Using Genetic Algorithms to Optimize Stopping Patterns for Passenger Rail Transportation
In a passenger railroad system, the stopping pattern optimization problem determines the train stopping strategy, taking into consideration multiple train classes, station types, and customer origin‐destination (OD) demand, to maximize the profit made by a rail company. The stopping pattern is tradi...
Uloženo v:
| Vydáno v: | Computer-aided civil and infrastructure engineering Ročník 29; číslo 4; s. 264 - 278 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Blackwell Publishing Ltd
01.04.2014
|
| ISSN: | 1093-9687, 1467-8667 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In a passenger railroad system, the stopping pattern optimization problem determines the train stopping strategy, taking into consideration multiple train classes, station types, and customer origin‐destination (OD) demand, to maximize the profit made by a rail company. The stopping pattern is traditionally decided by rule of thumb, an approach that leaves much room for improvement. In this article, we propose an integer program for this problem and provide a systematic approach to determining the optimal train stopping pattern for a rail company. Commonly used commercial optimization packages cannot solve this complex problem efficiently, especially when problems of realistic size need to be solved. Therefore, we develop two genetic algorithms, namely binary‐coded genetic algorithm (BGA) and integer‐coded genetic algorithm (IGA). In many of the past evolutionary programming studies, the chromosome was coded using the binary alphabet as BGA. The encoding and genetic operators of BGA are straightforward and relatively easy to implement. However, we show that it is difficult for the BGA to converge to feasible solutions for the stopping pattern optimization problem due to the complex solution space. Therefore, we propose an IGA with new encoding mechanism and genetic operators. Numerical results show that the proposed IGA can solve real‐world problems that are beyond the reach of commonly used optimization packages. |
|---|---|
| AbstractList | In a passenger railroad system, the stopping pattern optimization problem determines the train stopping strategy, taking into consideration multiple train classes, station types, and customer origin‐destination (OD) demand, to maximize the profit made by a rail company. The stopping pattern is traditionally decided by rule of thumb, an approach that leaves much room for improvement. In this article, we propose an integer program for this problem and provide a systematic approach to determining the optimal train stopping pattern for a rail company. Commonly used commercial optimization packages cannot solve this complex problem efficiently, especially when problems of realistic size need to be solved. Therefore, we develop two genetic algorithms, namely binary‐coded genetic algorithm (BGA) and integer‐coded genetic algorithm (IGA). In many of the past evolutionary programming studies, the chromosome was coded using the binary alphabet as BGA. The encoding and genetic operators of BGA are straightforward and relatively easy to implement. However, we show that it is difficult for the BGA to converge to feasible solutions for the stopping pattern optimization problem due to the complex solution space. Therefore, we propose an IGA with new encoding mechanism and genetic operators. Numerical results show that the proposed IGA can solve real‐world problems that are beyond the reach of commonly used optimization packages. |
| Author | Lin, Dung-Ying Ku, Yu-Hsiung |
| Author_xml | – sequence: 1 givenname: Dung-Ying surname: Lin fullname: Lin, Dung-Ying email: dylin@mail.ncku.edu.tw organization: Department of Transportation and Communication Management Science, National Cheng Kung University, Tainan, Taiwan – sequence: 2 givenname: Yu-Hsiung surname: Ku fullname: Ku, Yu-Hsiung organization: Department of Transportation and Communication Management Science, National Cheng Kung University, Tainan, Taiwan |
| BookMark | eNp9kNFLwzAQxoNMcE5f_Av6LHQmTdu0j2PMOZlu6Mb2FtL0OqNtU5KAzr_ezqoPIt7L3cH3-7j7TlGv1jUgdEHwkLR1VSkJQxLgAB-hPglj5idxzHrtjFPqp3HCTtCptc-4rTCkfbRdW1XvvCnU4JT0RuVOG-WeKus57S0apyr1Dt6j001z0C2Fc2Bq6xXatIu1UO_AeA9Cld7KiNo22jjhlK7P0HEhSgvnX32A1teT1fjGny-ms_Fo7kvKGPZpziTghNCswCljJAwkTnAkCBCIcFpENM8ilgVE5jIgEGcE5znEGESYipxkdIAuO19ptLUGCt4YVQmz5wTzQyb8kAn_zKQV419iqbpznWlf-BshHfKqStj_Y87vZuPJN-N3jLIO3n4YYV54zCiL-OZ-ytPb5WY7TVY8oB-A-4bW |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2014_10_012 crossref_primary_10_1111_mice_12194 crossref_primary_10_1016_j_energy_2020_118127 crossref_primary_10_1016_j_cie_2021_107547 crossref_primary_10_1016_j_physa_2016_10_008 crossref_primary_10_1016_j_tre_2020_102205 crossref_primary_10_1016_j_tre_2019_08_001 crossref_primary_10_1109_ACCESS_2020_2995176 crossref_primary_10_1007_s10973_020_09293_8 crossref_primary_10_3390_su11246996 crossref_primary_10_1007_s00158_016_1483_5 crossref_primary_10_1111_mice_12308 crossref_primary_10_1111_mice_13080 crossref_primary_10_3390_ijerph13070707 crossref_primary_10_1111_mice_12121 crossref_primary_10_3233_ICA_160527 crossref_primary_10_1111_mice_12164 crossref_primary_10_3233_ICA_160529 crossref_primary_10_1016_j_trb_2017_05_001 crossref_primary_10_1109_ACCESS_2019_2921758 crossref_primary_10_1111_mice_12083 crossref_primary_10_14359_51689485 crossref_primary_10_1016_j_ejor_2014_04_025 crossref_primary_10_1111_mice_12126 crossref_primary_10_1007_s12559_017_9485_1 crossref_primary_10_1016_j_trb_2016_07_006 crossref_primary_10_1080_23248378_2018_1489741 crossref_primary_10_1016_j_physa_2021_126575 crossref_primary_10_1016_j_trb_2021_05_011 crossref_primary_10_1177_1369433216643250 crossref_primary_10_1016_j_trc_2015_12_007 crossref_primary_10_1109_ACCESS_2023_3292790 crossref_primary_10_1111_mice_12170 crossref_primary_10_1002_atr_1430 crossref_primary_10_1111_mice_12138 crossref_primary_10_1007_s13177_025_00522_8 crossref_primary_10_3233_ICA_170539 crossref_primary_10_1016_j_tra_2018_04_012 crossref_primary_10_1155_2022_4100049 crossref_primary_10_1177_0361198118772958 crossref_primary_10_1080_03081060_2020_1701757 crossref_primary_10_1016_j_physa_2021_125775 crossref_primary_10_1109_ACCESS_2020_3017014 crossref_primary_10_3233_ICA_160532 crossref_primary_10_3390_su12041669 crossref_primary_10_1061__ASCE_CP_1943_5487_0000453 crossref_primary_10_3233_ICA_160536 crossref_primary_10_1080_03155986_2020_1746100 crossref_primary_10_1111_mice_12265 crossref_primary_10_1111_mice_12384 crossref_primary_10_1109_ACCESS_2019_2939483 crossref_primary_10_1016_j_trc_2018_02_016 crossref_primary_10_1111_mice_12304 crossref_primary_10_1111_mice_12148 crossref_primary_10_1111_mice_12102 crossref_primary_10_1111_mice_12300 crossref_primary_10_1109_ACCESS_2022_3210578 crossref_primary_10_1142_S0218001416390018 crossref_primary_10_1088_0964_1726_24_12_125040 crossref_primary_10_1007_s12559_015_9370_8 crossref_primary_10_1177_1687814018768694 crossref_primary_10_1061__ASCE_CO_1943_7862_0001047 crossref_primary_10_3390_su11102791 |
| Cites_doi | 10.1111/j.1467-8667.2009.00626.x 10.1111/j.1467-8667.2008.00564.x 10.1111/j.1467-8667.2012.00786.x 10.1016/j.trb.2009.01.009 10.1111/j.1467-8667.2011.00753.x 10.1016/S0305-0548(96)00042-1 10.1111/0885-9507.00234 10.1061/(ASCE)0893-1321(1995)8:3(156) 10.1111/j.1467-8667.2010.00715.x 10.1061/(ASCE)0893-1321(1994)7:3(276) 10.1287/trsc.1080.0247 10.1061/(ASCE)0733-9445(2000)126:5(596) 10.1111/j.1467-8667.2010.00659.x 10.1057/jors.1995.136 10.1177/109434209300700206 10.1111/j.1467-8667.2012.00780.x 10.1111/j.1467-8667.2012.00789.x 10.1023/A:1018906301828 10.1007/s00186-005-0001-0 10.1016/S0191-2615(99)00013-2 10.1016/j.ejor.2004.04.036 10.1016/0925-2312(93)90042-2 10.1061/(ASCE)0733-9445(1995)121:11(1588) 10.1002/nme.549 10.1111/j.1467-8667.2011.00722.x 10.1080/03052150108940930 10.1061/(ASCE)0893-1321(1994)7:1(104) 10.1016/S0965-8564(02)00012-5 10.1287/trsc.1030.0051 10.1016/0191-2615(86)90019-6 10.1111/j.1467-8667.2010.00687.x 10.1061/(ASCE)0893-1321(1993)6:4(315) 10.1109/72.329686 10.1016/S0377-2217(97)00271-3 10.1016/0191-2615(80)90036-3 10.1002/nme.2274 10.1287/trsc.32.4.380 10.1061/(ASCE)0733-9445(2000)126:11(1339) 10.1002/0470867353 10.1287/trsc.25.1.46 10.3141/2289-04 10.1061/(ASCE)0733-9445(1998)124:5(570) 10.1016/j.ejor.2006.10.034 |
| ContentType | Journal Article |
| Copyright | 2013 |
| Copyright_xml | – notice: 2013 |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1111/mice.12020 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 278 |
| ExternalDocumentID | 10_1111_mice_12020 MICE12020 ark_67375_WNG_9JPWXG8T_2 |
| Genre | article |
| GrantInformation_xml | – fundername: National Research Council, Taiwan, ROC funderid: NSC‐100‐2410‐H‐006‐069‐MY3 |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC AAYXX CITATION O8X |
| ID | FETCH-LOGICAL-c3770-3d7ce0813bf0977142c0805a1e1e509f53db57b21cdc21e6b10dde60ea49ad1b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332054800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1093-9687 |
| IngestDate | Tue Nov 18 22:18:53 EST 2025 Sat Nov 29 05:42:04 EST 2025 Wed Jan 22 16:27:18 EST 2025 Tue Nov 11 03:31:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3770-3d7ce0813bf0977142c0805a1e1e509f53db57b21cdc21e6b10dde60ea49ad1b3 |
| Notes | ark:/67375/WNG-9JPWXG8T-2 National Research Council, Taiwan, ROC - No. NSC-100-2410-H-006-069-MY3 ArticleID:MICE12020 istex:8EDB05BAE7B92D95B7EBDE8E7201921D77B728BD |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1111_mice_12020 crossref_citationtrail_10_1111_mice_12020 wiley_primary_10_1111_mice_12020_MICE12020 istex_primary_ark_67375_WNG_9JPWXG8T_2 |
| PublicationCentury | 2000 |
| PublicationDate | April 2014 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationTitleAlternate | Computer-Aided Civil and Infrastructure Engineering |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Sgambi, L., Gkoumas, K. & Bontempi, F. (2012), Genetic algorithms for the dependability assurance in the design of a long span suspension bridge, Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-75. Adeli, H. & Hung, S. L. (1995), Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy System, John Wiley and Sons, New York. Carey, M. & Lockwood, D. (1995), A model, algorithms and strategy for train pathing. The Journal of the Operational Research Society, 46(8), 988-1005. Deb, K. & Goyal, M. (1996), A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 26(4), 30-45. Jovanovic, D. & Harker, P. T. (1990), A decision support system for train dispatching: an optimization-based methodology, Journal of Transportation Research Forum, 31, 25-37. Crainic, T. G. & Rousseau, J. M. (1986), Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design problem. Transportation Research Part B: Methodological, 20(3), 225-42. Carey, M. & Carville, S. (2003), Scheduling and platforming trains at busy complex stations, Transportation Research Part A: Policy and Practice, 37(3), 195-224. Jafarkhani, R. & Masri, S. F. (2011), Finite element model updating using evolutionary strategy for damage detection, Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-24. Kim, H. & Adeli, H. (2001), Discrete cost optimization of composite floors using a floating point genetic algorithm, Engineering Optimization, 33(4), 485-501. Sarma, K. & Adeli, H. (2000a), Fuzzy genetic algorithm for optimization of steel structures, Journal of Structural Engineering, ASCE, 126(5), 596-604. Claessens, M. T., Dijk, N. M. & Zwaneveld, P. J. (1998), Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110, 474-89. Lindner, T. & Zimmermann, U. T. (2003), Cost optimal train scheduling. Mathematical Methods of Operations Research, 62(2), 281-95. Adeli, H. & Kumar, S. (1995b), Distributed genetic algorithms for structural optimization, Journal of Aerospace Engineering, 8(3), 156-63. Jong, J.-C., Suen, C.-S. & Chang, S. K. (2012) Decision support system to optimize railway stopping patterns, Transportation Research Record: Journal of the Transportation Research Board, 2289, 24-33. Sarma, K. & Adeli, H. (1998), Cost optimization of concrete structures, Journal of Structural Engineering, ASCE, 124(5), 570-78. Adeli, H. & Sarma, K. (2006), Cost Optimization of Structures-Fuzzy Logic, Genetic Algorithms, and Parallel Computing, John Wiley and Sons, West Sussex, United Kingdom. Dridi, L., Parizeau, M., Mailhot, A. & Villeneuve, J. P. (2008), Using evolutionary optimisation techniques for scheduling water pipe renewal considering a short planning horizon, Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-35. Jiang, X. & Adeli, H. (2008), Neuro-genetic algorithm for nonlinear active control of highrise buildings, International Journal for Numerical Methods in Engineering, 75(8), 770-86. Unnikrishnan, A. & Lin, D.-Y. (2012), User equilibrium with recourse: continuous network design problem, Computer-Aided Civil and Infrastructure Engineering, 27(7), 512-24. D'Ariano, A., Corman, F., Pacciarelli, D. & Pranzo, M. (2008), Reordering and local rerouting strategies to manage train traffic in real-time, Transportation Science, 42, 405-19. Goossens, J. W., Hoesel, S. & Kroon, L. (2004), A branch-and-cut approach for solving railway line-planning problems. Transportation Science, 38(3), 379-93. Hung, S. L. & Adeli, H. (1993), Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer, Neurocomputing, 5(6), 287-302. Goossens, J. W., Hoesel, S. & Kroon, L. (2006), Discrete optimization on solving multi-type railway line planning problems. European Journal of Operational Research, 168(2), 403-24. Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. (1993), Network Flows: Theory, Algorithms and Applications. Prentice Hall, NJ. Fuggini, C., Chatzi, E., Zangani, D. & Messervey, T. B. (2013), Combining genetic algorithm with a meso-scale approach for system identification of a smart polymeric textile, Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-45. Gorman, M. F. (1998), An application of genetic and tabu searches to the freight railroad operating plan problem. Annals of Operations Research, 78(0), 51-69. Adeli, H. & Cheng, N.-T. (1994b), Concurrent genetic algorithms for optimization of large structures, Journal of Aerospace Engineering, ASCE, 7(3), 276-96. Marano, G. C., Quaranta, G. & Monti, G. (2011), Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements, Computer-Aided Civil and Infrastructure Engineering, 26(2), 92-110. Assad, A. A. (1980), Modelling of rail networks: toward a routing/makeup model, Transportation Research Part B: Methodological, 14(1-2), 101-14. Putha, R., Quadrifoglio, L. & Zechman, E. (2011), Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions, Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28. Chang, Y.-H., Yeh, C.-H. & Shen, C.-C. (2000), A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line, Transportation Research Part B: Methodological, 34(2), 91-106. Sarma, K. & Adeli, H. (2000b), Fuzzy discrete multicriteria cost optimization of steel structures, Journal of Structural Engineering, ASCE, 126(11), 1339-47. Adeli, H. & Kumar, S. (1999), Distributed Computer-Aided Engineering for Analysis, Design, and Visualization, CRC Press, Boca Raton, FL. Sarma, K.C. & Adeli, H. (2002), Life-cycle cost optimization of steel structures, International Journal for Numerical Methods in Engineering, 55(12), 1451-62. Higgins, H., Kozan, E. & Ferreira, L. (1997), Modeling the number and location of sidings on a single line railway. Computers and Operations Research, 24(3), 209-20. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI. Jovanovic, D. & Harker, P. T. (1991), Tactical scheduling of rail operations: the SCAN I system. Transportation Science, 25, 46-64. Adeli, H. & Cheng, N.-T. (1993), Integrated genetic algorithm for optimization of space structures, Journal of Aerospace Engineering, ASCE, 6(4), 315-28. Lee, Y. & Chen, C.-Y. (2009), A heuristic for the train pathing and timetabling problem, Transportation Research Part B: Methodological, 43(8-9), 837-51. Karoonsoontawong, A. & Lin, D.-Y. (2011), Time-varying lane-based capacity reversibility for traffic management, Computer-Aided Civil and Infrastructure Engineering, 26(8), 632-46. Hsiao, F. Y., Wang, S. S., Wang, W. C., Wen, C. P. & Yu, W. D. (2012), Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction, Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-81. Adeli, H. & Kumar, S. (1995a), Concurrent structural optimization on a massively parallel supercomputer, Journal of Structural Engineering, ASCE, 121(11), 1588-97. Cordeau, J. F., Toth, P. & Vigo, D. (1998), A survey of optimization models for train routing and scheduling, Transportation Science, 32(4), 380-404. Adeli, H. & Cheng, N.-T. (1994a), Augmented Lagrangian genetic algorithm for structural optimization, Journal of Aerospace Engineering, ASCE, 7(1), 104-18. Adeli, H. & Hung, S. L. (1993), A concurrent adaptive conjugate gradient learning algorithm on MIMD machines, Journal of Supercomputer Applications, MIT Press, 7 (2), 155-66. Sarma, K. C. & Adeli, H. (2001), Bi-level parallel genetic algorithms for optimization of large steel structures, Computer-Aided Civil and Infrastructure Engineering, 16(5), 295-304. Lee, Y. & Wei, C. H. (2010), A computerized feature selection using genetic algorithms to forecast freeway accident duration times, Computer-Aided Civil and Infrastructure Engineering, 25(2), 132-48. D'Ariano, A., Pacciarelli, D. & Pranzo, M. (2007), A branch and bound algorithm for scheduling trains in a railway network, European Journal of Operational Research, 183, 643-57. Deb, K. & Agrawal, R. (1995), Simulated binary crossover for continuous search space. Complex Systems, 9(6), 431-54. Hung, S. L. & Adeli, H. (1994), A parallel genetic/neural network learning algorithm for MIMD shared memory machines, IEEE Transactions on Neural Networks, 5(6), 900-909. 1993; 7 2013; 28 2009; 43 2007; 183 1995b; 8 2002; 55 1975 2008; 75 1994b; 7 1998; 110 1993; 5 1993; 6 1995a; 121 2010; 25 2000a; 126 2004; 38 2008; 23 2001; 16 2012; 27 2011; 26 2011; 27 1998; 124 1996; 26 1989 2006; 168 1995; 9 1990; 31 2012 1997; 24 2008 2003; 37 1996 1995 2006 1993 1999 1980; 14 2012; 2289 1991; 25 1986; 20 2000; 34 1995; 46 2000b; 126 2008; 42 2001; 33 1998; 32 2003; 62 1998; 78 1994; 5 1994a; 7 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 Jovanovic D. (e_1_2_8_38_1) 1990; 31 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 Adeli H. (e_1_2_8_9_1) 1999 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 Deb K. (e_1_2_8_23_1) 1996; 26 Holland J. H. (e_1_2_8_30_1) 1975 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_29_1 Ahuja R. K. (e_1_2_8_11_1) 1993 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 Deb K. (e_1_2_8_22_1) 1995; 9 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Adeli H. (e_1_2_8_6_1) 1995 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – reference: Deb, K. & Goyal, M. (1996), A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 26(4), 30-45. – reference: Lee, Y. & Wei, C. H. (2010), A computerized feature selection using genetic algorithms to forecast freeway accident duration times, Computer-Aided Civil and Infrastructure Engineering, 25(2), 132-48. – reference: Lee, Y. & Chen, C.-Y. (2009), A heuristic for the train pathing and timetabling problem, Transportation Research Part B: Methodological, 43(8-9), 837-51. – reference: Adeli, H. & Hung, S. L. (1995), Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy System, John Wiley and Sons, New York. – reference: Hung, S. L. & Adeli, H. (1993), Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer, Neurocomputing, 5(6), 287-302. – reference: Jong, J.-C., Suen, C.-S. & Chang, S. K. (2012) Decision support system to optimize railway stopping patterns, Transportation Research Record: Journal of the Transportation Research Board, 2289, 24-33. – reference: Adeli, H. & Cheng, N.-T. (1994a), Augmented Lagrangian genetic algorithm for structural optimization, Journal of Aerospace Engineering, ASCE, 7(1), 104-18. – reference: Goossens, J. W., Hoesel, S. & Kroon, L. (2006), Discrete optimization on solving multi-type railway line planning problems. European Journal of Operational Research, 168(2), 403-24. – reference: Carey, M. & Carville, S. (2003), Scheduling and platforming trains at busy complex stations, Transportation Research Part A: Policy and Practice, 37(3), 195-224. – reference: Gorman, M. F. (1998), An application of genetic and tabu searches to the freight railroad operating plan problem. Annals of Operations Research, 78(0), 51-69. – reference: Higgins, H., Kozan, E. & Ferreira, L. (1997), Modeling the number and location of sidings on a single line railway. Computers and Operations Research, 24(3), 209-20. – reference: Adeli, H. & Kumar, S. (1995b), Distributed genetic algorithms for structural optimization, Journal of Aerospace Engineering, 8(3), 156-63. – reference: Sarma, K.C. & Adeli, H. (2002), Life-cycle cost optimization of steel structures, International Journal for Numerical Methods in Engineering, 55(12), 1451-62. – reference: Unnikrishnan, A. & Lin, D.-Y. (2012), User equilibrium with recourse: continuous network design problem, Computer-Aided Civil and Infrastructure Engineering, 27(7), 512-24. – reference: Adeli, H. & Cheng, N.-T. (1994b), Concurrent genetic algorithms for optimization of large structures, Journal of Aerospace Engineering, ASCE, 7(3), 276-96. – reference: Sgambi, L., Gkoumas, K. & Bontempi, F. (2012), Genetic algorithms for the dependability assurance in the design of a long span suspension bridge, Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-75. – reference: Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. (1993), Network Flows: Theory, Algorithms and Applications. Prentice Hall, NJ. – reference: Sarma, K. & Adeli, H. (2000b), Fuzzy discrete multicriteria cost optimization of steel structures, Journal of Structural Engineering, ASCE, 126(11), 1339-47. – reference: Hung, S. L. & Adeli, H. (1994), A parallel genetic/neural network learning algorithm for MIMD shared memory machines, IEEE Transactions on Neural Networks, 5(6), 900-909. – reference: Adeli, H. & Hung, S. L. (1993), A concurrent adaptive conjugate gradient learning algorithm on MIMD machines, Journal of Supercomputer Applications, MIT Press, 7 (2), 155-66. – reference: Deb, K. & Agrawal, R. (1995), Simulated binary crossover for continuous search space. Complex Systems, 9(6), 431-54. – reference: Assad, A. A. (1980), Modelling of rail networks: toward a routing/makeup model, Transportation Research Part B: Methodological, 14(1-2), 101-14. – reference: Adeli, H. & Sarma, K. (2006), Cost Optimization of Structures-Fuzzy Logic, Genetic Algorithms, and Parallel Computing, John Wiley and Sons, West Sussex, United Kingdom. – reference: Crainic, T. G. & Rousseau, J. M. (1986), Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design problem. Transportation Research Part B: Methodological, 20(3), 225-42. – reference: Jovanovic, D. & Harker, P. T. (1991), Tactical scheduling of rail operations: the SCAN I system. Transportation Science, 25, 46-64. – reference: Sarma, K. & Adeli, H. (1998), Cost optimization of concrete structures, Journal of Structural Engineering, ASCE, 124(5), 570-78. – reference: Hsiao, F. Y., Wang, S. S., Wang, W. C., Wen, C. P. & Yu, W. D. (2012), Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction, Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-81. – reference: Jiang, X. & Adeli, H. (2008), Neuro-genetic algorithm for nonlinear active control of highrise buildings, International Journal for Numerical Methods in Engineering, 75(8), 770-86. – reference: Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI. – reference: Claessens, M. T., Dijk, N. M. & Zwaneveld, P. J. (1998), Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110, 474-89. – reference: Adeli, H. & Cheng, N.-T. (1993), Integrated genetic algorithm for optimization of space structures, Journal of Aerospace Engineering, ASCE, 6(4), 315-28. – reference: Sarma, K. & Adeli, H. (2000a), Fuzzy genetic algorithm for optimization of steel structures, Journal of Structural Engineering, ASCE, 126(5), 596-604. – reference: Dridi, L., Parizeau, M., Mailhot, A. & Villeneuve, J. P. (2008), Using evolutionary optimisation techniques for scheduling water pipe renewal considering a short planning horizon, Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-35. – reference: Putha, R., Quadrifoglio, L. & Zechman, E. (2011), Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions, Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28. – reference: Adeli, H. & Kumar, S. (1999), Distributed Computer-Aided Engineering for Analysis, Design, and Visualization, CRC Press, Boca Raton, FL. – reference: D'Ariano, A., Pacciarelli, D. & Pranzo, M. (2007), A branch and bound algorithm for scheduling trains in a railway network, European Journal of Operational Research, 183, 643-57. – reference: Sarma, K. C. & Adeli, H. (2001), Bi-level parallel genetic algorithms for optimization of large steel structures, Computer-Aided Civil and Infrastructure Engineering, 16(5), 295-304. – reference: Jafarkhani, R. & Masri, S. F. (2011), Finite element model updating using evolutionary strategy for damage detection, Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-24. – reference: Kim, H. & Adeli, H. (2001), Discrete cost optimization of composite floors using a floating point genetic algorithm, Engineering Optimization, 33(4), 485-501. – reference: D'Ariano, A., Corman, F., Pacciarelli, D. & Pranzo, M. (2008), Reordering and local rerouting strategies to manage train traffic in real-time, Transportation Science, 42, 405-19. – reference: Adeli, H. & Kumar, S. (1995a), Concurrent structural optimization on a massively parallel supercomputer, Journal of Structural Engineering, ASCE, 121(11), 1588-97. – reference: Lindner, T. & Zimmermann, U. T. (2003), Cost optimal train scheduling. Mathematical Methods of Operations Research, 62(2), 281-95. – reference: Karoonsoontawong, A. & Lin, D.-Y. (2011), Time-varying lane-based capacity reversibility for traffic management, Computer-Aided Civil and Infrastructure Engineering, 26(8), 632-46. – reference: Cordeau, J. F., Toth, P. & Vigo, D. (1998), A survey of optimization models for train routing and scheduling, Transportation Science, 32(4), 380-404. – reference: Chang, Y.-H., Yeh, C.-H. & Shen, C.-C. (2000), A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line, Transportation Research Part B: Methodological, 34(2), 91-106. – reference: Fuggini, C., Chatzi, E., Zangani, D. & Messervey, T. B. (2013), Combining genetic algorithm with a meso-scale approach for system identification of a smart polymeric textile, Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-45. – reference: Carey, M. & Lockwood, D. (1995), A model, algorithms and strategy for train pathing. The Journal of the Operational Research Society, 46(8), 988-1005. – reference: Goossens, J. W., Hoesel, S. & Kroon, L. (2004), A branch-and-cut approach for solving railway line-planning problems. Transportation Science, 38(3), 379-93. – reference: Jovanovic, D. & Harker, P. T. (1990), A decision support system for train dispatching: an optimization-based methodology, Journal of Transportation Research Forum, 31, 25-37. – reference: Marano, G. C., Quaranta, G. & Monti, G. (2011), Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements, Computer-Aided Civil and Infrastructure Engineering, 26(2), 92-110. – volume: 27 start-page: 14 issue: 1 year: 2011 end-page: 28 article-title: Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 7 start-page: 276 issue: 3 year: 1994b end-page: 96 article-title: Concurrent genetic algorithms for optimization of large structures publication-title: Journal of Aerospace Engineering, ASCE – volume: 16 start-page: 295 issue: 5 year: 2001 end-page: 304 article-title: Bi‐level parallel genetic algorithms for optimization of large steel structures publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 28 start-page: 227 issue: 3 year: 2013 end-page: 45 article-title: Combining genetic algorithm with a meso‐scale approach for system identification of a smart polymeric textile publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 1975 – volume: 31 start-page: 25 year: 1990 end-page: 37 article-title: A decision support system for train dispatching: an optimization‐based methodology publication-title: Journal of Transportation Research Forum – volume: 20 start-page: 225 issue: 3 year: 1986 end-page: 42 article-title: Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design problem publication-title: Transportation Research Part B: Methodological – volume: 25 start-page: 46 year: 1991 end-page: 64 article-title: Tactical scheduling of rail operations: the SCAN I system publication-title: Transportation Science – volume: 46 start-page: 988 issue: 8 year: 1995 end-page: 1005 article-title: A model, algorithms and strategy for train pathing publication-title: The Journal of the Operational Research Society – volume: 26 start-page: 632 issue: 8 year: 2011 end-page: 46 article-title: Time‐varying lane‐based capacity reversibility for traffic management publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 5 start-page: 287 issue: 6 year: 1993 end-page: 302 article-title: Parallel backpropagation learning algorithms on cray Y‐MP8/864 supercomputer publication-title: Neurocomputing – volume: 9 start-page: 431 issue: 6 year: 1995 end-page: 54 article-title: Simulated binary crossover for continuous search space publication-title: Complex Systems – volume: 38 start-page: 379 issue: 3 year: 2004 end-page: 93 article-title: A branch‐and‐cut approach for solving railway line‐planning problems publication-title: Transportation Science – volume: 33 start-page: 485 issue: 4 year: 2001 end-page: 501 article-title: Discrete cost optimization of composite floors using a floating point genetic algorithm publication-title: Engineering Optimization – volume: 23 start-page: 625 issue: 8 year: 2008 end-page: 35 article-title: Using evolutionary optimisation techniques for scheduling water pipe renewal considering a short planning horizon publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 37 start-page: 195 issue: 3 year: 2003 end-page: 224 article-title: Scheduling and platforming trains at busy complex stations publication-title: Transportation Research Part A: Policy and Practice – volume: 183 start-page: 643 year: 2007 end-page: 57 article-title: A branch and bound algorithm for scheduling trains in a railway network publication-title: European Journal of Operational Research – volume: 24 start-page: 209 issue: 3 year: 1997 end-page: 20 article-title: Modeling the number and location of sidings on a single line railway publication-title: Computers and Operations Research – volume: 126 start-page: 596 issue: 5 year: 2000a end-page: 604 article-title: Fuzzy genetic algorithm for optimization of steel structures publication-title: Journal of Structural Engineering, ASCE – volume: 8 start-page: 156 issue: 3 year: 1995b end-page: 63 article-title: Distributed genetic algorithms for structural optimization publication-title: Journal of Aerospace Engineering – volume: 121 start-page: 1588 issue: 11 year: 1995a end-page: 97 article-title: Concurrent structural optimization on a massively parallel supercomputer publication-title: Journal of Structural Engineering, ASCE – volume: 34 start-page: 91 issue: 2 year: 2000 end-page: 106 article-title: A multiobjective model for passenger train services planning: application to Taiwan's high‐speed rail line publication-title: Transportation Research Part B: Methodological – volume: 7 start-page: 104 issue: 1 year: 1994a end-page: 18 article-title: Augmented Lagrangian genetic algorithm for structural optimization publication-title: Journal of Aerospace Engineering, ASCE – year: 1993 – volume: 26 start-page: 92 issue: 2 year: 2011 end-page: 110 article-title: Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 78 start-page: 51 issue: 0 year: 1998 end-page: 69 article-title: An application of genetic and tabu searches to the freight railroad operating plan problem publication-title: Annals of Operations Research – volume: 7 start-page: 155 issue: 2 year: 1993 end-page: 66 article-title: A concurrent adaptive conjugate gradient learning algorithm on MIMD machines publication-title: Journal of Supercomputer Applications, MIT Press – volume: 26 start-page: 30 issue: 4 year: 1996 end-page: 45 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Computer Science and Informatics – year: 2008 article-title: Improving real‐time train dispatching: models, algorithms and applications – volume: 75 start-page: 770 issue: 8 year: 2008 end-page: 86 article-title: Neuro‐genetic algorithm for nonlinear active control of highrise buildings publication-title: International Journal for Numerical Methods in Engineering – volume: 5 start-page: 900 issue: 6 year: 1994 end-page: 909 article-title: A parallel genetic/neural network learning algorithm for MIMD shared memory machines publication-title: IEEE Transactions on Neural Networks – year: 1989 article-title: Improving railroad in‐time performance: models, algorithms and applications – year: 2012 article-title: Mathematical modeling for optimizing skip‐stop rail transit operation strategy using genetic algorithm – volume: 27 start-page: 655 issue: 9 year: 2012 end-page: 75 article-title: Genetic algorithms for the dependability assurance in the design of a long span suspension bridge publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 110 start-page: 474 year: 1998 end-page: 89 article-title: Cost optimal allocation of rail passenger lines publication-title: European Journal of Operational Research – volume: 43 start-page: 837 issue: 8–9 year: 2009 end-page: 51 article-title: A heuristic for the train pathing and timetabling problem publication-title: Transportation Research Part B: Methodological – volume: 126 start-page: 1339 issue: 11 year: 2000b end-page: 47 article-title: Fuzzy discrete multicriteria cost optimization of steel structures publication-title: Journal of Structural Engineering, ASCE – volume: 42 start-page: 405 year: 2008 end-page: 19 article-title: Reordering and local rerouting strategies to manage train traffic in real‐time publication-title: Transportation Science – volume: 62 start-page: 281 issue: 2 year: 2003 end-page: 95 article-title: Cost optimal train scheduling publication-title: Mathematical Methods of Operations Research – volume: 55 start-page: 1451 issue: 12 year: 2002 end-page: 62 article-title: Life‐cycle cost optimization of steel structures publication-title: International Journal for Numerical Methods in Engineering – volume: 168 start-page: 403 issue: 2 year: 2006 end-page: 24 article-title: Discrete optimization on solving multi‐type railway line planning problems publication-title: European Journal of Operational Research – volume: 27 start-page: 512 issue: 7 year: 2012 end-page: 24 article-title: User equilibrium with recourse: continuous network design problem publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 25 start-page: 132 issue: 2 year: 2010 end-page: 48 article-title: A computerized feature selection using genetic algorithms to forecast freeway accident duration times publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 26 start-page: 207 issue: 3 year: 2011 end-page: 24 article-title: Finite element model updating using evolutionary strategy for damage detection publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2006 – start-page: 217 year: 1996 end-page: 26 – volume: 32 start-page: 380 issue: 4 year: 1998 end-page: 404 article-title: A survey of optimization models for train routing and scheduling publication-title: Transportation Science – year: 1995 – volume: 6 start-page: 315 issue: 4 year: 1993 end-page: 28 article-title: Integrated genetic algorithm for optimization of space structures publication-title: Journal of Aerospace Engineering, ASCE – volume: 2289 start-page: 24 year: 2012 end-page: 33 article-title: Decision support system to optimize railway stopping patterns publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 124 start-page: 570 issue: 5 year: 1998 end-page: 78 article-title: Cost optimization of concrete structures publication-title: Journal of Structural Engineering, ASCE – volume: 14 start-page: 101 issue: 1–2 year: 1980 end-page: 14 article-title: Modelling of rail networks: toward a routing/makeup model publication-title: Transportation Research Part B: Methodological – volume: 27 start-page: 764 issue: 10 year: 2012 end-page: 81 article-title: Neuro‐fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 1999 – ident: e_1_2_8_43_1 doi: 10.1111/j.1467-8667.2009.00626.x – ident: e_1_2_8_24_1 doi: 10.1111/j.1467-8667.2008.00564.x – ident: e_1_2_8_37_1 – ident: e_1_2_8_31_1 doi: 10.1111/j.1467-8667.2012.00786.x – ident: e_1_2_8_42_1 doi: 10.1016/j.trb.2009.01.009 – ident: e_1_2_8_54_1 doi: 10.1111/j.1467-8667.2011.00753.x – ident: e_1_2_8_29_1 doi: 10.1016/S0305-0548(96)00042-1 – ident: e_1_2_8_44_1 – ident: e_1_2_8_51_1 doi: 10.1111/0885-9507.00234 – ident: e_1_2_8_8_1 doi: 10.1061/(ASCE)0893-1321(1995)8:3(156) – ident: e_1_2_8_47_1 doi: 10.1111/j.1467-8667.2010.00715.x – ident: e_1_2_8_4_1 doi: 10.1061/(ASCE)0893-1321(1994)7:3(276) – ident: e_1_2_8_20_1 doi: 10.1287/trsc.1080.0247 – ident: e_1_2_8_49_1 doi: 10.1061/(ASCE)0733-9445(2000)126:5(596) – ident: e_1_2_8_46_1 doi: 10.1111/j.1467-8667.2010.00659.x – ident: e_1_2_8_14_1 doi: 10.1057/jors.1995.136 – ident: e_1_2_8_5_1 doi: 10.1177/109434209300700206 – ident: e_1_2_8_53_1 doi: 10.1111/j.1467-8667.2012.00780.x – ident: e_1_2_8_25_1 doi: 10.1111/j.1467-8667.2012.00789.x – ident: e_1_2_8_28_1 doi: 10.1023/A:1018906301828 – ident: e_1_2_8_45_1 doi: 10.1007/s00186-005-0001-0 – ident: e_1_2_8_15_1 doi: 10.1016/S0191-2615(99)00013-2 – volume-title: Network Flows: Theory, Algorithms and Applications year: 1993 ident: e_1_2_8_11_1 – volume: 26 start-page: 30 issue: 4 year: 1996 ident: e_1_2_8_23_1 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Computer Science and Informatics – ident: e_1_2_8_27_1 doi: 10.1016/j.ejor.2004.04.036 – ident: e_1_2_8_32_1 doi: 10.1016/0925-2312(93)90042-2 – ident: e_1_2_8_7_1 doi: 10.1061/(ASCE)0733-9445(1995)121:11(1588) – ident: e_1_2_8_52_1 doi: 10.1002/nme.549 – ident: e_1_2_8_40_1 doi: 10.1111/j.1467-8667.2011.00722.x – ident: e_1_2_8_41_1 doi: 10.1080/03052150108940930 – volume-title: Distributed Computer‐Aided Engineering for Analysis, Design, and Visualization year: 1999 ident: e_1_2_8_9_1 – ident: e_1_2_8_3_1 doi: 10.1061/(ASCE)0893-1321(1994)7:1(104) – ident: e_1_2_8_13_1 doi: 10.1016/S0965-8564(02)00012-5 – ident: e_1_2_8_26_1 doi: 10.1287/trsc.1030.0051 – ident: e_1_2_8_18_1 doi: 10.1016/0191-2615(86)90019-6 – ident: e_1_2_8_34_1 doi: 10.1111/j.1467-8667.2010.00687.x – ident: e_1_2_8_55_1 – ident: e_1_2_8_2_1 doi: 10.1061/(ASCE)0893-1321(1993)6:4(315) – ident: e_1_2_8_33_1 doi: 10.1109/72.329686 – ident: e_1_2_8_16_1 doi: 10.1016/S0377-2217(97)00271-3 – ident: e_1_2_8_12_1 doi: 10.1016/0191-2615(80)90036-3 – volume-title: Adaptation in Natural and Artificial Systems year: 1975 ident: e_1_2_8_30_1 – ident: e_1_2_8_35_1 doi: 10.1002/nme.2274 – volume: 31 start-page: 25 year: 1990 ident: e_1_2_8_38_1 article-title: A decision support system for train dispatching: an optimization‐based methodology publication-title: Journal of Transportation Research Forum – ident: e_1_2_8_19_1 – ident: e_1_2_8_17_1 doi: 10.1287/trsc.32.4.380 – volume: 9 start-page: 431 issue: 6 year: 1995 ident: e_1_2_8_22_1 article-title: Simulated binary crossover for continuous search space publication-title: Complex Systems – ident: e_1_2_8_50_1 doi: 10.1061/(ASCE)0733-9445(2000)126:11(1339) – ident: e_1_2_8_10_1 doi: 10.1002/0470867353 – volume-title: Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy System year: 1995 ident: e_1_2_8_6_1 – ident: e_1_2_8_39_1 doi: 10.1287/trsc.25.1.46 – ident: e_1_2_8_36_1 doi: 10.3141/2289-04 – ident: e_1_2_8_48_1 doi: 10.1061/(ASCE)0733-9445(1998)124:5(570) – ident: e_1_2_8_21_1 doi: 10.1016/j.ejor.2006.10.034 |
| SSID | ssj0000443 |
| Score | 2.3502767 |
| Snippet | In a passenger railroad system, the stopping pattern optimization problem determines the train stopping strategy, taking into consideration multiple train... |
| SourceID | crossref wiley istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 264 |
| Title | Using Genetic Algorithms to Optimize Stopping Patterns for Passenger Rail Transportation |
| URI | https://api.istex.fr/ark:/67375/WNG-9JPWXG8T-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12020 |
| Volume | 29 |
| WOSCitedRecordID | wos000332054800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_E-aAPTqfi_CKgCAqVNU2aFnwRdYrIHH7g3kraJnO4D2mriH-9SZZuCiKIb224hnKXu_wuXH4HsBcz7jMuPYdgIh1CWOxwTJjDfUGDRISYMWmaTbBWK-h0wvYMHJd3Ycb8EJMDN-0ZJl5rB-dx_sXJdbf2I1fl7iphr-hbVSr1qpzdNh-up5GY2AL70HNCP2CWnlRX8ky__rYhVbRu378DVbPTNKv_-8clWLQIE52Ml8QyzIhhDaoWbSLry7kaKhs6lGM1WPjCTrgCHVNOgDQxtZoKnfS7o6xXPA1yVIzQjQo1g96HQHfFSFM8dFHbMHUOc6RgsHrJc10vm6Fb3uujCYW6WQer8NA8vz-9dGwjBifxGFNxOmWJUNjBi2VD4UWXYM1PTrkrXKEAh6ReGlMWYzdJE-wKP3YbKmr6DcFJyFM39tZgdjgainVAqcSSpszzRBAq7CB5SHlAuQwI5lT6aR0OSmtEiWUp180y-lGZrWidRkanddidyL6MuTl-lNo3Rp2I8OxZV7MxGj22LqLwqv3YuQjuI1yHQ2PLX-aKlGucm6eNvwhvwrzCWbbgZwtmi-xVbMNc8lb08mzHrtpPx0Hwhw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tS-swFD7IJlz94PvF-XYDygWFXta8NO1HUadX5-7wTty3kraJDucmbRXx15tk2VQQQfzWhtNQTnJOnoQnzwHYSbgIuFDEo5gqj1KeeAJT7olAsjCVEeZc2WITvNUKu92o7bg55i7MSB9icuBmIsPmaxPg5kD6TZSbcu1_fL151zv2Kg0IDytQPbxoXDZfUzF1DPuIeFEQcqdPaqg8r1-_W5GqxrlP75GqXWoa89_8yQWYcxgT7Y8mxSJMycESzDu8iVw0F7ppXNJh3LYEs2_0CZehawkFyEhT667Qfv96mPfKm7sClUP0Tyebu96zRP_LoRF5uEZtq9U5KJAGwvqlKAxjNkcXotdHExF1OxNW4LJx1Dk48VwpBi8lnOtMnfFUavRAElXXiNGn2CiUM-FLX2rIoRjJEsYT7KdZin0ZJH5d582gLgWNROYn5CdUBsOBXAWUKaxYxgmRYaTRgxIREyETKqRYMBVkNdgdD0ecOp1yUy6jH4_3K8ansfVpDbYntvcjdY4PrX7bUZ2YiPzW8Nk4i69ax3F02r7qHoedGNdgzw7mJ33FOjiO7NPaV4x_wY-Tznkzbv5tna3DjEZdjv6zAZUyf5CbMJ0-lr0i33JT-AUvGPR3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tS-swFD7IJqIfnK84vXoDiqBQWdOkaT6Oq_P6why-4L6VtE10ODdpq8j99TfJsqkggvitDaehJOecPKc8fQ7ATsJEyIQKPIKJ8ghhiScwYZ4IJY1SyTFjyjabYO121O3yjuPmmH9hRvoQkw9uJjJsvjYBLp8y9S7KTbv2A18X77pirxLKKalA9fCydXP-loqJY9jzwONhxJw-qaHyvD394USqmsV9_YhU7VHTqv3wJRdg3mFM1Bw5xSJMycES1BzeRC6aCz00bukwHluCuXf6hMvQtYQCZKSp9VSo2b8b5r3y_rFA5RBd6GTz2Psn0VU5NCIPd6hjtToHBdJAWN8UhWHM5uhS9PpoIqJuPWEFblpH13_-eq4Vg5cGjOlMnbFUavQQJKqhEaNPsFEop8KXvtSQQ9EgSyhLsJ9mKfZlmPgNnTfDhhSEi8xPglWoDIYDuQYoU1jRjAWBjLhGD0pwKiIqVESwoCrM6rA33o44dTrlpl1GPx7XK2ZNY7umddie2D6N1Dk-tdq1uzoxEfmD4bMxGt-2j2N-2rntHkfXMa7Dvt3ML-aKdXAc2av17xj_hpnOYSs-P2mfbcCsBl2O_fMLKmX-LDdhOn0pe0W-5Tz4P8rk8_I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Genetic+Algorithms+to+Optimize+Stopping+Patterns+for+Passenger+Rail+Transportation&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Lin%2C+Dung-Ying&rft.au=Ku%2C+Yu-Hsiung&rft.date=2014-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=29&rft.issue=4&rft.spage=264&rft.epage=278&rft_id=info:doi/10.1111%2Fmice.12020&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9JPWXG8T_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |