Particle filtering-based recursive identification for controlled auto-regressive systems with quantised output
Recursive prediction error method is one of the main tools for analysis of controlled auto-regressive systems with quantised output. In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm. To impr...
Gespeichert in:
| Veröffentlicht in: | IET control theory & applications Jg. 13; H. 14; S. 2181 - 2187 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
24.09.2019
|
| Schlagworte: | |
| ISSN: | 1751-8644, 1751-8652 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recursive prediction error method is one of the main tools for analysis of controlled auto-regressive systems with quantised output. In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm. To improve the convergence performance of the algorithm, a particle filtering technique, which approximates the posterior probability density function with a weighted set of discrete random sampling points is utilised to correct the linear output estimates. It can exclude those invalid particles according to their corresponding weights. The performance of the particle filtering technique-based algorithm is much better than that of the auxiliary model-based one. Finally, results are verified by examples from simulation and engineering. |
|---|---|
| AbstractList | Recursive prediction error method is one of the main tools for analysis of controlled auto‐regressive systems with quantised output. In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm. To improve the convergence performance of the algorithm, a particle filtering technique, which approximates the posterior probability density function with a weighted set of discrete random sampling points is utilised to correct the linear output estimates. It can exclude those invalid particles according to their corresponding weights. The performance of the particle filtering technique‐based algorithm is much better than that of the auxiliary model‐based one. Finally, results are verified by examples from simulation and engineering. |
| Author | Chen, Jiazhong Ding, Jie Jiang, Guoping Lin, Jinxing |
| Author_xml | – sequence: 1 givenname: Jie surname: Ding fullname: Ding, Jie email: dingjie@njupt.edu.cn organization: Jiangsu Engineering Lab for IOT Intelligent Robots, School of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China – sequence: 2 givenname: Jiazhong surname: Chen fullname: Chen, Jiazhong organization: Jiangsu Engineering Lab for IOT Intelligent Robots, School of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China – sequence: 3 givenname: Jinxing surname: Lin fullname: Lin, Jinxing organization: Jiangsu Engineering Lab for IOT Intelligent Robots, School of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China – sequence: 4 givenname: Guoping surname: Jiang fullname: Jiang, Guoping organization: Jiangsu Engineering Lab for IOT Intelligent Robots, School of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China |
| BookMark | eNqFkU9PwjAYhxuDiYB-AG_7AsV2W9fhTYmICYke8Nx03TssGS22nYRvbwfGgwc8vT38nvfP0xEaGGsAoVtKJpTk0zsNAasgJymh0wkhaXmBhpQzisuCpYPfd55foZH3G0IYK3I2ROZNuqBVC0mj2wBOmzWupIc6caA65_UXJLoGE3SjlQzamqSxLlHWBGfbNuZkFyx2sHbgj2l_8AG2Ptnr8JF8djKifTvbhV0XrtFlI1sPNz91jN7nT6vZAi9fn19mD0usMs4JBiilqmTKGwaFyljNy7h_lpc1KzPGFOGs4jWrakgbxqe8LEgBUEsgxbSsZJWNET31Vc5676ARO6e30h0EJaIXJqIwEYWJXpjohUWG_2GUDseTg5O6PUven8i9buHw_ygxWy3Sx3n8BEoijE9wH9vYzpko5sywby29mXs |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2020_07_045 crossref_primary_10_1049_iet_cta_2019_0413 crossref_primary_10_1002_acs_3320 crossref_primary_10_1002_acs_3166 crossref_primary_10_1007_s12555_020_0589_0 crossref_primary_10_1049_iet_cta_2019_0731 crossref_primary_10_1155_2020_6128697 crossref_primary_10_1007_s00034_020_01378_x crossref_primary_10_1109_ACCESS_2019_2938322 crossref_primary_10_1002_acs_3169 crossref_primary_10_1007_s11581_019_03368_9 crossref_primary_10_1002_acs_3203 crossref_primary_10_1049_iet_cta_2019_1027 crossref_primary_10_1007_s12555_019_0799_5 crossref_primary_10_1145_3569899 crossref_primary_10_1007_s12555_020_0476_8 crossref_primary_10_1016_j_jfranklin_2020_03_028 crossref_primary_10_1016_j_jfranklin_2020_03_027 crossref_primary_10_1002_rnc_4890 crossref_primary_10_1002_rnc_5206 crossref_primary_10_1016_j_jfranklin_2019_06_032 crossref_primary_10_1049_iet_spr_2019_0481 crossref_primary_10_1002_acs_3053 crossref_primary_10_1016_j_cam_2019_112575 crossref_primary_10_1016_j_jfranklin_2019_11_003 crossref_primary_10_1080_00207721_2019_1690720 crossref_primary_10_1002_rnc_4959 crossref_primary_10_1007_s12555_020_0619_y crossref_primary_10_1109_ACCESS_2019_2956476 crossref_primary_10_1002_rnc_4884 crossref_primary_10_1002_rnc_4961 crossref_primary_10_1002_rnc_5450 crossref_primary_10_1007_s12555_018_0843_x crossref_primary_10_1002_rnc_4824 crossref_primary_10_1049_iet_cta_2019_0915 crossref_primary_10_1049_iet_cta_2018_6333 crossref_primary_10_1002_acs_3308 crossref_primary_10_1002_acs_3221 crossref_primary_10_1002_oca_3279 crossref_primary_10_1007_s12555_019_0191_5 crossref_primary_10_1049_iet_cta_2020_0866 crossref_primary_10_3390_math8122254 crossref_primary_10_1080_00207721_2019_1704093 crossref_primary_10_1002_acs_3148 crossref_primary_10_1002_acs_3101 crossref_primary_10_1002_oca_2985 crossref_primary_10_3390_s20010299 crossref_primary_10_1002_acs_3180 crossref_primary_10_1007_s42044_021_00088_0 crossref_primary_10_1002_rnc_5323 crossref_primary_10_1007_s12555_019_0053_1 crossref_primary_10_1007_s12555_019_0831_9 crossref_primary_10_1002_rnc_5200 crossref_primary_10_1007_s00034_020_01441_7 crossref_primary_10_1016_j_jfranklin_2020_03_047 crossref_primary_10_1049_cth2_12118 crossref_primary_10_1016_j_jfranklin_2019_12_007 crossref_primary_10_1049_iet_cta_2019_0429 crossref_primary_10_1007_s12555_019_0970_z crossref_primary_10_1016_j_jfranklin_2021_04_006 crossref_primary_10_1109_LSP_2023_3313809 crossref_primary_10_1080_00207721_2021_1895356 crossref_primary_10_1002_rnc_4819 crossref_primary_10_3390_math7121143 crossref_primary_10_3390_s20051334 crossref_primary_10_1002_acs_3113 crossref_primary_10_1109_TIM_2022_3154797 crossref_primary_10_1002_rnc_5190 crossref_primary_10_1007_s12555_019_0940_5 crossref_primary_10_1016_j_jfranklin_2020_04_029 crossref_primary_10_1109_TII_2022_3176910 crossref_primary_10_1007_s00034_019_01261_4 crossref_primary_10_1002_rnc_5672 crossref_primary_10_1049_cth2_12700 |
| Cites_doi | 10.1016/j.automatica.2011.06.008 10.1002/aic.13735 10.1109/TAC.2003.819073 10.1016/j.automatica.2015.04.009 10.1002/0470045345 10.1016/0005-1098(93)90103-Z 10.1049/iet-cta.2016.0491 10.1016/j.jfranklin.2018.04.013 10.1016/j.sigpro.2017.03.029 10.1016/j.sigpro.2018.01.012 10.1109/TCYB.2017.2715980 10.1016/j.ifacol.2018.09.078 10.1109/ACC.2014.6859180 10.1016/j.jfranklin.2018.01.052 10.1109/TAC.2009.2033842 10.1016/j.sigpro.2017.02.010 10.1109/ACCESS.2018.2794396 10.1016/j.apm.2014.12.040 10.1016/j.automatica.2016.04.014 10.1016/j.automatica.2016.12.034 10.1049/iet-cta.2017.0821 10.1023/A:1008935410038 10.1016/j.automatica.2007.03.006 10.1109/ACCESS.2018.2796118 10.1109/TAC.2015.2471735 10.1016/j.jss.2016.08.036 10.1016/j.automatica.2011.05.007 10.1016/j.sigpro.2018.06.010 10.1007/s11424-014-1178-1 10.1016/j.jfranklin.2018.03.015 10.1002/acs.4480090403 10.1016/j.apm.2017.10.005 10.1080/00207170802061269 10.1016/j.apm.2016.01.062 10.1016/j.jfranklin.2017.04.003 10.1109/JPROC.2006.887294 10.1016/j.jprocont.2015.09.001 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-cta.2019.0028 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8652 |
| EndPage | 2187 |
| ExternalDocumentID | 10_1049_iet_cta_2019_0028 CTH2BF00510 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873326 – fundername: National Natural Science Foundation of China grantid: 61473158 – fundername: Natural Science Foundation of NJUPT grantid: NY217063 – fundername: Natural Science Foundation of NJUPT funderid: NY217063 – fundername: National Natural Science Foundation of China funderid: 61473158; 61873326 |
| GroupedDBID | 0R 24P 29I 4IJ 5GY 6IK 8VB AAJGR ABPTK ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX HZ IFIPE IPLJI JAVBF LAI LOTEE LXI M43 MS NADUK NXXTH O9- OCL QWB RIE RNS RUI U5U UNMZH UNR ZL0 ZZ .DC 0R~ 0ZK 1OC 3V. 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ABUWG ACCFJ ACCMX ACESK ACXQS ADEYR AEEZP AEGXH AEQDE AFAZI AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU AZQEC BENPR BGLVJ BPHCQ CCPQU DWQXO EBS EJD F8P GNUQQ GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO ITC K1G K6V K7- L6V M0N M7S MCNEO MS~ OK1 P62 PQQKQ PROAC PTHSS ROL ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA IGS PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3770-ee8acba27f5e6c35d78751348d58355c075b7d5bde2f57978606eedae0698bab3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484962100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8644 |
| IngestDate | Tue Nov 18 22:38:59 EST 2025 Wed Oct 29 21:21:39 EDT 2025 Wed Jan 22 16:32:04 EST 2025 Tue Jan 05 21:51:29 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | linear output estimates least squares approximations controlled auto-regressive systems posterior probability density function standard stochastic gradient algorithm particle filtering technique-based algorithm filtering theory probability particle filtering (numerical methods) novel particle filtering technique autoregressive processes novel recursive identification algorithm quantised output recursive prediction error method recursive estimation parameter estimation main tools invalid particles auxiliary model-based stochastic processes gradient methods discrete random sampling points particle filtering-based recursive identification auxiliary model principle |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3770-ee8acba27f5e6c35d78751348d58355c075b7d5bde2f57978606eedae0698bab3 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-cta.2019.0028 |
| PageCount | 7 |
| ParticipantIDs | crossref_primary_10_1049_iet_cta_2019_0028 wiley_primary_10_1049_iet_cta_2019_0028_CTH2BF00510 iet_journals_10_1049_iet_cta_2019_0028 crossref_citationtrail_10_1049_iet_cta_2019_0028 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-24 |
| PublicationDateYYYYMMDD | 2019-09-24 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationTitle | IET control theory & applications |
| PublicationYear | 2019 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Chen, J.; Li, J.; Liu, Y. (C35) 2017; 354 Wang, Y.J.; Ding, F.; Wu, M. (C10) 2018; 355 Mairet, F.; Gouzé, J.L. (C15) 2016; 61 Wang, F.; Chen, B.; Lin, C. (C14) 2018; 48 Yao, D.; Lu, R.; Xu, Y. (C12) 2017; 137 Zhao, Y.; Wang, L.Y.; Yin, G.G. (C24) 2007; 43 Colinet, E.; Juillard, J. (C19) 2010; 55 Guo, J.; Wang, L.Y.; Yin, G. (C7) 2015; 57 Wang, L.Y.; Zhang, J.F.; Yin, G.G. (C6) 2003; 48 Li, L.; Ren, X.; Guo, F. (C20) 2018; 355 Ding, F.; Xu, L.; Alsaadi, F.E. (C3) 2018; 12 Godoy, B.I.; Goodwin, G.C.; Agüero, J.C. (C8) 2011; 47 Li, Q.; Zhang, B.H.; Cui, L.G. (C5) 2014; 27 Li, M.H.; Liu, X.M. (C16) 2018; 147 Jin, Q.; Wang, Z.; Liu, X. (C30) 2015; 35 Doucet, A.; Godsill, S.; Andrieu, C. (C38) 2000; 10 Gómez, J.C. (C9) 2018; 51 Zhai, Q.; Wang, Y. (C11) 2018; 152 Li, Z.M.; Chang, X.H.; Mathiyalagan, K. (C13) 2017; 139 Mattsson, P.; Wigren, T. (C2) 2016; 71 Deng, J.; Huang, B. (C34) 2012; 58 Wang, D.Q.; Li, L.W.; Ji, Y. (C31) 2018; 54 Zhang, Y.; Zhao, Z.; Cui, G.M. (C26) 2015; 39 Guo, J.; Wang, L.Y.; Yin, G. (C1) 2017; 78 Liang, Z. (C39) 2009; 82 Nair, G.N.; Fagnani, F.; Zampieri, S. (C4) 2007; 95 Wigren, T. (C23) 1995; 9 Zhang, Y.; Luo, G. (C21) 2017; 127 Ding, F.; Liu, G.J.; Liu, X.P. (C32) 2011; 47 Ma, L.; Liu, X. (C22) 2016; 40 Yuan, Y.; Tian, C.; Lu, X. (C27) 2018; 6 Chen, J.; Liu, Y.; Ding, F. (C33) 2018 Li, M.H.; Liu, X.M. (C29) 2018; 6 Wigren, T. (C17) 1993; 29 Ding, F.; Wang, F.F.; Xu, L. (C28) 2017; 11 Ding, F.; Chen, H.B.; Xu, L. (C25) 2018; 355 2015; 57 2015; 35 2010; 55 1995; 9 2015; 39 1993; 29 2009; 82 June 2014 2018; 147 2014; 27 2007 2006 2016; 71 2007; 95 2012; 58 2017; 354 2017; 137 2018; 48 2017; 139 2018; 152 2018; 6 2018; 355 2017; 11 2000; 10 2017; 78 2003; 48 2018 2016; 40 2016; 61 2018; 51 2011; 47 2018; 12 2007; 43 2018; 54 2017; 127 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 Chen J. (e_1_2_7_34_1) 2018 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Wigren T. (e_1_2_7_37_1) 2007 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 47 start-page: 1645 issue: 8 year: 2011 end-page: 1655 ident: C32 article-title: Parameter estimation with scarce measurements publication-title: Automatica – volume: 127 start-page: 295 year: 2017 end-page: 301 ident: C21 article-title: Recursive prediction algorithm for non-stationary Gaussian process publication-title: J. Syst. Softw. – volume: 355 start-page: 3737 issue: 8 year: 2018 end-page: 3752 ident: C25 article-title: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation publication-title: J. Franklin Inst. – volume: 78 start-page: 280 year: 2017 end-page: 286 ident: C1 article-title: Identification of Wiener systems with quantized inputs and binary-valued output observations publication-title: Automatica – volume: 39 start-page: 4257 issue: 15 year: 2015 end-page: 4265 ident: C26 article-title: Auxiliary model method for transfer function estimation from noisy input and output data publication-title: Appl. Math. Model. – volume: 10 start-page: 197 issue: 3 year: 2000 end-page: 208 ident: C38 article-title: On sequential Monte Carlo sampling methods for Bayesian filtering publication-title: Stat. Comput. – volume: 51 start-page: 909 issue: 15 year: 2018 end-page: 914 ident: C9 article-title: Recursive identification of IIR systems with multilevel output quantization and lossy memoryless channels with transmission errors publication-title: IFAC-PapersOnLine – volume: 54 start-page: 537 year: 2018 end-page: 550 ident: C31 article-title: Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method publication-title: Appl. Math. Model. – volume: 57 start-page: 113 year: 2015 end-page: 122 ident: C7 article-title: Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs publication-title: Automatica – volume: 71 start-page: 179 year: 2016 end-page: 186 ident: C2 article-title: Convergence analysis for recursive Hammerstein identification publication-title: Automatica – volume: 9 start-page: 325 issue: 4 year: 1995 end-page: 354 ident: C23 article-title: Approximate gradients, convergence and positive realness in recursive identification of a class of nonlinear systems publication-title: Int. J. Adapt. Control Signal Process. – volume: 43 start-page: 1752 issue: 10 year: 2007 end-page: 1765 ident: C24 article-title: Identification of Wiener systems with binary-valued output observations publication-title: Automatica – volume: 355 start-page: 4050 issue: 9 year: 2018 end-page: 4075 ident: C20 article-title: Modified multi-innovation stochastic gradient algorithm for Wiener–Hammerstein systems with backlash publication-title: J. Franklin Inst. – volume: 82 start-page: 981 issue: 6 year: 2009 end-page: 992 ident: C39 article-title: Energy-based balance control approach to the ball and beam system publication-title: Int. J. Control – volume: 29 start-page: 1011 issue: 4 year: 1993 end-page: 1025 ident: C17 article-title: Recursive prediction error identification using the nonlinear Wiener model publication-title: Automatica – volume: 12 start-page: 892 issue: 7 year: 2018 end-page: 899 ident: C3 article-title: Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique publication-title: IET Control Theory Applic. – volume: 139 start-page: 102 year: 2017 end-page: 109 ident: C13 article-title: Robust energy-to-peak filtering for discrete-time nonlinear systems with measurement quantization publication-title: Signal Process. – volume: 48 start-page: 1839 issue: 6 year: 2018 end-page: 1848 ident: C14 article-title: Adaptive neural network finite-time output feedback control of quantized nonlinear systems publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 1905 issue: 9 year: 2011 end-page: 1915 ident: C8 article-title: On identification of FIR systems having quantized output data publication-title: Automatica – volume: 55 start-page: 148 issue: 1 year: 2010 end-page: 152 ident: C19 article-title: A weighted least-squares approach to parameter estimation problems based on binary measurements publication-title: IEEE Trans. Autom. Control – volume: 355 start-page: 5163 issue: 12 year: 2018 end-page: 5181 ident: C10 article-title: Recursive parameter estimation algorithm for multivariate output-error systems publication-title: J. Franklin Inst. – volume: 6 start-page: 21518 year: 2018 end-page: 21529 ident: C29 article-title: Auxiliary model based least squares iterative algorithms for parameter estimation of bilinear systems using interval-varying measurements publication-title: IEEE Access – volume: 27 start-page: 1095 issue: 6 year: 2014 end-page: 1120 ident: C5 article-title: Epidemics on small worlds of tree-based wireless sensor networks publication-title: J. Syst. Sci. Complex. – volume: 152 start-page: 265 year: 2018 end-page: 272 ident: C11 article-title: Noise effect on signal quantization in an array of binary quantizers publication-title: Signal Process. – volume: 6 start-page: 5573 year: 2018 end-page: 5583 ident: C27 article-title: Auxiliary loss multimodal GRU model in audio-visual speech recognition publication-title: IEEE Access – volume: 137 start-page: 328 year: 2017 end-page: 338 ident: C12 article-title: Robust filtering for Markov jump systems with mode-dependent quantized output and partly unknown transition probabilities publication-title: Signal Process. – year: 2018 ident: C33 article-title: Gradient-based particle filter algorithm for an ARX model with nonlinear communication output publication-title: IEEE Trans. Syst. Man Cybern., Syst. – volume: 11 start-page: 390 issue: 3 year: 2017 end-page: 400 ident: C28 article-title: Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique publication-title: IET Control Theory Applic. – volume: 95 start-page: 108 issue: 1 year: 2007 end-page: 137 ident: C4 article-title: Evans, feedback control under data rate constraints: an overview publication-title: Proc. IEEE – volume: 58 start-page: 3454 issue: 11 year: 2012 end-page: 3467 ident: C34 article-title: Identification of nonlinear parameter varying systems with missing output data publication-title: AIChE J. – volume: 35 start-page: 154 year: 2015 end-page: 168 ident: C30 article-title: Auxiliary model-based interval-varying multi-innovation least squares identification for multivariable OE-like systems with scarce measurements publication-title: J. Process Control – volume: 147 start-page: 23 year: 2018 end-page: 34 ident: C16 article-title: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique publication-title: Signal Process. – volume: 48 start-page: 1892 issue: 11 year: 2003 end-page: 1907 ident: C6 article-title: System identification using binary sensors publication-title: IEEE Trans. Autom. Control – volume: 40 start-page: 6523 issue: 13–14 year: 2016 end-page: 6535 ident: C22 article-title: Recursive maximum likelihood method for the identification of Hammerstein ARMAX system publication-title: Appl. Math. Model. – volume: 354 start-page: 4425 year: 2017 end-page: 4437 ident: C35 article-title: Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter publication-title: J. Franklin Inst. – volume: 61 start-page: 1385 issue: 5 year: 2016 end-page: 1390 ident: C15 article-title: Hybrid control of a bioreactor with quantized measurements publication-title: IEEE Trans. Autom. Control – volume: 48 start-page: 1839 issue: 6 year: 2018 end-page: 1848 article-title: Adaptive neural network finite‐time output feedback control of quantized nonlinear systems publication-title: IEEE Trans. Cybern. – volume: 43 start-page: 1752 issue: 10 year: 2007 end-page: 1765 article-title: Identification of Wiener systems with binary‐valued output observations publication-title: Automatica – year: 2018 article-title: Gradient‐based particle filter algorithm for an ARX model with nonlinear communication output publication-title: IEEE Trans. Syst. Man Cybern., Syst. – volume: 147 start-page: 23 year: 2018 end-page: 34 article-title: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique publication-title: Signal Process. – volume: 55 start-page: 148 issue: 1 year: 2010 end-page: 152 article-title: A weighted least‐squares approach to parameter estimation problems based on binary measurements publication-title: IEEE Trans. Autom. Control – volume: 40 start-page: 6523 issue: 13–14 year: 2016 end-page: 6535 article-title: Recursive maximum likelihood method for the identification of Hammerstein ARMAX system publication-title: Appl. Math. Model. – volume: 54 start-page: 537 year: 2018 end-page: 550 article-title: Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method publication-title: Appl. Math. Model. – volume: 47 start-page: 1645 issue: 8 year: 2011 end-page: 1655 article-title: Parameter estimation with scarce measurements publication-title: Automatica – volume: 139 start-page: 102 year: 2017 end-page: 109 article-title: Robust energy‐to‐peak filtering for discrete‐time nonlinear systems with measurement quantization publication-title: Signal Process. – volume: 355 start-page: 5163 issue: 12 year: 2018 end-page: 5181 article-title: Recursive parameter estimation algorithm for multivariate output‐error systems publication-title: J. Franklin Inst. – volume: 137 start-page: 328 year: 2017 end-page: 338 article-title: Robust filtering for Markov jump systems with mode‐dependent quantized output and partly unknown transition probabilities publication-title: Signal Process. – volume: 355 start-page: 3737 issue: 8 year: 2018 end-page: 3752 article-title: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation publication-title: J. Franklin Inst. – year: 2007 – volume: 10 start-page: 197 issue: 3 year: 2000 end-page: 208 article-title: On sequential Monte Carlo sampling methods for Bayesian filtering publication-title: Stat. Comput. – volume: 58 start-page: 3454 issue: 11 year: 2012 end-page: 3467 article-title: Identification of nonlinear parameter varying systems with missing output data publication-title: AIChE J. – volume: 6 start-page: 5573 year: 2018 end-page: 5583 article-title: Auxiliary loss multimodal GRU model in audio‐visual speech recognition publication-title: IEEE Access – volume: 152 start-page: 265 year: 2018 end-page: 272 article-title: Noise effect on signal quantization in an array of binary quantizers publication-title: Signal Process. – volume: 47 start-page: 1905 issue: 9 year: 2011 end-page: 1915 article-title: On identification of FIR systems having quantized output data publication-title: Automatica – volume: 95 start-page: 108 issue: 1 year: 2007 end-page: 137 article-title: Evans, feedback control under data rate constraints: an overview publication-title: Proc. IEEE – volume: 51 start-page: 909 issue: 15 year: 2018 end-page: 914 article-title: Recursive identification of IIR systems with multilevel output quantization and lossy memoryless channels with transmission errors publication-title: IFAC‐PapersOnLine – volume: 355 start-page: 4050 issue: 9 year: 2018 end-page: 4075 article-title: Modified multi‐innovation stochastic gradient algorithm for Wiener–Hammerstein systems with backlash publication-title: J. Franklin Inst. – volume: 6 start-page: 21518 year: 2018 end-page: 21529 article-title: Auxiliary model based least squares iterative algorithms for parameter estimation of bilinear systems using interval‐varying measurements publication-title: IEEE Access – volume: 9 start-page: 325 issue: 4 year: 1995 end-page: 354 article-title: Approximate gradients, convergence and positive realness in recursive identification of a class of nonlinear systems publication-title: Int. J. Adapt. Control Signal Process. – volume: 29 start-page: 1011 issue: 4 year: 1993 end-page: 1025 article-title: Recursive prediction error identification using the nonlinear Wiener model publication-title: Automatica – volume: 35 start-page: 154 year: 2015 end-page: 168 article-title: Auxiliary model‐based interval‐varying multi‐innovation least squares identification for multivariable OE‐like systems with scarce measurements publication-title: J. Process Control – volume: 48 start-page: 1892 issue: 11 year: 2003 end-page: 1907 article-title: System identification using binary sensors publication-title: IEEE Trans. Autom. Control – volume: 27 start-page: 1095 issue: 6 year: 2014 end-page: 1120 article-title: Epidemics on small worlds of tree‐based wireless sensor networks publication-title: J. Syst. Sci. Complex. – volume: 57 start-page: 113 year: 2015 end-page: 122 article-title: Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs publication-title: Automatica – volume: 71 start-page: 179 year: 2016 end-page: 186 article-title: Convergence analysis for recursive Hammerstein identification publication-title: Automatica – volume: 127 start-page: 295 year: 2017 end-page: 301 article-title: Recursive prediction algorithm for non‐stationary Gaussian process publication-title: J. Syst. Softw. – volume: 82 start-page: 981 issue: 6 year: 2009 end-page: 992 article-title: Energy‐based balance control approach to the ball and beam system publication-title: Int. J. Control – volume: 39 start-page: 4257 issue: 15 year: 2015 end-page: 4265 article-title: Auxiliary model method for transfer function estimation from noisy input and output data publication-title: Appl. Math. Model. – year: 2006 – volume: 12 start-page: 892 issue: 7 year: 2018 end-page: 899 article-title: Iterative parameter identification for pseudo‐linear systems with ARMA noise using the filtering technique publication-title: IET Control Theory Applic. – volume: 11 start-page: 390 issue: 3 year: 2017 end-page: 400 article-title: Parameter estimation for pseudo‐linear systems using the auxiliary model and the decomposition technique publication-title: IET Control Theory Applic. – volume: 78 start-page: 280 year: 2017 end-page: 286 article-title: Identification of Wiener systems with quantized inputs and binary‐valued output observations publication-title: Automatica – volume: 354 start-page: 4425 year: 2017 end-page: 4437 article-title: Gradient iterative algorithm for dual‐rate nonlinear systems based on a novel particle filter publication-title: J. Franklin Inst. – start-page: 2498 year: June 2014 end-page: 2503 – volume: 61 start-page: 1385 issue: 5 year: 2016 end-page: 1390 article-title: Hybrid control of a bioreactor with quantized measurements publication-title: IEEE Trans. Autom. Control – ident: e_1_2_7_9_1 doi: 10.1016/j.automatica.2011.06.008 – ident: e_1_2_7_35_1 doi: 10.1002/aic.13735 – ident: e_1_2_7_7_1 doi: 10.1109/TAC.2003.819073 – ident: e_1_2_7_8_1 doi: 10.1016/j.automatica.2015.04.009 – ident: e_1_2_7_38_1 doi: 10.1002/0470045345 – ident: e_1_2_7_18_1 doi: 10.1016/0005-1098(93)90103-Z – ident: e_1_2_7_29_1 doi: 10.1049/iet-cta.2016.0491 – ident: e_1_2_7_11_1 doi: 10.1016/j.jfranklin.2018.04.013 – ident: e_1_2_7_14_1 doi: 10.1016/j.sigpro.2017.03.029 – ident: e_1_2_7_17_1 doi: 10.1016/j.sigpro.2018.01.012 – ident: e_1_2_7_15_1 doi: 10.1109/TCYB.2017.2715980 – ident: e_1_2_7_10_1 doi: 10.1016/j.ifacol.2018.09.078 – ident: e_1_2_7_19_1 doi: 10.1109/ACC.2014.6859180 – ident: e_1_2_7_26_1 doi: 10.1016/j.jfranklin.2018.01.052 – ident: e_1_2_7_20_1 doi: 10.1109/TAC.2009.2033842 – ident: e_1_2_7_13_1 doi: 10.1016/j.sigpro.2017.02.010 – ident: e_1_2_7_30_1 doi: 10.1109/ACCESS.2018.2794396 – volume-title: MATLAB Software for recursive identification of systems with output quantization‐revision 1 year: 2007 ident: e_1_2_7_37_1 – ident: e_1_2_7_27_1 doi: 10.1016/j.apm.2014.12.040 – ident: e_1_2_7_3_1 doi: 10.1016/j.automatica.2016.04.014 – ident: e_1_2_7_2_1 doi: 10.1016/j.automatica.2016.12.034 – year: 2018 ident: e_1_2_7_34_1 article-title: Gradient‐based particle filter algorithm for an ARX model with nonlinear communication output publication-title: IEEE Trans. Syst. Man Cybern., Syst. – ident: e_1_2_7_4_1 doi: 10.1049/iet-cta.2017.0821 – ident: e_1_2_7_39_1 doi: 10.1023/A:1008935410038 – ident: e_1_2_7_25_1 doi: 10.1016/j.automatica.2007.03.006 – ident: e_1_2_7_28_1 doi: 10.1109/ACCESS.2018.2796118 – ident: e_1_2_7_41_1 – ident: e_1_2_7_16_1 doi: 10.1109/TAC.2015.2471735 – ident: e_1_2_7_22_1 doi: 10.1016/j.jss.2016.08.036 – ident: e_1_2_7_33_1 doi: 10.1016/j.automatica.2011.05.007 – ident: e_1_2_7_12_1 doi: 10.1016/j.sigpro.2018.06.010 – ident: e_1_2_7_6_1 doi: 10.1007/s11424-014-1178-1 – ident: e_1_2_7_21_1 doi: 10.1016/j.jfranklin.2018.03.015 – ident: e_1_2_7_24_1 doi: 10.1002/acs.4480090403 – ident: e_1_2_7_32_1 doi: 10.1016/j.apm.2017.10.005 – ident: e_1_2_7_40_1 doi: 10.1080/00207170802061269 – ident: e_1_2_7_23_1 doi: 10.1016/j.apm.2016.01.062 – ident: e_1_2_7_36_1 doi: 10.1016/j.jfranklin.2017.04.003 – ident: e_1_2_7_5_1 doi: 10.1109/JPROC.2006.887294 – ident: e_1_2_7_31_1 doi: 10.1016/j.jprocont.2015.09.001 |
| SSID | ssj0055645 |
| Score | 2.5246148 |
| Snippet | Recursive prediction error method is one of the main tools for analysis of controlled auto-regressive systems with quantised output. In this study, a recursive... Recursive prediction error method is one of the main tools for analysis of controlled auto‐regressive systems with quantised output. In this study, a recursive... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2181 |
| SubjectTerms | autoregressive processes auxiliary model principle auxiliary model‐based controlled auto‐regressive systems discrete random sampling points filtering theory gradient methods invalid particles least squares approximations linear output estimates main tools novel particle filtering technique novel recursive identification algorithm parameter estimation particle filtering (numerical methods) particle filtering technique‐based algorithm particle filtering‐based recursive identification posterior probability density function probability quantised output recursive estimation recursive prediction error method Research Article standard stochastic gradient algorithm stochastic processes |
| Title | Particle filtering-based recursive identification for controlled auto-regressive systems with quantised output |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-cta.2019.0028 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cta.2019.0028 |
| Volume | 13 |
| WOSCitedRecordID | wos000484962100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Journals customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley-Blackwell Open Access Collection customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LSsNAcKnVgx58i_XFHsSDEEyy2SY5arFUkNJD1d7CvgKF0tY08ewn-I1-iTObtFiECuIlh83ssszsvHZmZwi5ZNrIFPxkpylc7gRceU7EwZDjMkh9LjVP7av358ew240Gg7hXI635W5iyPsTiwg05w8prZHAhyy4kYNQCEYcmd1SOpYO82KZDrpF1z2MR9m_wg95cHHMsl2JfRXLYBmj_RWgzvvmxxJJyWoPfyyar1TntnX_Z7S7ZrkxOeluekT1SM-N9svWtEOEByXrVCaLpEMPnMPj5_oEaTtMMb-QxyZ0OdZVaZKlJwdylVab7COBEkU9gUmasB4_wZZXoGcW7XvpaAA2HuOCkyKdFfkie2vf9VsepujE4ioWh6xgTCSWFH6bcNBXjGlideyyINAcrjiuwPWSogbzGT3kIzim4RqCAhXGbcSSFZEekPp6MzTGhITZgZ572QXgEWorYxJEPZr52Q60iyRrEnZMhUVWpcuyYMUpsyDyIE0BnAuhMEJ0JorNBrhdTpmWdjlXAVzhWcetsFSCzRP19yaTV7_h3bSvjTv4065Rs4rhjI15npJ5nhTknG-oNaJNd2DMN35eH7hcgcP50 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LSsNAcKgPUA--xbd7EA9CME2yTXLUammxFg9VewvZR6BQ2pomnv0Ev9EvcWaTFkVQEK-b2SXM7LxnZwBOXaVFgn6yVYttbnlcVq2AoyHHhZc4XCiemFfvj22_0wl6vfC-AtfTtzBFf4hZwI04w8hrYnAKSBcOp0dNMvs6s2RGvYOqoamHnIMFDw0OGuDw1OpM5TGnfinmWSTH_0D1P8tthhffjviinebw81eb1Sidxtr__O46rJZGJ7ssbskGVPRwE1Y-tSLcgvS-vEMs6VMCHRffX99IxymWUkyeytxZX5XFRYaeDA1eVta6DxAuzrMRbkq18eEJvugTPWEU7WXPOVKxTweO8mycZ9vw0Ljp1ptWOY_Bkq7v25bWQSxF7PgJ1zXpcoXMzquuFyiOdhyXaH0IXyGBtZNwH91TdI5QBcfaroWBiIW7A_PD0VDvAvNpBLtbVQ6KD0-JONRh4KChr2xfyUC4e2BP6RDJslk5zcwYRCZp7oURojNCdEaEzojQuQfnsy3jolPHT8BntFby6-QnQNdQ9fcjo3q36Vw1jJTb_9OuE1hqdu_aUbvVuT2AZYKxTP7rEOazNNdHsChfkE7psbngH92tAcw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60iujBt1ifexAPQjCv7SZHX6ViKT2oeAvZR6AgbY2JZ3-Cv9Ff4swmLYqgIF43s0uY9-zOfgtwFGgjM6yTnVbqcifkynMijokcl2Hmc6l5Zm-933dFrxc9PMT9Gbic3IWp8CGmG25kGdZfk4Gbsc6qgjMkkMyBKRxVEHaQF9t-yFmYC7nwSLf9sD_xx5zwUuy1SI7_geF_erYZn35b4kt0msXPX3NWG3TaK__zu6uwXCed7KzSkjWYMcN1WPoERbgBeb_WIZYN6AAdB99f3yjGaZbTnjy1ubOBrpuLrDwZJrys7nV_RLq0LEY4KTe2hif6Cif6mdFuL3sqUYoDWnBUFuOy2IS79tXtRcep32NwVCCE6xgTpUqmvsi4aamAazR27gVhpDnmcVxh9iGFRgEbP-MCy1MsjjAEp8ZtxZFMZbAFjeFoaLaBCXqCPfC0j-4j1DKNTRz5mOhrV2gVyaAJ7kQOiarByunNjMfEHpqHcYLsTJCdCbEzIXY24WQ6ZVwhdfxEfExjtb0-_0QYWKn-vmRycdvxz9vWy-38adYhLPQv20n3unezC4tE4tjjrz1oFHlp9mFevaCY8gOr3x_oPgDj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+filtering%E2%80%90based+recursive+identification+for+controlled+auto%E2%80%90regressive+systems+with+quantised+output&rft.jtitle=IET+control+theory+%26+applications&rft.au=Ding%2C+Jie&rft.au=Chen%2C+Jiazhong&rft.au=Lin%2C+Jinxing&rft.au=Jiang%2C+Guoping&rft.date=2019-09-24&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=13&rft.issue=14&rft.spage=2181&rft.epage=2187&rft_id=info:doi/10.1049%2Fiet-cta.2019.0028&rft.externalDBID=10.1049%252Fiet-cta.2019.0028&rft.externalDocID=CTH2BF00510 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon |