Intrusion detection using dynamic feature selection and fuzzy temporal decision tree classification for wireless sensor networks

Intrusion detection systems assume a noteworthy job in the provision of security in wireless Sensor networks. The existing intrusion detection systems focus only on the detection of the known types of attacks. However, it neglects to recognise the new types of attacks, which are introduced by malici...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET communications Ročník 14; číslo 5; s. 888 - 895
Hlavní autoři: Nancy, Periasamy, Muthurajkumar, S, Ganapathy, S, Santhosh Kumar, S.V.N, Selvi, M, Arputharaj, Kannan
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 17.03.2020
Témata:
ISSN:1751-8628, 1751-8636
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Intrusion detection systems assume a noteworthy job in the provision of security in wireless Sensor networks. The existing intrusion detection systems focus only on the detection of the known types of attacks. However, it neglects to recognise the new types of attacks, which are introduced by malicious users leading to vulnerability and information loss in the network. In order to address this challenge, a new intrusion detection system, which detects the known and unknown types of attacks using an intelligent decision tree classification algorithm, has been proposed. For this purpose, a novel feature selection algorithm named dynamic recursive feature selection algorithm, which selects an optimal number of features from the data set is proposed. In addition, an intelligent fuzzy temporal decision tree algorithm is also proposed by extending the decision tree algorithm and integrated with convolution neural networks to detect the intruders effectively. The experimental analysis carried out using KDD cup data set and network trace data set demonstrates the effectiveness of this proposed approach. It proved that the false positive rate, energy consumption, and delay are reduced in the proposed work. In addition, the proposed system increases the network performance through increased packet delivery ratio.
AbstractList Intrusion detection systems assume a noteworthy job in the provision of security in wireless Sensor networks. The existing intrusion detection systems focus only on the detection of the known types of attacks. However, it neglects to recognise the new types of attacks, which are introduced by malicious users leading to vulnerability and information loss in the network. In order to address this challenge, a new intrusion detection system, which detects the known and unknown types of attacks using an intelligent decision tree classification algorithm, has been proposed. For this purpose, a novel feature selection algorithm named dynamic recursive feature selection algorithm, which selects an optimal number of features from the data set is proposed. In addition, an intelligent fuzzy temporal decision tree algorithm is also proposed by extending the decision tree algorithm and integrated with convolution neural networks to detect the intruders effectively. The experimental analysis carried out using KDD cup data set and network trace data set demonstrates the effectiveness of this proposed approach. It proved that the false positive rate, energy consumption, and delay are reduced in the proposed work. In addition, the proposed system increases the network performance through increased packet delivery ratio.
Author Nancy, Periasamy
Muthurajkumar, S
Ganapathy, S
Santhosh Kumar, S.V.N
Selvi, M
Arputharaj, Kannan
Author_xml – sequence: 1
  givenname: Periasamy
  surname: Nancy
  fullname: Nancy, Periasamy
  email: nancyp01@yahoo.com
  organization: 1Department of Computer Technology, MIT Campus, Anna University, Chennai- 600044, India
– sequence: 2
  givenname: S
  surname: Muthurajkumar
  fullname: Muthurajkumar, S
  organization: 2Department of Computer Technology, Anna University, MIT Campus, Chennai, India
– sequence: 3
  givenname: S
  surname: Ganapathy
  fullname: Ganapathy, S
  organization: 3School of Computing Science and Engineering, Vellore Institute of Technology, Chennai, India
– sequence: 4
  givenname: S.V.N
  surname: Santhosh Kumar
  fullname: Santhosh Kumar, S.V.N
  organization: 4School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 5
  givenname: M
  surname: Selvi
  fullname: Selvi, M
  organization: 5School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 6
  givenname: Kannan
  surname: Arputharaj
  fullname: Arputharaj, Kannan
  organization: 5School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
BookMark eNqFkL9OwzAQhy1UJNrCA7DlBVL8J4lTNqgoVCpioXPk2mfkkjqV7ahKJx4dp60YGGDynXzf73TfCA1sYwGhW4InBGfTOwMhlc12QjGZTjDh9AINCc9JWhasGPzUtLxCI-83GOd5kWVD9LWwwbXeNDZREECGvoq9_UhUZ8XWyESDCK2DxEN9_hdWJbo9HLokwHbXOFFHWJpjSnAAiayF90YbKY7zunHJ3rjIex9jrI-9hbBv3Ke_Rpda1B5uzu8YreZP77OXdPn2vJg9LFPJOKcpx7meCsWZYiWGQhRCZ4LSgpCM8fU6yzUDnksNSrM1VRktSy1zLphSBK8LzMaInHKla7x3oKudM1vhuorgqldYRYVVVFj1CqteYWT4L0aacDwpOGHqP8n7E7k3NXT_r6pmryv6OMc0Iz2cnuB-bNO0zkYxfyz7BuFEoDY
CitedBy_id crossref_primary_10_1155_2021_5540895
crossref_primary_10_1016_j_procs_2022_12_007
crossref_primary_10_1155_2023_8981988
crossref_primary_10_1007_s00521_023_08511_2
crossref_primary_10_1016_j_cose_2021_102379
crossref_primary_10_1038_s41598_025_03558_8
crossref_primary_10_3390_app131911067
crossref_primary_10_1007_s10115_025_02366_w
crossref_primary_10_1155_2022_1940375
crossref_primary_10_1007_s00500_024_09795_9
crossref_primary_10_1007_s11277_024_11726_8
crossref_primary_10_32604_cmc_2023_043534
crossref_primary_10_1038_s41598_024_60338_6
crossref_primary_10_1080_23742917_2024_2367805
crossref_primary_10_1109_ACCESS_2021_3071263
crossref_primary_10_1155_2022_4151168
crossref_primary_10_1155_2022_3990386
crossref_primary_10_1007_s12083_024_01786_9
crossref_primary_10_1007_s00500_020_05058_5
crossref_primary_10_3934_nhm_2025024
crossref_primary_10_3390_app12031011
crossref_primary_10_1155_2022_6375727
crossref_primary_10_1155_2022_2965638
crossref_primary_10_1080_01969722_2025_2520823
crossref_primary_10_1049_iet_com_2020_0168
crossref_primary_10_1109_TCE_2024_3430974
crossref_primary_10_1016_j_eswa_2021_114603
crossref_primary_10_1109_ACCESS_2023_3271408
crossref_primary_10_1007_s00500_021_05686_5
crossref_primary_10_1080_09540091_2023_2246703
crossref_primary_10_1007_s12652_022_04022_5
crossref_primary_10_1155_2022_4802381
crossref_primary_10_1007_s13042_025_02733_7
crossref_primary_10_1016_j_future_2021_03_024
crossref_primary_10_1155_2022_5418332
crossref_primary_10_1007_s11276_023_03603_2
crossref_primary_10_1007_s11276_023_03470_x
crossref_primary_10_1007_s11036_021_01823_4
crossref_primary_10_1016_j_rser_2024_114587
crossref_primary_10_1155_2021_4632722
crossref_primary_10_1155_2022_1795454
crossref_primary_10_1002_cpe_7248
crossref_primary_10_1016_j_jisa_2022_103149
crossref_primary_10_1016_j_engappai_2024_109143
crossref_primary_10_1080_00051144_2023_2295143
crossref_primary_10_1007_s12083_024_01629_7
crossref_primary_10_1155_2022_8347235
crossref_primary_10_1155_2022_3443182
crossref_primary_10_2478_amns_2025_0819
crossref_primary_10_1007_s12083_023_01572_z
crossref_primary_10_1007_s12596_024_02404_w
crossref_primary_10_3390_app122312392
crossref_primary_10_1007_s11227_023_05677_3
crossref_primary_10_1142_S0218126625502512
crossref_primary_10_1007_s11277_023_10773_x
crossref_primary_10_1038_s41598_024_75414_0
crossref_primary_10_4108_eetpht_v8i3_686
crossref_primary_10_1155_2021_7632110
crossref_primary_10_3390_electronics11244122
crossref_primary_10_1109_ACCESS_2021_3088149
crossref_primary_10_1080_03772063_2025_2499646
crossref_primary_10_1155_2022_1961700
crossref_primary_10_1016_j_csi_2023_103802
crossref_primary_10_1016_j_engappai_2024_108162
crossref_primary_10_1016_j_engappai_2024_109013
crossref_primary_10_3233_JIFS_201858
crossref_primary_10_1109_ACCESS_2020_3034015
crossref_primary_10_1016_j_eswa_2022_119030
crossref_primary_10_1007_s11276_021_02748_2
crossref_primary_10_1007_s11277_022_09776_x
crossref_primary_10_1155_2021_3913515
crossref_primary_10_1016_j_eswa_2022_118588
crossref_primary_10_1155_2021_9234084
crossref_primary_10_3233_JIFS_223649
crossref_primary_10_1109_ACCESS_2020_2996226
crossref_primary_10_1007_s12083_024_01706_x
crossref_primary_10_1109_ACCESS_2024_3464529
crossref_primary_10_1080_19393555_2021_1971803
crossref_primary_10_1007_s12083_022_01300_z
crossref_primary_10_1007_s11277_020_07705_4
crossref_primary_10_1016_j_ijleo_2022_170419
crossref_primary_10_1155_2021_3870656
crossref_primary_10_1002_ett_70202
crossref_primary_10_1007_s11227_025_07292_w
crossref_primary_10_1155_2022_7828727
crossref_primary_10_1155_2022_3315872
crossref_primary_10_1109_MWC_002_2100272
crossref_primary_10_1109_ACCESS_2021_3055431
crossref_primary_10_1007_s11227_024_06235_1
crossref_primary_10_1016_j_phycom_2023_102260
crossref_primary_10_1007_s12083_024_01650_w
crossref_primary_10_1155_2021_9938586
crossref_primary_10_1038_s41598_025_91663_z
crossref_primary_10_1007_s11277_024_11477_6
crossref_primary_10_1155_2021_9486949
crossref_primary_10_1007_s11276_021_02660_9
crossref_primary_10_1016_j_eswa_2022_116822
crossref_primary_10_1080_23742917_2022_2132345
crossref_primary_10_3390_electronics14152983
crossref_primary_10_1007_s42979_023_01894_y
crossref_primary_10_1371_journal_pone_0328998
crossref_primary_10_1007_s12243_023_00963_w
crossref_primary_10_1002_dac_6117
crossref_primary_10_3233_JIFS_231756
crossref_primary_10_1002_cpe_70000
crossref_primary_10_3390_electronics11213449
crossref_primary_10_1007_s11277_021_08270_0
crossref_primary_10_1038_s41598_025_09633_4
crossref_primary_10_1109_ACCESS_2025_3544221
crossref_primary_10_1109_TCSS_2021_3092746
crossref_primary_10_1109_TAI_2024_3354688
crossref_primary_10_1007_s11277_024_11391_x
Cites_doi 10.1016/j.jfranklin.2017.06.006
10.1016/j.jcss.2014.02.008
10.1016/j.cose.2017.10.011
10.1016/j.compeleceng.2018.03.036
10.1109/IJCNN.2009.5178804
10.1016/j.comnet.2018.01.007
10.1016/j.neucom.2016.08.042
10.1016/j.asoc.2018.02.051
10.7551/mitpress/3905.001.0001
10.3233/IFS-130803
10.1007/s11276-017-1549-3
10.1016/j.procs.2018.05.198
10.1016/j.procs.2018.05.069
10.1016/j.comnet.2018.02.028
10.1016/j.compeleceng.2017.09.028
10.1016/j.comcom.2012.04.012
10.1016/j.future.2013.09.015
10.1007/s10586-018-2181-4
10.1016/j.cam.2016.04.023
10.1007/s10586-017-1191-y
10.1145/2133360.2133364
10.1109/TMC.2010.44
10.1016/j.eswa.2017.07.005
10.1016/j.eswa.2017.11.041
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-com.2019.0172
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 895
ExternalDocumentID 10_1049_iet_com_2019_0172
CMU2BF02412
Genre article
GroupedDBID 0R
24P
29I
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
ZL0
ZZ
.DC
0R~
0ZK
1OC
2QL
4.4
6OB
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3772-705f9ad73d380e6a6af4a22611437bb45f3e75cfedf3b2d4288fc57a3dd10b603
IEDL.DBID 24P
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519931900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8628
IngestDate Wed Oct 29 21:27:33 EDT 2025
Tue Nov 18 22:25:57 EST 2025
Wed Jan 22 16:32:05 EST 2025
Tue Jan 05 21:51:09 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords telecommunication security
intelligent decision tree classification algorithm
pattern classification
KDD cup data set
false positive rate
wireless sensor networks
data mining
fuzzy neural nets
convolution neural networks
dynamic recursive feature selection algorithm
packet delivery ratio
fuzzy temporal decision tree classification
intrusion detection system
security of data
intelligent fuzzy temporal decision tree algorithm
network performance
feature extraction
decision trees
convolutional neural nets
learning (artificial intelligence)
network trace data
energy consumption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3772-705f9ad73d380e6a6af4a22611437bb45f3e75cfedf3b2d4288fc57a3dd10b603
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-com.2019.0172
PageCount 8
ParticipantIDs iet_journals_10_1049_iet_com_2019_0172
crossref_primary_10_1049_iet_com_2019_0172
crossref_citationtrail_10_1049_iet_com_2019_0172
wiley_primary_10_1049_iet_com_2019_0172_CMU2BF02412
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-03-17
PublicationDateYYYYMMDD 2020-03-17
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-17
  day: 17
PublicationDecade 2020
PublicationTitle IET communications
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Fahad, A.; Tari, Z.; Khalil, I. (C15) 2014; 36
Jin, Y.; Duffield, N.; Erman, J. (C19) 2012; 6
Ganapathy, S.; Kulothungan, K.; Kumar, S.M. (C13) 2013; 271
Selvi, M.; Velvizhy, P.; Ganapathy, S. (C26) 2019; 22
Hamed, T.; Dara, R.; Kremer, S.C. (C16) 2018; 73
Singh, H.R.; Biswas, S.K.; Purkayastha, B. (C21) 2017; 309
Muthuraj Kumar, S.; Ganapathy, S.; Vijayalakshmi, M. (C27) 2017; 96
Sethukkarasi, R.; Ganapathy, S.; Yogesh, P. (C20) 2014; 26
Zou, X.; Cao, J.; Guo, Q. (C23) 2018; 65
Herrera-Semenets, V.; Pérez-García, O.A.; Hernández-León, R. (C24) 2018; 95
Logambigai, R.; Ganapathy, S.; Kannan, A. (C28) 2018; 68
Rajendren, R.; Santhosh Kumar, S.V.N.; Palanichimy, Y. (C12) 2019; 22
Wang, Y.; Xiang, Y.; Zhang, J. (C14) 2014; 80
Li, F.; Wu, J. (C7) 2010; 9
Shi, H.; Li, H.; Zhang, D. (C17) 2018; 132
Hasan Haldar, N.A.; Khan, F.A.; Ali, A. (C22) 2017; 220
Santhosh Kumar, S.V.N.; Palanichimy, Y. (C25) 2018; 24
Akashdeep Manzoor, I.; Kumar, N. (C3) 2017; 88
Sharma, N.; Jain, V.; Mishra, A. (C9) 2018; 132
Indoli, S.; Goswamib, A.K.; Mishrab, S.P. (C8) 2018; 132
Zhang, H.; Lu, G.; Qassrawi, M.T. (C11) 2012; 35
Hajisalem, V.; Babaie, S. (C1) 2018; 136
Yin, C.; Zhu, Y.; Fei, J. (C10) 2017; 5
Roshan, S.; Miche, Y.; Akusok, A. (C2) 2018; 355
Maldonadoa, S.; López, J. (C4) 2018; 67
2017; 5
2017; 88
2009
2014; 26
1995
2018; 67
2012; 35
2018; 65
2018; 24
2018; 68
2018; 132
2017; 309
2017; 96
2014; 80
2000
2019; 22
2018; 355
2018; 136
2014; 36
2018; 73
2018; 95
2017; 220
2013
2012; 6
2013; 271
2010; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Ganapathy S. (e_1_2_7_14_1) 2013; 271
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
Rice J.A. (e_1_2_7_30_1) 2013
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
Muthuraj Kumar S. (e_1_2_7_28_1) 2017; 96
Yin C. (e_1_2_7_11_1) 2017; 5
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 355
  start-page: 1752
  year: 2018
  end-page: 1779
  ident: C2
  article-title: Adaptive and online network intrusion detection system using clustering and extreme learning machines
  publication-title: J. Franklin Inst.
– volume: 136
  start-page: 37
  year: 2018
  end-page: 50
  ident: C1
  article-title: A hybrid intrusion detection system based on ABC–AFS algorithm for misuse and anomaly detection
  publication-title: Comput. Netw.
– volume: 35
  start-page: 1457
  year: 2012
  end-page: 1471
  ident: C11
  article-title: Feature selection for optimizing traffic classification
  publication-title: Comput. Commun.
– volume: 271
  start-page: 1
  issue: 1
  year: 2013
  end-page: 16
  ident: C13
  article-title: Intelligent feature selection and classification techniques for intrusion detection in networks: a survey
  publication-title: EURASIP J. Wirel. Commun. Netw.
– volume: 68
  start-page: 62
  year: 2018
  end-page: 75
  ident: C28
  article-title: Energy-efficient grid-based routing algorithm using intelligent fuzzy rules for wireless sensor networks
  publication-title: Comput. Electr. Eng.
– volume: 132
  start-page: 81
  year: 2018
  end-page: 98
  ident: C17
  article-title: An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification
  publication-title: Comput. Net.
– volume: 220
  start-page: 221
  year: 2017
  end-page: 235
  ident: C22
  article-title: Arrhythmia classification using Mahalanobis distance based improved fuzzy C-means clustering for mobile health monitoring systems
  publication-title: Neurocomputing
– volume: 22
  start-page: 10839
  year: 2019
  end-page: 10848
  ident: C26
  article-title: A rule-based delay constrained energy efficient routing technique for wireless sensor networks
  publication-title: Cluster Comput.
– volume: 22
  start-page: 423
  issue: 1
  year: 2019
  end-page: 434
  ident: C12
  article-title: Detection of DoS attacks in cloud networks using an intelligent rule-based classification system
  publication-title: Cluster Comput..
– volume: 88
  start-page: 249
  year: 2017
  end-page: 257
  ident: C3
  article-title: A feature reduced intrusion detection system using ANN classifier
  publication-title: Expert Syst. Appl.
– volume: 67
  start-page: 94
  year: 2018
  end-page: 105
  ident: C4
  article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification
  publication-title: Appl. Soft Comput.
– volume: 309
  start-page: 683
  year: 2017
  end-page: 694
  ident: C21
  article-title: A neuro-fuzzy classification technique using dynamic clustering and GSS rule generation
  publication-title: J. Comput. Appl. Math.
– volume: 96
  start-page: 1752
  issue: 2
  year: 2017
  end-page: 1769
  ident: C27
  article-title: An intelligent secured and energy efficient routing algorithm for MANETs
  publication-title: Wirel. Pers. Commun.
– volume: 24
  start-page: 1343
  issue: 4
  year: 2018
  end-page: 1360
  ident: C25
  article-title: Energy efficient and secured distributed data dissemination using hop by authentication in WSN
  publication-title: Wirel. Netw.
– volume: 9
  start-page: 1035
  issue: 7
  year: 2010
  end-page: 1048
  ident: C7
  article-title: Uncertainty modeling and reduction in MANETs
  publication-title: IEEE Trans. Mob. Comput.
– volume: 80
  start-page: 1021
  year: 2014
  end-page: 1036
  ident: C14
  article-title: Internet traffic clustering with side information
  publication-title: J. Comput. Syst. Sci.
– volume: 6
  start-page: 1
  year: 2012
  end-page: 34
  ident: C19
  article-title: A modular machine learning system for flow-level traffic classification in large network's
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 73
  start-page: 137
  year: 2018
  end-page: 155
  ident: C16
  article-title: Network intrusion detection system based on recursive feature addition and bigram technique
  publication-title: Comput. Secur.
– volume: 36
  start-page: 156
  year: 2014
  end-page: 169
  ident: C15
  article-title: An optimal and stable feature selection approach for traffic classification based on multi-criterion fusion
  publication-title: Future Gener. Comput. Syst.
– volume: 26
  start-page: 1167
  issue: 3
  year: 2014
  end-page: 1178
  ident: C20
  article-title: An intelligent neuro-fuzzy temporal knowledge representation model for mining temporal patterns
  publication-title: J. Intell. Fuzzy Syst.
– volume: 65
  start-page: 67
  year: 2018
  end-page: 78
  ident: C23
  article-title: A novel network security algorithm based on improved support vector machine from smart city perspective
  publication-title: Comput. Electr. Eng.
– volume: 95
  start-page: 272
  year: 2018
  end-page: 279
  ident: C24
  article-title: A data reduction strategy and its application on the scan and backscatter detection using rule-based classifiers
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 21954
  year: 2017
  end-page: 21961
  ident: C10
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: Comput. Commun.
– volume: 132
  start-page: 377
  year: 2018
  end-page: 384
  ident: C9
  article-title: An analysis of convolutional neural networks for image classification
  publication-title: Procedia Comput. Sci.
– volume: 132
  start-page: 679
  year: 2018
  end-page: 688
  ident: C8
  article-title: Conceptual understanding of convolutional neural network-deep learning approach
  publication-title: Procedia Comput. Sci.
– volume: 35
  start-page: 1457
  year: 2012
  end-page: 1471
  article-title: Feature selection for optimizing traffic classification
  publication-title: Comput. Commun.
– start-page: 1573
  year: 2009
  end-page: 1579
– volume: 80
  start-page: 1021
  year: 2014
  end-page: 1036
  article-title: Internet traffic clustering with side information
  publication-title: J. Comput. Syst. Sci.
– volume: 132
  start-page: 81
  year: 2018
  end-page: 98
  article-title: An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification
  publication-title: Comput. Net.
– volume: 132
  start-page: 377
  year: 2018
  end-page: 384
  article-title: An analysis of convolutional neural networks for image classification
  publication-title: Procedia Comput. Sci.
– volume: 132
  start-page: 679
  year: 2018
  end-page: 688
  article-title: Conceptual understanding of convolutional neural network‐deep learning approach
  publication-title: Procedia Comput. Sci.
– volume: 96
  start-page: 1752
  issue: 2
  year: 2017
  end-page: 1769
  article-title: An intelligent secured and energy efficient routing algorithm for MANETs
  publication-title: Wirel. Pers. Commun.
– volume: 9
  start-page: 1035
  issue: 7
  year: 2010
  end-page: 1048
  article-title: Uncertainty modeling and reduction in MANETs
  publication-title: IEEE Trans. Mob. Comput.
– volume: 67
  start-page: 94
  year: 2018
  end-page: 105
  article-title: Dealing with high‐dimensional class‐imbalanced datasets: embedded feature selection for SVM classification
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 21954
  year: 2017
  end-page: 21961
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: Comput. Commun.
– volume: 65
  start-page: 67
  year: 2018
  end-page: 78
  article-title: A novel network security algorithm based on improved support vector machine from smart city perspective
  publication-title: Comput. Electr. Eng.
– volume: 26
  start-page: 1167
  issue: 3
  year: 2014
  end-page: 1178
  article-title: An intelligent neuro‐fuzzy temporal knowledge representation model for mining temporal patterns
  publication-title: J. Intell. Fuzzy Syst.
– volume: 73
  start-page: 137
  year: 2018
  end-page: 155
  article-title: Network intrusion detection system based on recursive feature addition and bigram technique
  publication-title: Comput. Secur.
– volume: 88
  start-page: 249
  year: 2017
  end-page: 257
  article-title: A feature reduced intrusion detection system using ANN classifier
  publication-title: Expert Syst. Appl.
– volume: 220
  start-page: 221
  year: 2017
  end-page: 235
  article-title: Arrhythmia classification using Mahalanobis distance based improved fuzzy C‐means clustering for mobile health monitoring systems
  publication-title: Neurocomputing
– volume: 22
  start-page: 10839
  year: 2019
  end-page: 10848
  article-title: A rule‐based delay constrained energy efficient routing technique for wireless sensor networks
  publication-title: Cluster Comput.
– year: 1995
– volume: 68
  start-page: 62
  year: 2018
  end-page: 75
  article-title: Energy‐efficient grid‐based routing algorithm using intelligent fuzzy rules for wireless sensor networks
  publication-title: Comput. Electr. Eng.
– volume: 271
  start-page: 1
  issue: 1
  year: 2013
  end-page: 16
  article-title: Intelligent feature selection and classification techniques for intrusion detection in networks: a survey
  publication-title: EURASIP J. Wirel. Commun. Netw.
– volume: 355
  start-page: 1752
  year: 2018
  end-page: 1779
  article-title: Adaptive and online network intrusion detection system using clustering and extreme learning machines
  publication-title: J. Franklin Inst.
– volume: 95
  start-page: 272
  year: 2018
  end-page: 279
  article-title: A data reduction strategy and its application on the scan and backscatter detection using rule‐based classifiers
  publication-title: Expert Syst. Appl.
– volume: 136
  start-page: 37
  year: 2018
  end-page: 50
  article-title: A hybrid intrusion detection system based on ABC–AFS algorithm for misuse and anomaly detection
  publication-title: Comput. Netw.
– volume: 36
  start-page: 156
  year: 2014
  end-page: 169
  article-title: An optimal and stable feature selection approach for traffic classification based on multi‐criterion fusion
  publication-title: Future Gener. Comput. Syst.
– volume: 309
  start-page: 683
  year: 2017
  end-page: 694
  article-title: A neuro‐fuzzy classification technique using dynamic clustering and GSS rule generation
  publication-title: J. Comput. Appl. Math.
– start-page: 1
  year: 2000
  end-page: 11
– volume: 22
  start-page: 423
  issue: 1
  year: 2019
  end-page: 434
  article-title: Detection of DoS attacks in cloud networks using an intelligent rule‐based classification system
  publication-title: Cluster Comput.
– volume: 6
  start-page: 1
  year: 2012
  end-page: 34
  article-title: A modular machine learning system for flow‐level traffic classification in large network's
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 24
  start-page: 1343
  issue: 4
  year: 2018
  end-page: 1360
  article-title: Energy efficient and secured distributed data dissemination using hop by authentication in WSN
  publication-title: Wirel. Netw.
– year: 2013
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jfranklin.2017.06.006
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jcss.2014.02.008
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cose.2017.10.011
– ident: e_1_2_7_29_1
  doi: 10.1016/j.compeleceng.2018.03.036
– ident: e_1_2_7_19_1
  doi: 10.1109/IJCNN.2009.5178804
– ident: e_1_2_7_18_1
  doi: 10.1016/j.comnet.2018.01.007
– ident: e_1_2_7_23_1
  doi: 10.1016/j.neucom.2016.08.042
– ident: e_1_2_7_5_1
  doi: 10.1016/j.asoc.2018.02.051
– ident: e_1_2_7_6_1
  doi: 10.7551/mitpress/3905.001.0001
– ident: e_1_2_7_21_1
  doi: 10.3233/IFS-130803
– ident: e_1_2_7_26_1
  doi: 10.1007/s11276-017-1549-3
– ident: e_1_2_7_10_1
  doi: 10.1016/j.procs.2018.05.198
– ident: e_1_2_7_9_1
  doi: 10.1016/j.procs.2018.05.069
– ident: e_1_2_7_7_1
– volume: 5
  start-page: 21954
  year: 2017
  ident: e_1_2_7_11_1
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: Comput. Commun.
– ident: e_1_2_7_2_1
  doi: 10.1016/j.comnet.2018.02.028
– volume: 271
  start-page: 1
  issue: 1
  year: 2013
  ident: e_1_2_7_14_1
  article-title: Intelligent feature selection and classification techniques for intrusion detection in networks: a survey
  publication-title: EURASIP J. Wirel. Commun. Netw.
– ident: e_1_2_7_24_1
  doi: 10.1016/j.compeleceng.2017.09.028
– volume: 96
  start-page: 1752
  issue: 2
  year: 2017
  ident: e_1_2_7_28_1
  article-title: An intelligent secured and energy efficient routing algorithm for MANETs
  publication-title: Wirel. Pers. Commun.
– ident: e_1_2_7_12_1
  doi: 10.1016/j.comcom.2012.04.012
– volume-title: Mathematical statistics and data analysis
  year: 2013
  ident: e_1_2_7_30_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.future.2013.09.015
– ident: e_1_2_7_13_1
  doi: 10.1007/s10586-018-2181-4
– ident: e_1_2_7_22_1
  doi: 10.1016/j.cam.2016.04.023
– ident: e_1_2_7_27_1
  doi: 10.1007/s10586-017-1191-y
– ident: e_1_2_7_20_1
  doi: 10.1145/2133360.2133364
– ident: e_1_2_7_8_1
  doi: 10.1109/TMC.2010.44
– ident: e_1_2_7_4_1
  doi: 10.1016/j.eswa.2017.07.005
– ident: e_1_2_7_25_1
  doi: 10.1016/j.eswa.2017.11.041
SSID ssj0055644
Score 2.551226
Snippet Intrusion detection systems assume a noteworthy job in the provision of security in wireless Sensor networks. The existing intrusion detection systems focus...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 888
SubjectTerms convolution neural networks
convolutional neural nets
data mining
decision trees
dynamic recursive feature selection algorithm
energy consumption
false positive rate
feature extraction
fuzzy neural nets
fuzzy temporal decision tree classification
intelligent decision tree classification algorithm
intelligent fuzzy temporal decision tree algorithm
intrusion detection system
KDD cup data set
learning (artificial intelligence)
network performance
network trace data
packet delivery ratio
pattern classification
Research Article
security of data
telecommunication security
wireless sensor networks
Title Intrusion detection using dynamic feature selection and fuzzy temporal decision tree classification for wireless sensor networks
URI http://digital-library.theiet.org/content/journals/10.1049/iet-com.2019.0172
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-com.2019.0172
Volume 14
WOSCitedRecordID wos000519931900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_b9KAHv8X5RQ7iQYiuTds0Rx0Od3Ds4HC3kjaJDEYVOwV38k_3vbQbDmGCCKXQ5oPyXpL3e83L-xFyZnwhAAlYFgI8ZoG2minp-SzD48BcZJHxUkc2IXq9eDiU_Rppz87ClPkh5j_ccGa49RonuEpLFhIAtaDEkZkwDPgACyYv0ZOpkxXP4zHyN_hBf7Ych2HkGF3BTHoM4Hs839qUVz-6WDBOdShehKzO5nQ2_-Vrt8hGBTnpdTlGtknN5Dtk_Vsiwl3y2c3x8AXoiGozcdFZOcWQ-CeqS8p6ao1LAUoLR5yD5SrX1L5Npx-0ym81hsYlYw_FvW6aITLHUCSnfQrwmGJm5DEsrtBNXsBzXkahF3tk0Ll9aN-xipuBZRwAOQMFW6m04BokbiIVKRsogHLgXnGRpkFouRFhZo22PPU1ODmxzUKhuNZeK41afJ808ufcHBAaYMJKxX1upArgUpLHaSoVN1zHNrBN0popJcmqxOXInzFO3AZ6IBMQbgLCTVC4CQq3SS7mTV7KrB3LKp_ju2ruFssqcqfi37tM2vcD_6YD-MfzD__U6ois-ejZY-SgOCYNGATmhKxm75NR8XrqRjjcH7u9L1k7Aic
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6xgNRyKPQloA98qDggmSaxE8fHFrpiVYh62BXcIie2K6RVWjULEpz46cw42VVRpa2EkHJJ_FA0Y3u-scffAHxyiVKIBDxPER5zab3lRscJr-k6sFB15uIqJJtQRZFfXOgfK3A8vwvT8UMsNtxoZoT1miY4bUh3DqckksxLN-MU8YEmTB-SKzOANYmAgxI4nI-K-XqcpllI6Yp2MuaI3_PF2ab-_E8XD6zTAIsfYtZgdIabT_O7W_CiB53sSzdKXsKKa17Bxl9UhK_hbtTQ9QvUErNuFuKzGkZB8T-Z7ZLWM-8CCShrQ-ocKjeNZf7q9vaG9QxXU2zc5exhdNrNasLmFIwU9M8QIDPiRp7i8ordNC2-N10cevsGJsNv46MT3mdn4LVASM5RxV4bq4QVeeQykxkvDYI5dLCEqiqZeuFUWntnvagSi25O7utUGWFtHFVZJN7CavOrcdvAJFFWGpEIp43Ex2iRV5U2wgmbe-l3IJprpax76nLKoDEtwxG61CUKt0ThliTckoS7AweLJr873o5llffpWz9722UVRdDx_7ssj84mydchIqA42X1Uqz14djI-Oy1PR8X3d_Cc6lAYTazewyoOCPcB1uvr2WX752MY7vc-lgV4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB_8OA59UM878eM88yA-HES3Tdo0j57ropwu--DCvpW0SURYemJX4Xy6P92ZtLsoB3twCH1p04QyM8n8ppn8BuDQxUohEvA8QXjMpfWWGx3FvKTjwEKVqYuKUGxC9fvZaKQHC9CdnoVp-CFmP9xoZoT1mia4u7e-CTglkWTeuQmnjA90YfqYQplFWJaJisi2YzmYrsdJkoaSrugnI474PZvtbeqTv4Z4450WsfktZg1Op7f-Pp-7AWst6GSnjZV8ggVXbcLqKyrCz_DnsqLjF6glZt0k5GdVjJLib5ltitYz7wIJKKtD6RxqN5Vl_vH5-TdrGa7G2Lmp2cNot5uVhM0pGSnonyFAZsSNPMblFYeparyvmjz0-gsMe-c3Zxe8rc7AS4GQnKOKvTZWCSuyjktNarw0COYwwBKqKGTihVNJ6Z31oogthjmZLxNlhLVRp0g7YguWql-V2wYmibLSiFg4bSReRousKLQRTtjMS78DnalW8rKlLqcKGuM8bKFLnaNwcxRuTsLNSbg78H3W5b7h7Zj38hE9a2dvPe9FEXT87yHzs-th_KOHCCiKd_-r1wF8HHR7-dVl_-cerMQU5lMaofoKS2gPbh8-lE-Tu_rhW7D2Fz_pBIc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+detection+using+dynamic+feature+selection+and+fuzzy+temporal+decision+tree+classification+for+wireless+sensor+networks&rft.jtitle=IET+communications&rft.au=Nancy%2C+Periasamy&rft.au=Muthurajkumar%2C+S.&rft.au=Ganapathy%2C+S.&rft.au=Santhosh+Kumar%2C+S.V.N.&rft.date=2020-03-17&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=14&rft.issue=5&rft.spage=888&rft.epage=895&rft_id=info:doi/10.1049%2Fiet-com.2019.0172&rft.externalDBID=10.1049%252Fiet-com.2019.0172&rft.externalDocID=CMU2BF02412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon