5hopwE-6n7CRk6IlFNl0chOUsOWvd3JCs_zgc9yZPAxIwLjHYgZ0Xz0E2BJxB3RBEsBmU9MNt_SN51VxebMF9--_d-UVUj1yIDBWCRzRxLqM-kVxRy7VkmcgaDeNiZWXsE2aEYSKAJOklDYGxaQ0zTDmlhUl07Dz9BQv5MHfbQBgNOrS22hvFhLbSJEIlznOdUNO0bgcaU1OnpuYjx7EY_bSsizOVBoulwWIpWgw5TOkOnMyWjCoyjs-Ej_FY7ZLFZ4K0fHBfq0xvL6-bf9oI4_jut1YdwnK31U6vLztXv-EHilTNhHuwMBk_u31YMi-TXjE-KLfwK5eC9NE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+distributed+ADMM+algorithm+for+consensus+optimisation+over+lossy+networks&rft.jtitle=IET+signal+processing&rft.au=Majzoobi%2C+Layla&rft.au=Shah%E2%80%90Mansouri%2C+Vahid&rft.au=Lahouti%2C+Farshad&rft.date=2018-08-01&rft.issn=1751-9675&rft.volume=12&rft.issue=6&rft.spage=786&rft.epage=794&rft_id=info:doi/10.1049%2Fiet-spr.2018.0033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_spr_2018_0033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon