Particle filtering-based recursive identification for controlled auto-regressive systems with quantised output

Recursive prediction error method is one of the main tools for analysis of controlled auto-regressive systems with quantised output. In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm. To impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET control theory & applications Jg. 13; H. 14; S. 2181 - 2187
Hauptverfasser: Ding, Jie, Chen, Jiazhong, Lin, Jinxing, Jiang, Guoping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 24.09.2019
Schlagworte:
ISSN:1751-8644, 1751-8652
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recursive prediction error method is one of the main tools for analysis of controlled auto-regressive systems with quantised output. In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm. To improve the convergence performance of the algorithm, a particle filtering technique, which approximates the posterior probability density function with a weighted set of discrete random sampling points is utilised to correct the linear output estimates. It can exclude those invalid particles according to their corresponding weights. The performance of the particle filtering technique-based algorithm is much better than that of the auxiliary model-based one. Finally, results are verified by examples from simulation and engineering.
AbstractList Recursive prediction error method is one of the main tools for analysis of controlled auto‐regressive systems with quantised output. In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm. To improve the convergence performance of the algorithm, a particle filtering technique, which approximates the posterior probability density function with a weighted set of discrete random sampling points is utilised to correct the linear output estimates. It can exclude those invalid particles according to their corresponding weights. The performance of the particle filtering technique‐based algorithm is much better than that of the auxiliary model‐based one. Finally, results are verified by examples from simulation and engineering.
Author Chen, Jiazhong
Ding, Jie
Jiang, Guoping
Lin, Jinxing
Author_xml – sequence: 1
  givenname: Jie
  surname: Ding
  fullname: Ding, Jie
  email: dingjie@njupt.edu.cn
  organization: Jiangsu Engineering Lab for IOT Intelligent Robots, School of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
– sequence: 2
  givenname: Jiazhong
  surname: Chen
  fullname: Chen, Jiazhong
  organization: Jiangsu Engineering Lab for IOT Intelligent Robots, School of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
– sequence: 3
  givenname: Jinxing
  surname: Lin
  fullname: Lin, Jinxing
  organization: Jiangsu Engineering Lab for IOT Intelligent Robots, School of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
– sequence: 4
  givenname: Guoping
  surname: Jiang
  fullname: Jiang, Guoping
  organization: Jiangsu Engineering Lab for IOT Intelligent Robots, School of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
BookMark eNqFkU9PwjAYhxuDiYB-AG_7AsV2W9fhTYmICYke8Nx03TssGS22nYRvbwfGgwc8vT38nvfP0xEaGGsAoVtKJpTk0zsNAasgJymh0wkhaXmBhpQzisuCpYPfd55foZH3G0IYK3I2ROZNuqBVC0mj2wBOmzWupIc6caA65_UXJLoGE3SjlQzamqSxLlHWBGfbNuZkFyx2sHbgj2l_8AG2Ptnr8JF8djKifTvbhV0XrtFlI1sPNz91jN7nT6vZAi9fn19mD0usMs4JBiilqmTKGwaFyljNy7h_lpc1KzPGFOGs4jWrakgbxqe8LEgBUEsgxbSsZJWNET31Vc5676ARO6e30h0EJaIXJqIwEYWJXpjohUWG_2GUDseTg5O6PUven8i9buHw_ygxWy3Sx3n8BEoijE9wH9vYzpko5sywby29mXs
CitedBy_id crossref_primary_10_1016_j_jfranklin_2020_07_045
crossref_primary_10_1049_iet_cta_2019_0413
crossref_primary_10_1002_acs_3320
crossref_primary_10_1002_acs_3166
crossref_primary_10_1007_s12555_020_0589_0
crossref_primary_10_1049_iet_cta_2019_0731
crossref_primary_10_1155_2020_6128697
crossref_primary_10_1007_s00034_020_01378_x
crossref_primary_10_1109_ACCESS_2019_2938322
crossref_primary_10_1002_acs_3169
crossref_primary_10_1007_s11581_019_03368_9
crossref_primary_10_1002_acs_3203
crossref_primary_10_1049_iet_cta_2019_1027
crossref_primary_10_1007_s12555_019_0799_5
crossref_primary_10_1145_3569899
crossref_primary_10_1007_s12555_020_0476_8
crossref_primary_10_1016_j_jfranklin_2020_03_028
crossref_primary_10_1016_j_jfranklin_2020_03_027
crossref_primary_10_1002_rnc_4890
crossref_primary_10_1002_rnc_5206
crossref_primary_10_1016_j_jfranklin_2019_06_032
crossref_primary_10_1049_iet_spr_2019_0481
crossref_primary_10_1002_acs_3053
crossref_primary_10_1016_j_cam_2019_112575
crossref_primary_10_1016_j_jfranklin_2019_11_003
crossref_primary_10_1080_00207721_2019_1690720
crossref_primary_10_1002_rnc_4959
crossref_primary_10_1007_s12555_020_0619_y
crossref_primary_10_1109_ACCESS_2019_2956476
crossref_primary_10_1002_rnc_4884
crossref_primary_10_1002_rnc_4961
crossref_primary_10_1002_rnc_5450
crossref_primary_10_1007_s12555_018_0843_x
crossref_primary_10_1002_rnc_4824
crossref_primary_10_1049_iet_cta_2019_0915
crossref_primary_10_1049_iet_cta_2018_6333
crossref_primary_10_1002_acs_3308
crossref_primary_10_1002_acs_3221
crossref_primary_10_1002_oca_3279
crossref_primary_10_1007_s12555_019_0191_5
crossref_primary_10_1049_iet_cta_2020_0866
crossref_primary_10_3390_math8122254
crossref_primary_10_1080_00207721_2019_1704093
crossref_primary_10_1002_acs_3148
crossref_primary_10_1002_acs_3101
crossref_primary_10_1002_oca_2985
crossref_primary_10_3390_s20010299
crossref_primary_10_1002_acs_3180
crossref_primary_10_1007_s42044_021_00088_0
crossref_primary_10_1002_rnc_5323
crossref_primary_10_1007_s12555_019_0053_1
crossref_primary_10_1007_s12555_019_0831_9
crossref_primary_10_1002_rnc_5200
crossref_primary_10_1007_s00034_020_01441_7
crossref_primary_10_1016_j_jfranklin_2020_03_047
crossref_primary_10_1049_cth2_12118
crossref_primary_10_1016_j_jfranklin_2019_12_007
crossref_primary_10_1049_iet_cta_2019_0429
crossref_primary_10_1007_s12555_019_0970_z
crossref_primary_10_1016_j_jfranklin_2021_04_006
crossref_primary_10_1109_LSP_2023_3313809
crossref_primary_10_1080_00207721_2021_1895356
crossref_primary_10_1002_rnc_4819
crossref_primary_10_3390_math7121143
crossref_primary_10_3390_s20051334
crossref_primary_10_1002_acs_3113
crossref_primary_10_1109_TIM_2022_3154797
crossref_primary_10_1002_rnc_5190
crossref_primary_10_1007_s12555_019_0940_5
crossref_primary_10_1016_j_jfranklin_2020_04_029
crossref_primary_10_1109_TII_2022_3176910
crossref_primary_10_1007_s00034_019_01261_4
crossref_primary_10_1002_rnc_5672
crossref_primary_10_1049_cth2_12700
Cites_doi 10.1016/j.automatica.2011.06.008
10.1002/aic.13735
10.1109/TAC.2003.819073
10.1016/j.automatica.2015.04.009
10.1002/0470045345
10.1016/0005-1098(93)90103-Z
10.1049/iet-cta.2016.0491
10.1016/j.jfranklin.2018.04.013
10.1016/j.sigpro.2017.03.029
10.1016/j.sigpro.2018.01.012
10.1109/TCYB.2017.2715980
10.1016/j.ifacol.2018.09.078
10.1109/ACC.2014.6859180
10.1016/j.jfranklin.2018.01.052
10.1109/TAC.2009.2033842
10.1016/j.sigpro.2017.02.010
10.1109/ACCESS.2018.2794396
10.1016/j.apm.2014.12.040
10.1016/j.automatica.2016.04.014
10.1016/j.automatica.2016.12.034
10.1049/iet-cta.2017.0821
10.1023/A:1008935410038
10.1016/j.automatica.2007.03.006
10.1109/ACCESS.2018.2796118
10.1109/TAC.2015.2471735
10.1016/j.jss.2016.08.036
10.1016/j.automatica.2011.05.007
10.1016/j.sigpro.2018.06.010
10.1007/s11424-014-1178-1
10.1016/j.jfranklin.2018.03.015
10.1002/acs.4480090403
10.1016/j.apm.2017.10.005
10.1080/00207170802061269
10.1016/j.apm.2016.01.062
10.1016/j.jfranklin.2017.04.003
10.1109/JPROC.2006.887294
10.1016/j.jprocont.2015.09.001
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-cta.2019.0028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8652
EndPage 2187
ExternalDocumentID 10_1049_iet_cta_2019_0028
CTH2BF00510
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873326
– fundername: National Natural Science Foundation of China
  grantid: 61473158
– fundername: Natural Science Foundation of NJUPT
  grantid: NY217063
– fundername: Natural Science Foundation of NJUPT
  funderid: NY217063
– fundername: National Natural Science Foundation of China
  funderid: 61473158; 61873326
GroupedDBID 0R
24P
29I
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
ZZ
.DC
0R~
0ZK
1OC
3V.
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ABUWG
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
EBS
EJD
F8P
GNUQQ
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
ITC
K1G
K6V
K7-
L6V
M0N
M7S
MCNEO
MS~
OK1
P62
PQQKQ
PROAC
PTHSS
ROL
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
IGS
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3770-ee8acba27f5e6c35d78751348d58355c075b7d5bde2f57978606eedae0698bab3
IEDL.DBID 24P
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484962100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8644
IngestDate Tue Nov 18 22:38:59 EST 2025
Wed Oct 29 21:21:39 EDT 2025
Wed Jan 22 16:32:04 EST 2025
Tue Jan 05 21:51:29 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords linear output estimates
least squares approximations
controlled auto-regressive systems
posterior probability density function
standard stochastic gradient algorithm
particle filtering technique-based algorithm
filtering theory
probability
particle filtering (numerical methods)
novel particle filtering technique
autoregressive processes
novel recursive identification algorithm
quantised output
recursive prediction error method
recursive estimation
parameter estimation
main tools
invalid particles
auxiliary model-based
stochastic processes
gradient methods
discrete random sampling points
particle filtering-based recursive identification
auxiliary model principle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3770-ee8acba27f5e6c35d78751348d58355c075b7d5bde2f57978606eedae0698bab3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-cta.2019.0028
PageCount 7
ParticipantIDs crossref_primary_10_1049_iet_cta_2019_0028
wiley_primary_10_1049_iet_cta_2019_0028_CTH2BF00510
iet_journals_10_1049_iet_cta_2019_0028
crossref_citationtrail_10_1049_iet_cta_2019_0028
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2019-09-24
PublicationDateYYYYMMDD 2019-09-24
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-24
  day: 24
PublicationDecade 2010
PublicationTitle IET control theory & applications
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Chen, J.; Li, J.; Liu, Y. (C35) 2017; 354
Wang, Y.J.; Ding, F.; Wu, M. (C10) 2018; 355
Mairet, F.; Gouzé, J.L. (C15) 2016; 61
Wang, F.; Chen, B.; Lin, C. (C14) 2018; 48
Yao, D.; Lu, R.; Xu, Y. (C12) 2017; 137
Zhao, Y.; Wang, L.Y.; Yin, G.G. (C24) 2007; 43
Colinet, E.; Juillard, J. (C19) 2010; 55
Guo, J.; Wang, L.Y.; Yin, G. (C7) 2015; 57
Wang, L.Y.; Zhang, J.F.; Yin, G.G. (C6) 2003; 48
Li, L.; Ren, X.; Guo, F. (C20) 2018; 355
Ding, F.; Xu, L.; Alsaadi, F.E. (C3) 2018; 12
Godoy, B.I.; Goodwin, G.C.; Agüero, J.C. (C8) 2011; 47
Li, Q.; Zhang, B.H.; Cui, L.G. (C5) 2014; 27
Li, M.H.; Liu, X.M. (C16) 2018; 147
Jin, Q.; Wang, Z.; Liu, X. (C30) 2015; 35
Doucet, A.; Godsill, S.; Andrieu, C. (C38) 2000; 10
Gómez, J.C. (C9) 2018; 51
Zhai, Q.; Wang, Y. (C11) 2018; 152
Li, Z.M.; Chang, X.H.; Mathiyalagan, K. (C13) 2017; 139
Mattsson, P.; Wigren, T. (C2) 2016; 71
Deng, J.; Huang, B. (C34) 2012; 58
Wang, D.Q.; Li, L.W.; Ji, Y. (C31) 2018; 54
Zhang, Y.; Zhao, Z.; Cui, G.M. (C26) 2015; 39
Guo, J.; Wang, L.Y.; Yin, G. (C1) 2017; 78
Liang, Z. (C39) 2009; 82
Nair, G.N.; Fagnani, F.; Zampieri, S. (C4) 2007; 95
Wigren, T. (C23) 1995; 9
Zhang, Y.; Luo, G. (C21) 2017; 127
Ding, F.; Liu, G.J.; Liu, X.P. (C32) 2011; 47
Ma, L.; Liu, X. (C22) 2016; 40
Yuan, Y.; Tian, C.; Lu, X. (C27) 2018; 6
Chen, J.; Liu, Y.; Ding, F. (C33) 2018
Li, M.H.; Liu, X.M. (C29) 2018; 6
Wigren, T. (C17) 1993; 29
Ding, F.; Wang, F.F.; Xu, L. (C28) 2017; 11
Ding, F.; Chen, H.B.; Xu, L. (C25) 2018; 355
2015; 57
2015; 35
2010; 55
1995; 9
2015; 39
1993; 29
2009; 82
June 2014
2018; 147
2014; 27
2007
2006
2016; 71
2007; 95
2012; 58
2017; 354
2017; 137
2018; 48
2017; 139
2018; 152
2018; 6
2018; 355
2017; 11
2000; 10
2017; 78
2003; 48
2018
2016; 40
2016; 61
2018; 51
2011; 47
2018; 12
2007; 43
2018; 54
2017; 127
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
Chen J. (e_1_2_7_34_1) 2018
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Wigren T. (e_1_2_7_37_1) 2007
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 47
  start-page: 1645
  issue: 8
  year: 2011
  end-page: 1655
  ident: C32
  article-title: Parameter estimation with scarce measurements
  publication-title: Automatica
– volume: 127
  start-page: 295
  year: 2017
  end-page: 301
  ident: C21
  article-title: Recursive prediction algorithm for non-stationary Gaussian process
  publication-title: J. Syst. Softw.
– volume: 355
  start-page: 3737
  issue: 8
  year: 2018
  end-page: 3752
  ident: C25
  article-title: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation
  publication-title: J. Franklin Inst.
– volume: 78
  start-page: 280
  year: 2017
  end-page: 286
  ident: C1
  article-title: Identification of Wiener systems with quantized inputs and binary-valued output observations
  publication-title: Automatica
– volume: 39
  start-page: 4257
  issue: 15
  year: 2015
  end-page: 4265
  ident: C26
  article-title: Auxiliary model method for transfer function estimation from noisy input and output data
  publication-title: Appl. Math. Model.
– volume: 10
  start-page: 197
  issue: 3
  year: 2000
  end-page: 208
  ident: C38
  article-title: On sequential Monte Carlo sampling methods for Bayesian filtering
  publication-title: Stat. Comput.
– volume: 51
  start-page: 909
  issue: 15
  year: 2018
  end-page: 914
  ident: C9
  article-title: Recursive identification of IIR systems with multilevel output quantization and lossy memoryless channels with transmission errors
  publication-title: IFAC-PapersOnLine
– volume: 54
  start-page: 537
  year: 2018
  end-page: 550
  ident: C31
  article-title: Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method
  publication-title: Appl. Math. Model.
– volume: 57
  start-page: 113
  year: 2015
  end-page: 122
  ident: C7
  article-title: Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs
  publication-title: Automatica
– volume: 71
  start-page: 179
  year: 2016
  end-page: 186
  ident: C2
  article-title: Convergence analysis for recursive Hammerstein identification
  publication-title: Automatica
– volume: 9
  start-page: 325
  issue: 4
  year: 1995
  end-page: 354
  ident: C23
  article-title: Approximate gradients, convergence and positive realness in recursive identification of a class of nonlinear systems
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 43
  start-page: 1752
  issue: 10
  year: 2007
  end-page: 1765
  ident: C24
  article-title: Identification of Wiener systems with binary-valued output observations
  publication-title: Automatica
– volume: 355
  start-page: 4050
  issue: 9
  year: 2018
  end-page: 4075
  ident: C20
  article-title: Modified multi-innovation stochastic gradient algorithm for Wiener–Hammerstein systems with backlash
  publication-title: J. Franklin Inst.
– volume: 82
  start-page: 981
  issue: 6
  year: 2009
  end-page: 992
  ident: C39
  article-title: Energy-based balance control approach to the ball and beam system
  publication-title: Int. J. Control
– volume: 29
  start-page: 1011
  issue: 4
  year: 1993
  end-page: 1025
  ident: C17
  article-title: Recursive prediction error identification using the nonlinear Wiener model
  publication-title: Automatica
– volume: 12
  start-page: 892
  issue: 7
  year: 2018
  end-page: 899
  ident: C3
  article-title: Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique
  publication-title: IET Control Theory Applic.
– volume: 139
  start-page: 102
  year: 2017
  end-page: 109
  ident: C13
  article-title: Robust energy-to-peak filtering for discrete-time nonlinear systems with measurement quantization
  publication-title: Signal Process.
– volume: 48
  start-page: 1839
  issue: 6
  year: 2018
  end-page: 1848
  ident: C14
  article-title: Adaptive neural network finite-time output feedback control of quantized nonlinear systems
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 1905
  issue: 9
  year: 2011
  end-page: 1915
  ident: C8
  article-title: On identification of FIR systems having quantized output data
  publication-title: Automatica
– volume: 55
  start-page: 148
  issue: 1
  year: 2010
  end-page: 152
  ident: C19
  article-title: A weighted least-squares approach to parameter estimation problems based on binary measurements
  publication-title: IEEE Trans. Autom. Control
– volume: 355
  start-page: 5163
  issue: 12
  year: 2018
  end-page: 5181
  ident: C10
  article-title: Recursive parameter estimation algorithm for multivariate output-error systems
  publication-title: J. Franklin Inst.
– volume: 6
  start-page: 21518
  year: 2018
  end-page: 21529
  ident: C29
  article-title: Auxiliary model based least squares iterative algorithms for parameter estimation of bilinear systems using interval-varying measurements
  publication-title: IEEE Access
– volume: 27
  start-page: 1095
  issue: 6
  year: 2014
  end-page: 1120
  ident: C5
  article-title: Epidemics on small worlds of tree-based wireless sensor networks
  publication-title: J. Syst. Sci. Complex.
– volume: 152
  start-page: 265
  year: 2018
  end-page: 272
  ident: C11
  article-title: Noise effect on signal quantization in an array of binary quantizers
  publication-title: Signal Process.
– volume: 6
  start-page: 5573
  year: 2018
  end-page: 5583
  ident: C27
  article-title: Auxiliary loss multimodal GRU model in audio-visual speech recognition
  publication-title: IEEE Access
– volume: 137
  start-page: 328
  year: 2017
  end-page: 338
  ident: C12
  article-title: Robust filtering for Markov jump systems with mode-dependent quantized output and partly unknown transition probabilities
  publication-title: Signal Process.
– year: 2018
  ident: C33
  article-title: Gradient-based particle filter algorithm for an ARX model with nonlinear communication output
  publication-title: IEEE Trans. Syst. Man Cybern., Syst.
– volume: 11
  start-page: 390
  issue: 3
  year: 2017
  end-page: 400
  ident: C28
  article-title: Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique
  publication-title: IET Control Theory Applic.
– volume: 95
  start-page: 108
  issue: 1
  year: 2007
  end-page: 137
  ident: C4
  article-title: Evans, feedback control under data rate constraints: an overview
  publication-title: Proc. IEEE
– volume: 58
  start-page: 3454
  issue: 11
  year: 2012
  end-page: 3467
  ident: C34
  article-title: Identification of nonlinear parameter varying systems with missing output data
  publication-title: AIChE J.
– volume: 35
  start-page: 154
  year: 2015
  end-page: 168
  ident: C30
  article-title: Auxiliary model-based interval-varying multi-innovation least squares identification for multivariable OE-like systems with scarce measurements
  publication-title: J. Process Control
– volume: 147
  start-page: 23
  year: 2018
  end-page: 34
  ident: C16
  article-title: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique
  publication-title: Signal Process.
– volume: 48
  start-page: 1892
  issue: 11
  year: 2003
  end-page: 1907
  ident: C6
  article-title: System identification using binary sensors
  publication-title: IEEE Trans. Autom. Control
– volume: 40
  start-page: 6523
  issue: 13–14
  year: 2016
  end-page: 6535
  ident: C22
  article-title: Recursive maximum likelihood method for the identification of Hammerstein ARMAX system
  publication-title: Appl. Math. Model.
– volume: 354
  start-page: 4425
  year: 2017
  end-page: 4437
  ident: C35
  article-title: Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter
  publication-title: J. Franklin Inst.
– volume: 61
  start-page: 1385
  issue: 5
  year: 2016
  end-page: 1390
  ident: C15
  article-title: Hybrid control of a bioreactor with quantized measurements
  publication-title: IEEE Trans. Autom. Control
– volume: 48
  start-page: 1839
  issue: 6
  year: 2018
  end-page: 1848
  article-title: Adaptive neural network finite‐time output feedback control of quantized nonlinear systems
  publication-title: IEEE Trans. Cybern.
– volume: 43
  start-page: 1752
  issue: 10
  year: 2007
  end-page: 1765
  article-title: Identification of Wiener systems with binary‐valued output observations
  publication-title: Automatica
– year: 2018
  article-title: Gradient‐based particle filter algorithm for an ARX model with nonlinear communication output
  publication-title: IEEE Trans. Syst. Man Cybern., Syst.
– volume: 147
  start-page: 23
  year: 2018
  end-page: 34
  article-title: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique
  publication-title: Signal Process.
– volume: 55
  start-page: 148
  issue: 1
  year: 2010
  end-page: 152
  article-title: A weighted least‐squares approach to parameter estimation problems based on binary measurements
  publication-title: IEEE Trans. Autom. Control
– volume: 40
  start-page: 6523
  issue: 13–14
  year: 2016
  end-page: 6535
  article-title: Recursive maximum likelihood method for the identification of Hammerstein ARMAX system
  publication-title: Appl. Math. Model.
– volume: 54
  start-page: 537
  year: 2018
  end-page: 550
  article-title: Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method
  publication-title: Appl. Math. Model.
– volume: 47
  start-page: 1645
  issue: 8
  year: 2011
  end-page: 1655
  article-title: Parameter estimation with scarce measurements
  publication-title: Automatica
– volume: 139
  start-page: 102
  year: 2017
  end-page: 109
  article-title: Robust energy‐to‐peak filtering for discrete‐time nonlinear systems with measurement quantization
  publication-title: Signal Process.
– volume: 355
  start-page: 5163
  issue: 12
  year: 2018
  end-page: 5181
  article-title: Recursive parameter estimation algorithm for multivariate output‐error systems
  publication-title: J. Franklin Inst.
– volume: 137
  start-page: 328
  year: 2017
  end-page: 338
  article-title: Robust filtering for Markov jump systems with mode‐dependent quantized output and partly unknown transition probabilities
  publication-title: Signal Process.
– volume: 355
  start-page: 3737
  issue: 8
  year: 2018
  end-page: 3752
  article-title: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation
  publication-title: J. Franklin Inst.
– year: 2007
– volume: 10
  start-page: 197
  issue: 3
  year: 2000
  end-page: 208
  article-title: On sequential Monte Carlo sampling methods for Bayesian filtering
  publication-title: Stat. Comput.
– volume: 58
  start-page: 3454
  issue: 11
  year: 2012
  end-page: 3467
  article-title: Identification of nonlinear parameter varying systems with missing output data
  publication-title: AIChE J.
– volume: 6
  start-page: 5573
  year: 2018
  end-page: 5583
  article-title: Auxiliary loss multimodal GRU model in audio‐visual speech recognition
  publication-title: IEEE Access
– volume: 152
  start-page: 265
  year: 2018
  end-page: 272
  article-title: Noise effect on signal quantization in an array of binary quantizers
  publication-title: Signal Process.
– volume: 47
  start-page: 1905
  issue: 9
  year: 2011
  end-page: 1915
  article-title: On identification of FIR systems having quantized output data
  publication-title: Automatica
– volume: 95
  start-page: 108
  issue: 1
  year: 2007
  end-page: 137
  article-title: Evans, feedback control under data rate constraints: an overview
  publication-title: Proc. IEEE
– volume: 51
  start-page: 909
  issue: 15
  year: 2018
  end-page: 914
  article-title: Recursive identification of IIR systems with multilevel output quantization and lossy memoryless channels with transmission errors
  publication-title: IFAC‐PapersOnLine
– volume: 355
  start-page: 4050
  issue: 9
  year: 2018
  end-page: 4075
  article-title: Modified multi‐innovation stochastic gradient algorithm for Wiener–Hammerstein systems with backlash
  publication-title: J. Franklin Inst.
– volume: 6
  start-page: 21518
  year: 2018
  end-page: 21529
  article-title: Auxiliary model based least squares iterative algorithms for parameter estimation of bilinear systems using interval‐varying measurements
  publication-title: IEEE Access
– volume: 9
  start-page: 325
  issue: 4
  year: 1995
  end-page: 354
  article-title: Approximate gradients, convergence and positive realness in recursive identification of a class of nonlinear systems
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 29
  start-page: 1011
  issue: 4
  year: 1993
  end-page: 1025
  article-title: Recursive prediction error identification using the nonlinear Wiener model
  publication-title: Automatica
– volume: 35
  start-page: 154
  year: 2015
  end-page: 168
  article-title: Auxiliary model‐based interval‐varying multi‐innovation least squares identification for multivariable OE‐like systems with scarce measurements
  publication-title: J. Process Control
– volume: 48
  start-page: 1892
  issue: 11
  year: 2003
  end-page: 1907
  article-title: System identification using binary sensors
  publication-title: IEEE Trans. Autom. Control
– volume: 27
  start-page: 1095
  issue: 6
  year: 2014
  end-page: 1120
  article-title: Epidemics on small worlds of tree‐based wireless sensor networks
  publication-title: J. Syst. Sci. Complex.
– volume: 57
  start-page: 113
  year: 2015
  end-page: 122
  article-title: Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs
  publication-title: Automatica
– volume: 71
  start-page: 179
  year: 2016
  end-page: 186
  article-title: Convergence analysis for recursive Hammerstein identification
  publication-title: Automatica
– volume: 127
  start-page: 295
  year: 2017
  end-page: 301
  article-title: Recursive prediction algorithm for non‐stationary Gaussian process
  publication-title: J. Syst. Softw.
– volume: 82
  start-page: 981
  issue: 6
  year: 2009
  end-page: 992
  article-title: Energy‐based balance control approach to the ball and beam system
  publication-title: Int. J. Control
– volume: 39
  start-page: 4257
  issue: 15
  year: 2015
  end-page: 4265
  article-title: Auxiliary model method for transfer function estimation from noisy input and output data
  publication-title: Appl. Math. Model.
– year: 2006
– volume: 12
  start-page: 892
  issue: 7
  year: 2018
  end-page: 899
  article-title: Iterative parameter identification for pseudo‐linear systems with ARMA noise using the filtering technique
  publication-title: IET Control Theory Applic.
– volume: 11
  start-page: 390
  issue: 3
  year: 2017
  end-page: 400
  article-title: Parameter estimation for pseudo‐linear systems using the auxiliary model and the decomposition technique
  publication-title: IET Control Theory Applic.
– volume: 78
  start-page: 280
  year: 2017
  end-page: 286
  article-title: Identification of Wiener systems with quantized inputs and binary‐valued output observations
  publication-title: Automatica
– volume: 354
  start-page: 4425
  year: 2017
  end-page: 4437
  article-title: Gradient iterative algorithm for dual‐rate nonlinear systems based on a novel particle filter
  publication-title: J. Franklin Inst.
– start-page: 2498
  year: June 2014
  end-page: 2503
– volume: 61
  start-page: 1385
  issue: 5
  year: 2016
  end-page: 1390
  article-title: Hybrid control of a bioreactor with quantized measurements
  publication-title: IEEE Trans. Autom. Control
– ident: e_1_2_7_9_1
  doi: 10.1016/j.automatica.2011.06.008
– ident: e_1_2_7_35_1
  doi: 10.1002/aic.13735
– ident: e_1_2_7_7_1
  doi: 10.1109/TAC.2003.819073
– ident: e_1_2_7_8_1
  doi: 10.1016/j.automatica.2015.04.009
– ident: e_1_2_7_38_1
  doi: 10.1002/0470045345
– ident: e_1_2_7_18_1
  doi: 10.1016/0005-1098(93)90103-Z
– ident: e_1_2_7_29_1
  doi: 10.1049/iet-cta.2016.0491
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jfranklin.2018.04.013
– ident: e_1_2_7_14_1
  doi: 10.1016/j.sigpro.2017.03.029
– ident: e_1_2_7_17_1
  doi: 10.1016/j.sigpro.2018.01.012
– ident: e_1_2_7_15_1
  doi: 10.1109/TCYB.2017.2715980
– ident: e_1_2_7_10_1
  doi: 10.1016/j.ifacol.2018.09.078
– ident: e_1_2_7_19_1
  doi: 10.1109/ACC.2014.6859180
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jfranklin.2018.01.052
– ident: e_1_2_7_20_1
  doi: 10.1109/TAC.2009.2033842
– ident: e_1_2_7_13_1
  doi: 10.1016/j.sigpro.2017.02.010
– ident: e_1_2_7_30_1
  doi: 10.1109/ACCESS.2018.2794396
– volume-title: MATLAB Software for recursive identification of systems with output quantization‐revision 1
  year: 2007
  ident: e_1_2_7_37_1
– ident: e_1_2_7_27_1
  doi: 10.1016/j.apm.2014.12.040
– ident: e_1_2_7_3_1
  doi: 10.1016/j.automatica.2016.04.014
– ident: e_1_2_7_2_1
  doi: 10.1016/j.automatica.2016.12.034
– year: 2018
  ident: e_1_2_7_34_1
  article-title: Gradient‐based particle filter algorithm for an ARX model with nonlinear communication output
  publication-title: IEEE Trans. Syst. Man Cybern., Syst.
– ident: e_1_2_7_4_1
  doi: 10.1049/iet-cta.2017.0821
– ident: e_1_2_7_39_1
  doi: 10.1023/A:1008935410038
– ident: e_1_2_7_25_1
  doi: 10.1016/j.automatica.2007.03.006
– ident: e_1_2_7_28_1
  doi: 10.1109/ACCESS.2018.2796118
– ident: e_1_2_7_41_1
– ident: e_1_2_7_16_1
  doi: 10.1109/TAC.2015.2471735
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jss.2016.08.036
– ident: e_1_2_7_33_1
  doi: 10.1016/j.automatica.2011.05.007
– ident: e_1_2_7_12_1
  doi: 10.1016/j.sigpro.2018.06.010
– ident: e_1_2_7_6_1
  doi: 10.1007/s11424-014-1178-1
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jfranklin.2018.03.015
– ident: e_1_2_7_24_1
  doi: 10.1002/acs.4480090403
– ident: e_1_2_7_32_1
  doi: 10.1016/j.apm.2017.10.005
– ident: e_1_2_7_40_1
  doi: 10.1080/00207170802061269
– ident: e_1_2_7_23_1
  doi: 10.1016/j.apm.2016.01.062
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jfranklin.2017.04.003
– ident: e_1_2_7_5_1
  doi: 10.1109/JPROC.2006.887294
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jprocont.2015.09.001
SSID ssj0055645
Score 2.5246148
Snippet Recursive prediction error method is one of the main tools for analysis of controlled auto-regressive systems with quantised output. In this study, a recursive...
Recursive prediction error method is one of the main tools for analysis of controlled auto‐regressive systems with quantised output. In this study, a recursive...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 2181
SubjectTerms autoregressive processes
auxiliary model principle
auxiliary model‐based
controlled auto‐regressive systems
discrete random sampling points
filtering theory
gradient methods
invalid particles
least squares approximations
linear output estimates
main tools
novel particle filtering technique
novel recursive identification algorithm
parameter estimation
particle filtering (numerical methods)
particle filtering technique‐based algorithm
particle filtering‐based recursive identification
posterior probability density function
probability
quantised output
recursive estimation
recursive prediction error method
Research Article
standard stochastic gradient algorithm
stochastic processes
Title Particle filtering-based recursive identification for controlled auto-regressive systems with quantised output
URI http://digital-library.theiet.org/content/journals/10.1049/iet-cta.2019.0028
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cta.2019.0028
Volume 13
WOSCitedRecordID wos000484962100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Journals
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Collection
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LSsNAcKnVgx58i_XFHsSDEEyy2SY5arFUkNJD1d7CvgKF0tY08ewn-I1-iTObtFiECuIlh83ssszsvHZmZwi5ZNrIFPxkpylc7gRceU7EwZDjMkh9LjVP7av358ew240Gg7hXI635W5iyPsTiwg05w8prZHAhyy4kYNQCEYcmd1SOpYO82KZDrpF1z2MR9m_wg95cHHMsl2JfRXLYBmj_RWgzvvmxxJJyWoPfyyar1TntnX_Z7S7ZrkxOeluekT1SM-N9svWtEOEByXrVCaLpEMPnMPj5_oEaTtMMb-QxyZ0OdZVaZKlJwdylVab7COBEkU9gUmasB4_wZZXoGcW7XvpaAA2HuOCkyKdFfkie2vf9VsepujE4ioWh6xgTCSWFH6bcNBXjGlideyyINAcrjiuwPWSogbzGT3kIzim4RqCAhXGbcSSFZEekPp6MzTGhITZgZ572QXgEWorYxJEPZr52Q60iyRrEnZMhUVWpcuyYMUpsyDyIE0BnAuhMEJ0JorNBrhdTpmWdjlXAVzhWcetsFSCzRP19yaTV7_h3bSvjTv4065Rs4rhjI15npJ5nhTknG-oNaJNd2DMN35eH7hcgcP50
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LSsNAcKgPUA--xbd7EA9CME2yTXLUammxFg9VewvZR6BQ2pomnv0Ev9EvcWaTFkVQEK-b2SXM7LxnZwBOXaVFgn6yVYttbnlcVq2AoyHHhZc4XCiemFfvj22_0wl6vfC-AtfTtzBFf4hZwI04w8hrYnAKSBcOp0dNMvs6s2RGvYOqoamHnIMFDw0OGuDw1OpM5TGnfinmWSTH_0D1P8tthhffjviinebw81eb1Sidxtr__O46rJZGJ7ssbskGVPRwE1Y-tSLcgvS-vEMs6VMCHRffX99IxymWUkyeytxZX5XFRYaeDA1eVta6DxAuzrMRbkq18eEJvugTPWEU7WXPOVKxTweO8mycZ9vw0Ljp1ptWOY_Bkq7v25bWQSxF7PgJ1zXpcoXMzquuFyiOdhyXaH0IXyGBtZNwH91TdI5QBcfaroWBiIW7A_PD0VDvAvNpBLtbVQ6KD0-JONRh4KChr2xfyUC4e2BP6RDJslk5zcwYRCZp7oURojNCdEaEzojQuQfnsy3jolPHT8BntFby6-QnQNdQ9fcjo3q36Vw1jJTb_9OuE1hqdu_aUbvVuT2AZYKxTP7rEOazNNdHsChfkE7psbngH92tAcw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60iujBt1ifexAPQjCv7SZHX6ViKT2oeAvZR6AgbY2JZ3-Cv9Ff4swmLYqgIF43s0uY9-zOfgtwFGgjM6yTnVbqcifkynMijokcl2Hmc6l5Zm-933dFrxc9PMT9Gbic3IWp8CGmG25kGdZfk4Gbsc6qgjMkkMyBKRxVEHaQF9t-yFmYC7nwSLf9sD_xx5zwUuy1SI7_geF_erYZn35b4kt0msXPX3NWG3TaK__zu6uwXCed7KzSkjWYMcN1WPoERbgBeb_WIZYN6AAdB99f3yjGaZbTnjy1ubOBrpuLrDwZJrys7nV_RLq0LEY4KTe2hif6Cif6mdFuL3sqUYoDWnBUFuOy2IS79tXtRcep32NwVCCE6xgTpUqmvsi4aamAazR27gVhpDnmcVxh9iGFRgEbP-MCy1MsjjAEp8ZtxZFMZbAFjeFoaLaBCXqCPfC0j-4j1DKNTRz5mOhrV2gVyaAJ7kQOiarByunNjMfEHpqHcYLsTJCdCbEzIXY24WQ6ZVwhdfxEfExjtb0-_0QYWKn-vmRycdvxz9vWy-38adYhLPQv20n3unezC4tE4tjjrz1oFHlp9mFevaCY8gOr3x_oPgDj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+filtering%E2%80%90based+recursive+identification+for+controlled+auto%E2%80%90regressive+systems+with+quantised+output&rft.jtitle=IET+control+theory+%26+applications&rft.au=Ding%2C+Jie&rft.au=Chen%2C+Jiazhong&rft.au=Lin%2C+Jinxing&rft.au=Jiang%2C+Guoping&rft.date=2019-09-24&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=13&rft.issue=14&rft.spage=2181&rft.epage=2187&rft_id=info:doi/10.1049%2Fiet-cta.2019.0028&rft.externalDBID=10.1049%252Fiet-cta.2019.0028&rft.externalDocID=CTH2BF00510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon