Software defect prediction via LSTM

Software quality plays an important role in the software lifecycle. Traditional software defect prediction approaches mainly focused on using hand-crafted features to detect defects. However, like human languages, programming languages contain rich semantic and structural information, and the cause...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET software Ročník 14; číslo 4; s. 443 - 450
Hlavní autori: Deng, Jiehan, Lu, Lu, Qiu, Shaojian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 01.08.2020
Predmet:
ISSN:1751-8806, 1751-8814, 1751-8814
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Software quality plays an important role in the software lifecycle. Traditional software defect prediction approaches mainly focused on using hand-crafted features to detect defects. However, like human languages, programming languages contain rich semantic and structural information, and the cause of defective code is closely related to its context. Failing to catch this significant information, the performance of traditional approaches is far from satisfactory. In this study, the authors leveraged a long short-term memory (LSTM) network to automatically learn the semantic and contextual features from the source code. Specifically, they first extract the program's Abstract Syntax Trees (ASTs), which is made up of AST nodes, and then evaluate what and how much information they can preserve for several node types. They traverse the AST of each file and fed them into the LSTM network to automatically the semantic and contextual features of the program, which is then used to determine whether the file is defective. Experimental results on several opensource projects showed that the proposed LSTM method is superior to the state-of-the-art methods.
AbstractList Software quality plays an important role in the software lifecycle. Traditional software defect prediction approaches mainly focused on using hand‐crafted features to detect defects. However, like human languages, programming languages contain rich semantic and structural information, and the cause of defective code is closely related to its context. Failing to catch this significant information, the performance of traditional approaches is far from satisfactory. In this study, the authors leveraged a long short‐term memory (LSTM) network to automatically learn the semantic and contextual features from the source code. Specifically, they first extract the program's Abstract Syntax Trees (ASTs), which is made up of AST nodes, and then evaluate what and how much information they can preserve for several node types. They traverse the AST of each file and fed them into the LSTM network to automatically the semantic and contextual features of the program, which is then used to determine whether the file is defective. Experimental results on several opensource projects showed that the proposed LSTM method is superior to the state‐of‐the‐art methods.
Software quality plays an important role in the software lifecycle. Traditional software defect prediction approaches mainly focused on using hand‐crafted features to detect defects. However, like human languages, programming languages contain rich semantic and structural information, and the cause of defective code is closely related to its context. Failing to catch this significant information, the performance of traditional approaches is far from satisfactory. In this study, the authors leveraged a long short‐term memory (LSTM) network to automatically learn the semantic and contextual features from the source code. Specifically, they first extract the program's Syntax Trees (ASTs), which is made up of AST nodes, and then evaluate what and how much information they can preserve for several node types. They traverse the AST of each file and fed them into the LSTM network to automatically the semantic and contextual features of the program, which is then used to determine whether the file is defective. Experimental results on several opensource projects showed that the proposed LSTM method is superior to the state‐of‐the‐art methods.
Author Qiu, Shaojian
Lu, Lu
Deng, Jiehan
Author_xml – sequence: 1
  givenname: Jiehan
  surname: Deng
  fullname: Deng, Jiehan
  organization: School of Computer Science and Engineering, South China University of Technology, GuangZhou, People's Republic of China
– sequence: 2
  givenname: Lu
  surname: Lu
  fullname: Lu, Lu
  email: lul@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, GuangZhou, People's Republic of China
– sequence: 3
  givenname: Shaojian
  surname: Qiu
  fullname: Qiu, Shaojian
  organization: School of Computer Science and Engineering, South China University of Technology, GuangZhou, People's Republic of China
BookMark eNqFkMFOwzAMQCM0JLbBB3CrxLnFSZql5QYTBaQhDhviGKWpI2Ua7ZQUpv39Ug1x4DBOtmQ_288TMmq7Fgm5ppBRyMtbh30asM0Y0DIDmpdnZEyloGlR0Hz0m8PsgkxCWAMIIXg5JjfLzvY77TFp0KLpk63HxpnedW3y7XSyWK5eL8m51ZuAVz9xSt6rx9X8OV28Pb3M7xep4VKKVMwk4w3TDRU5t6IuDC-MRhSNNJyjlYVkTNRW17GalxoATK21YfFEzijyKZHHucZ3IXi0yrheD6f0XruNoqAGVxVdVXRVg6saXCNJ_5Bb7z61359k7o7Mzm1w_z-gltUHe6gAWCkinB7hoW3dffk2PubEsgNO5ntm
CitedBy_id crossref_primary_10_1007_s10115_025_02534_y
crossref_primary_10_1109_TR_2024_3354965
crossref_primary_10_32604_cmc_2024_058931
crossref_primary_10_1155_2022_4311548
crossref_primary_10_32604_cmc_2023_043680
crossref_primary_10_1007_s00500_022_06830_5
crossref_primary_10_1007_s10515_022_00344_y
crossref_primary_10_3390_app11114793
crossref_primary_10_1007_s42979_024_03458_0
crossref_primary_10_1007_s10844_023_00793_1
crossref_primary_10_1109_ACCESS_2024_3362896
crossref_primary_10_3390_math10173120
crossref_primary_10_1049_2024_5102699
crossref_primary_10_1007_s11432_023_4127_5
crossref_primary_10_1038_s41598_024_65639_4
crossref_primary_10_1177_18724981241307452
crossref_primary_10_1016_j_jss_2022_111537
crossref_primary_10_1109_ACCESS_2024_3409709
crossref_primary_10_1007_s11042_022_14065_7
crossref_primary_10_1109_TR_2022_3165115
crossref_primary_10_1145_3643727
crossref_primary_10_1016_j_infsof_2021_106588
crossref_primary_10_1049_2024_5550801
crossref_primary_10_1007_s10586_023_04170_z
crossref_primary_10_1007_s11334_023_00542_1
crossref_primary_10_1007_s11334_025_00601_9
crossref_primary_10_1007_s10664_023_10371_2
crossref_primary_10_1016_j_compbiomed_2025_110130
crossref_primary_10_32604_cmc_2024_057697
crossref_primary_10_1007_s00521_024_10937_1
crossref_primary_10_1371_journal_pone_0307112
crossref_primary_10_1002_smr_2402
crossref_primary_10_1007_s11219_024_09704_1
crossref_primary_10_1016_j_cose_2024_104024
crossref_primary_10_7717_peerj_cs_739
crossref_primary_10_1049_2024_8027037
crossref_primary_10_3390_e24101373
Cites_doi 10.1109/TSE.1976.233837
10.1109/ASRU.2013.6707742
10.1162/neco.1997.9.8.1735
10.1109/IESYS.2017.8233558
10.1007/978-3-319-25159-2_49
10.1049/iet-sen.2017.0148
10.1109/IRI.2015.76
10.1049/cp.2013.2313
10.1109/32.295895
10.1109/72.279181
10.1109/TSE.2016.2597849
10.1142/S0218001419590377
10.1145/1868328.1868342
10.21437/Interspeech.2010-343
10.1109/ESEM.2013.20
10.1109/ISCID.2018.00023
10.1145/2884781.2884804
10.1109/QRS.2017.42
10.3233/IDA-150789
10.21437/Interspeech.2012-65
10.1109/TMM.2017.2729019
10.1109/ICSE.2012.6227135
10.1162/evco.2009.17.3.275
10.1016/j.infsof.2015.01.014
10.4018/IJOSSP.2018010101
10.3115/v1/D14-1179
10.1109/ICSE.2015.139
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-sen.2019.0149
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1751-8814
EndPage 450
ExternalDocumentID 10_1049_iet_sen_2019_0149
SFW2BF00295
Genre article
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 61370103
– fundername: the Guangzhou Produce & Research Fund
  grantid: 201902020004
– fundername: Guangdong Province Application Major Fund
  grantid: 2015B010131013
– fundername: National Nature Science Foundation of China
  funderid: 61370103
– fundername: Guangdong Province Application Major Fund
  funderid: 2015B010131013
– fundername: Guangzhou Produce & Research Fund
  funderid: 201902020004
GroupedDBID 0R
24P
29I
3V.
4.4
4IJ
5GY
6IK
8AL
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ABUWG
ACDCL
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
M0N
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
2QL
96U
AAHJG
AAMMB
ABMDY
ABQXS
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
AEFGJ
AEGXH
AFAZI
AGXDD
AIDQK
AIDYY
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
IDLOA
ITC
K1G
MCNEO
MS~
OK1
PHGZM
PHGZT
PQGLB
PUEGO
WIN
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c3775-56723d2ad1543f5b8c38caee5d7c33ef787225bfab3f549a000cbaac2881321e3
IEDL.DBID 24P
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588424400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8806
1751-8814
IngestDate Wed Oct 29 21:16:22 EDT 2025
Tue Nov 18 22:44:06 EST 2025
Tue Sep 09 05:10:04 EDT 2025
Tue Jan 05 21:48:47 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords program debugging
open source projects
long short-term memory network
contextual features
LSTM
defective code
public domain software
program diagnostics
AST node sequence
human languages
recurrent neural nets
trees (mathematics)
software lifecycle
software defect prediction approaches
software quality
machine learning techniques
programming languages
word embedding techniques
program abstract syntax trees
feature extraction
structural information
learning (artificial intelligence)
semantic features
numerical vectors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3775-56723d2ad1543f5b8c38caee5d7c33ef787225bfab3f549a000cbaac2881321e3
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-sen.2019.0149
PageCount 8
ParticipantIDs iet_journals_10_1049_iet_sen_2019_0149
crossref_primary_10_1049_iet_sen_2019_0149
wiley_primary_10_1049_iet_sen_2019_0149_SFW2BF00295
crossref_citationtrail_10_1049_iet_sen_2019_0149
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20200800
August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 8
  year: 2020
  text: 20200800
PublicationDecade 2020
PublicationTitle IET software
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Chidamber, S.R.; Kemerer, C.F. (C7) 1994; 20
Hochreiter, S.; Schmidhuber, J. (C22) 1997; 9
Chen, L.; Fang, B.; Shang, Z. (C29) 2015; 62
Jing, X.-Y.; Wu, F.; Dong, X. (C30) 2017; 43
García, S.; Herrera, F. (C32) 2014; 17
Su, C.; Ju, S.; Liu, Y. (C34) 2015; 19
Gao, L.; Guo, Z.; Zhang, H. (C17) 2017; 19
Wang, S.; Liu, T.; Nam, J. (C20) 2018
McCabe, T.J. (C6) 1976; SE-2
Li, Z.; Jing, X.-Y.; Zhu, X. (C18) 2018; 12
Qiu, S.; Lu, L.; Jiang, S. (C4) 2019; 33
Bengio, Y.; Simard, P.; Frasconi, P. (C21) 1994; 5
Kakkar, M.; Jain, S.; Bansal, A. (C1) 2018; 9
2018; 9
2015; 19
2012
2011
2019; 33
2010
2015; 62
2017; 43
1976
2019
2018
2017
2016
2017; 19
2015
2014
2013
2014; 17
2018; 12
1994; 5
1997; 9
1977
1994; 20
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
Han J. (e_1_2_9_36_1) 2011
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Wang S. (e_1_2_9_21_1) 2018
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 19
  ident: C1
  article-title: Combining data preprocessing methods with imputation techniques for software defect prediction
  publication-title: Int. J. Open Source Softw. Processes (IJOSSP)
– volume: 12
  start-page: 161
  issue: 3
  year: 2018
  end-page: 175
  ident: C18
  article-title: Progress on approaches to software defect prediction
  publication-title: IET Softw.
– volume: 19
  start-page: 1409
  issue: 6
  year: 2015
  end-page: 1432
  ident: C34
  article-title: Improving random forest and rotation forest for highly imbalanced datasets
  publication-title: Intell. Data Anal.
– volume: 20
  start-page: 476
  issue: 6
  year: 1994
  end-page: 493
  ident: C7
  article-title: A metrics suite for object oriented design
  publication-title: IEEE Trans. Softw. Eng.
– volume: 33
  start-page: 1959037
  issue: 12
  year: 2019
  ident: C4
  article-title: An investigation of imbalanced ensemble learning methods for cross-project defect prediction
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 43
  start-page: 321
  issue: 4
  year: 2017
  end-page: 339
  ident: C30
  article-title: An improved SDA based defect prediction framework for both within-project and cross-project class-imbalance problems
  publication-title: IEEE Trans. Softw. Eng.
– year: 2018
  ident: C20
  article-title: Deep semantic feature learning for software defect prediction
  publication-title: IEEE Trans. Softw. Eng.
– volume: 19
  start-page: 2045
  issue: 9
  year: 2017
  end-page: 2055
  ident: C17
  article-title: Video captioning with attention-based LSTM and semantic consistency
  publication-title: IEEE Trans. Multimed.
– volume: 17
  start-page: 275
  issue: 3
  year: 2014
  end-page: 306
  ident: C32
  article-title: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy
  publication-title: Evol. Comput.
– volume: SE-2
  start-page: 308
  issue: 4
  year: 1976
  end-page: 320
  ident: C6
  article-title: A complexity measure
  publication-title: IEEE Trans. Softw. Eng.
– volume: 62
  start-page: 67
  year: 2015
  end-page: 77
  ident: C29
  article-title: Negative samples reduction in cross-company software defects prediction
  publication-title: Inf. Softw. Technol.
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  end-page: 166
  ident: C21
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: C22
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2011
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 19
  article-title: Combining data preprocessing methods with imputation techniques for software defect prediction
  publication-title: Int. J. Open Source Softw. Processes (IJOSSP)
– volume: 12
  start-page: 161
  issue: 3
  year: 2018
  end-page: 175
  article-title: Progress on approaches to software defect prediction
  publication-title: IET Softw.
– start-page: 308
  issue: 4
  year: 1976
  end-page: 320
  article-title: A complexity measure
  publication-title: IEEE Trans. Softw. Eng.
– volume: 19
  start-page: 2045
  issue: 9
  year: 2017
  end-page: 2055
  article-title: Video captioning with attention-based LSTM and semantic consistency
  publication-title: IEEE Trans. Multimed.
– volume: 20
  start-page: 476
  issue: 6
  year: 1994
  end-page: 493
  article-title: A metrics suite for object oriented design
  publication-title: IEEE Trans. Softw. Eng.
– start-page: 71
  year: 2019
  end-page: 74
  article-title: Research on patent text classification based on word2vec and lstm
– volume: 19
  start-page: 1409
  issue: 6
  year: 2015
  end-page: 1432
  article-title: Improving random forest and rotation forest for highly imbalanced datasets
  publication-title: Intell. Data Anal.
– year: 2010
  article-title: Recurrent neural network based language model
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2016
– volume: 62
  start-page: 67
  year: 2015
  end-page: 77
  article-title: Negative samples reduction in cross-company software defects prediction
  publication-title: Inf. Softw. Technol.
– year: 1977
– year: 2018
– year: 2014
– start-page: 45
  year: 2013
  end-page: 54
  article-title: Learning from open-source projects: an empirical study on defect prediction
– start-page: 9
  year: 2010
  article-title: Towards identifying software project clusters with regard to defect prediction
– start-page: 4574
  year: 2016
  end-page: 4582
  article-title: Latent attention for ifthen program synthesis
– start-page: 297
  year: 2016
  end-page: 308
  article-title: Automatically learning semantic features for defect prediction
– start-page: 99
  year: 2015
  end-page: 108
  article-title: Online defect prediction for imbalanced data
– start-page: 837
  year: 2012
  end-page: 847
  article-title: On the naturalness of software
– volume: 33
  issue: 12
  year: 2019
  article-title: An investigation of imbalanced ensemble learning methods for cross-project defect prediction
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  end-page: 166
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– volume: 17
  start-page: 275
  issue: 3
  year: 2014
  end-page: 306
  article-title: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy
  publication-title: Evol. Comput.
– volume: 43
  start-page: 321
  issue: 4
  year: 2017
  end-page: 339
  article-title: An improved SDA based defect prediction framework for both within-project and cross-project class-imbalance problems
  publication-title: IEEE Trans. Softw. Eng.
– start-page: 37
  year: 2017
  end-page: 42
  article-title: Convolutional neural networks on assembly code for predicting software defects
– year: 2017
  article-title: Software defect prediction via convolutional neural network
– start-page: 273
  year: 2013
  end-page: 278
  article-title: Hybrid speech recognition with deep bidirectional LSTM
– start-page: 547
  year: 2015
  end-page: 553
  article-title: Building program vector representations for deep learning
– start-page: 457
  year: 2015
  end-page: 463
  article-title: The effect of data sampling when using random forest on imbalanced bioinformatics data
– year: 2018
  article-title: Deep semantic feature learning for software defect prediction
  publication-title: IEEE Trans. Softw. Eng.
– year: 2019
– start-page: 318
  year: 2017
  end-page: 328
  article-title: Software defect prediction via convolutional neural network
– year: 2015
– year: 2012
  article-title: LSTM neural networks for language modeling
– year: 2013
– ident: e_1_2_9_7_1
  doi: 10.1109/TSE.1976.233837
– ident: e_1_2_9_17_1
  doi: 10.1109/ASRU.2013.6707742
– ident: e_1_2_9_23_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_9_3_1
  doi: 10.1109/IESYS.2017.8233558
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-319-25159-2_49
– ident: e_1_2_9_19_1
  doi: 10.1049/iet-sen.2017.0148
– ident: e_1_2_9_6_1
– ident: e_1_2_9_25_1
– ident: e_1_2_9_34_1
  doi: 10.1109/IRI.2015.76
– year: 2018
  ident: e_1_2_9_21_1
  article-title: Deep semantic feature learning for software defect prediction
  publication-title: IEEE Trans. Softw. Eng.
– ident: e_1_2_9_4_1
  doi: 10.1049/cp.2013.2313
– ident: e_1_2_9_8_1
  doi: 10.1109/32.295895
– ident: e_1_2_9_22_1
  doi: 10.1109/72.279181
– ident: e_1_2_9_31_1
  doi: 10.1109/TSE.2016.2597849
– ident: e_1_2_9_5_1
  doi: 10.1142/S0218001419590377
– ident: e_1_2_9_12_1
  doi: 10.1145/1868328.1868342
– ident: e_1_2_9_14_1
  doi: 10.21437/Interspeech.2010-343
– ident: e_1_2_9_11_1
  doi: 10.1109/ESEM.2013.20
– ident: e_1_2_9_28_1
  doi: 10.1109/ISCID.2018.00023
– ident: e_1_2_9_24_1
– ident: e_1_2_9_38_1
– ident: e_1_2_9_10_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_9_1
  doi: 10.1145/2884781.2884804
– ident: e_1_2_9_20_1
  doi: 10.1109/QRS.2017.42
– ident: e_1_2_9_35_1
  doi: 10.3233/IDA-150789
– ident: e_1_2_9_15_1
  doi: 10.21437/Interspeech.2012-65
– ident: e_1_2_9_18_1
  doi: 10.1109/TMM.2017.2729019
– ident: e_1_2_9_13_1
  doi: 10.1109/ICSE.2012.6227135
– ident: e_1_2_9_26_1
– ident: e_1_2_9_33_1
  doi: 10.1162/evco.2009.17.3.275
– ident: e_1_2_9_37_1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.infsof.2015.01.014
– volume-title: Data mining: concepts and techniques
  year: 2011
  ident: e_1_2_9_36_1
– ident: e_1_2_9_2_1
  doi: 10.4018/IJOSSP.2018010101
– ident: e_1_2_9_16_1
  doi: 10.3115/v1/D14-1179
– ident: e_1_2_9_32_1
  doi: 10.1109/ICSE.2015.139
SSID ssj0055539
Score 2.479199
Snippet Software quality plays an important role in the software lifecycle. Traditional software defect prediction approaches mainly focused on using hand-crafted...
Software quality plays an important role in the software lifecycle. Traditional software defect prediction approaches mainly focused on using hand‐crafted...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 443
SubjectTerms AST node sequence
contextual features
defective code
feature extraction
human languages
learning (artificial intelligence)
long short-term memory network
LSTM
machine learning techniques
numerical vectors
open source projects
program abstract syntax trees
program debugging
program diagnostics
programming languages
public domain software
recurrent neural nets
Research Article
semantic features
software defect prediction approaches
software lifecycle
software quality
structural information
trees (mathematics)
word embedding techniques
Title Software defect prediction via LSTM
URI http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2019.0149
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-sen.2019.0149
Volume 14
WOSCitedRecordID wos000588424400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8814
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055539
  issn: 1751-8806
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8814
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055539
  issn: 1751-8806
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA9z-uCL8xPnFwXFByG6Js2aPOqwKOgYbLK9lSS9wkDm6Ob89730YzCECeJLKc0H5S6_-117yR0hV8hYyBotoNyd3wqskVTLRFFkEwNtzdpgi2ITYbcrRyPVq5FOdRamyA-x_OHmkJHbawdwbYoqJOjUohLHMKczcClMfXXrHP0Nsun7PHRLmwW9yhwLIfJyYkiTPpXSD5ahTXX3Y4oVctrA5lWXNeecqPEvb7tLdkqX07sv1sgeqcFknzSqcg5eie4DctlHk_ylM_AScJs8vGnmojhOc95irL2X_uD1kLxFj4POEy1rKFDLw1BQ0Q4ZT5hO0FXiqTDScmk1gEhCyzmkiFdEtEm1wdZAabSQ1mhtGYqKMx_4EalPPiZwTDzpgzLQaqVMJehEKSPwNnVxS4PaTtMmaVXCi22ZYNzVuXiP80B3oGIUQoxCiJ0QYieEJrlZDpkW2TXWdb52z0qMzdZ15Lkqfp8y7kdD9hC50KQ4-dOoU7LN3Bd4viXwjNTn2Secky27mI9n2UW-EvE6fO5-A3g13ww
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED-2KeiL8xPnZ0HxQaiuSbM2j36NidsYbOLeSpKmMJA5tjn_fe_abjCECeJbyRflLne_S-5yB3CJiIWoUbUup_dbvtGhq8JYuogm2tYUq1mTFZsI2u2w35edAjzO38Jk-SEWF24kGam-JgGnC-nswOlTksyBnboTSzlMPXlDln4R1nxEJwrsY35nro-FEGk9McRJzw1Dz1_4NuXtjyWW0KmI3cs2awo69fL__O42bOVGp3OX7ZIdKNjhLpTnBR2cXL734KKLSvlLja0TWwrzcEZj8uMQ75zZQDnNbq-1D6_1p95Dw82rKLiGB4FwRS1gPGYqRmOJJ0KHhodGWSviwHBuE5RYlGmdKI29vlSoI41WyjCkFWee5QdQGn4M7SE4oWelttVqwmSMZpTUAj8T8lxq5HeSVKA6p15k8hTjVOniPUpd3b6MkAgREiEiIkREhApcL6aMsvwaqwZfUVsuZZNVA3nKi9-XjLr1N3ZfJ-ekOPrTrHPYaPRazaj53H45hk1G5_E0QPAEStPxpz2FdTObDibjs3RbfgODKuHh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED_mFPHF-Ynzs6D4IFTXpFmbR3UWxTkGm7i3kqRXGMgc25z_vpe2GwxhgvhWmg_K7_K7u_SSO4ALslhkNWrocnt_yzc6dFWYSJesica6YnU0ebGJoNUKez3ZLkFjdhcmzw8x_-FmmZHpa0twHCZpvuH0bZLMPk7cMdocpp68tp7-Cqz6Isjoyfz2TB8LIbJ6YmQnPTcMPX8e25Q3P6ZYsE4r1Lzos2ZGJ6r8z-duwWbhdDq3-SrZhhIOdqAyK-jgFPzehfMOKeUvNUInQXvMwxmObBzHys6Z9pXT7HRf9uA1eujeP7pFFQXX8CAQrqgHjCdMJeQs8VTo0PDQKESRBIZzTImxxGmdKk2tvlSkI41WyjDCijMP-T6UBx8DPAAn9FBqrNVSJhNyo6QW9JjayKUmeadpFWoz9GJTpBi3lS7e4yzU7cuYQIgJhNiCEFsQqnA1HzLM82ss63xp3xUsGy_ryDNZ_D5l3Ine2F1kg5Pi8E-jzmC93Yji5lPr-Qg2mN2OZ-cDj6E8GX3iCayZ6aQ_Hp1mq_IbOJnhXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+defect+prediction+via+LSTM&rft.jtitle=IET+software&rft.au=Deng%2C+Jiehan&rft.au=Lu%2C+Lu&rft.au=Qiu%2C+Shaojian&rft.date=2020-08-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8814&rft.eissn=1751-8814&rft.volume=14&rft.issue=4&rft.spage=443&rft.epage=450&rft_id=info:doi/10.1049%2Fiet-sen.2019.0149&rft.externalDBID=10.1049%252Fiet-sen.2019.0149&rft.externalDocID=SFW2BF00295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8806&client=summon