Using Genetic Algorithms to Optimize Stopping Patterns for Passenger Rail Transportation

In a passenger railroad system, the stopping pattern optimization problem determines the train stopping strategy, taking into consideration multiple train classes, station types, and customer origin‐destination (OD) demand, to maximize the profit made by a rail company. The stopping pattern is tradi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer-aided civil and infrastructure engineering Ročník 29; číslo 4; s. 264 - 278
Hlavní autoři: Lin, Dung-Ying, Ku, Yu-Hsiung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Blackwell Publishing Ltd 01.04.2014
ISSN:1093-9687, 1467-8667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In a passenger railroad system, the stopping pattern optimization problem determines the train stopping strategy, taking into consideration multiple train classes, station types, and customer origin‐destination (OD) demand, to maximize the profit made by a rail company. The stopping pattern is traditionally decided by rule of thumb, an approach that leaves much room for improvement. In this article, we propose an integer program for this problem and provide a systematic approach to determining the optimal train stopping pattern for a rail company. Commonly used commercial optimization packages cannot solve this complex problem efficiently, especially when problems of realistic size need to be solved. Therefore, we develop two genetic algorithms, namely binary‐coded genetic algorithm (BGA) and integer‐coded genetic algorithm (IGA). In many of the past evolutionary programming studies, the chromosome was coded using the binary alphabet as BGA. The encoding and genetic operators of BGA are straightforward and relatively easy to implement. However, we show that it is difficult for the BGA to converge to feasible solutions for the stopping pattern optimization problem due to the complex solution space. Therefore, we propose an IGA with new encoding mechanism and genetic operators. Numerical results show that the proposed IGA can solve real‐world problems that are beyond the reach of commonly used optimization packages.
AbstractList In a passenger railroad system, the stopping pattern optimization problem determines the train stopping strategy, taking into consideration multiple train classes, station types, and customer origin‐destination (OD) demand, to maximize the profit made by a rail company. The stopping pattern is traditionally decided by rule of thumb, an approach that leaves much room for improvement. In this article, we propose an integer program for this problem and provide a systematic approach to determining the optimal train stopping pattern for a rail company. Commonly used commercial optimization packages cannot solve this complex problem efficiently, especially when problems of realistic size need to be solved. Therefore, we develop two genetic algorithms, namely binary‐coded genetic algorithm (BGA) and integer‐coded genetic algorithm (IGA). In many of the past evolutionary programming studies, the chromosome was coded using the binary alphabet as BGA. The encoding and genetic operators of BGA are straightforward and relatively easy to implement. However, we show that it is difficult for the BGA to converge to feasible solutions for the stopping pattern optimization problem due to the complex solution space. Therefore, we propose an IGA with new encoding mechanism and genetic operators. Numerical results show that the proposed IGA can solve real‐world problems that are beyond the reach of commonly used optimization packages.
Author Lin, Dung-Ying
Ku, Yu-Hsiung
Author_xml – sequence: 1
  givenname: Dung-Ying
  surname: Lin
  fullname: Lin, Dung-Ying
  email: dylin@mail.ncku.edu.tw
  organization: Department of Transportation and Communication Management Science, National Cheng Kung University, Tainan, Taiwan
– sequence: 2
  givenname: Yu-Hsiung
  surname: Ku
  fullname: Ku, Yu-Hsiung
  organization: Department of Transportation and Communication Management Science, National Cheng Kung University, Tainan, Taiwan
BookMark eNp9kNFLwzAQxoNMcE5f_Av6LHQmTdu0j2PMOZlu6Mb2FtL0OqNtU5KAzr_ezqoPIt7L3cH3-7j7TlGv1jUgdEHwkLR1VSkJQxLgAB-hPglj5idxzHrtjFPqp3HCTtCptc-4rTCkfbRdW1XvvCnU4JT0RuVOG-WeKus57S0apyr1Dt6j001z0C2Fc2Bq6xXatIu1UO_AeA9Cld7KiNo22jjhlK7P0HEhSgvnX32A1teT1fjGny-ms_Fo7kvKGPZpziTghNCswCljJAwkTnAkCBCIcFpENM8ilgVE5jIgEGcE5znEGESYipxkdIAuO19ptLUGCt4YVQmz5wTzQyb8kAn_zKQV419iqbpznWlf-BshHfKqStj_Y87vZuPJN-N3jLIO3n4YYV54zCiL-OZ-ytPb5WY7TVY8oB-A-4bW
CitedBy_id crossref_primary_10_1016_j_engappai_2014_10_012
crossref_primary_10_1111_mice_12194
crossref_primary_10_1016_j_energy_2020_118127
crossref_primary_10_1016_j_cie_2021_107547
crossref_primary_10_1016_j_physa_2016_10_008
crossref_primary_10_1016_j_tre_2020_102205
crossref_primary_10_1016_j_tre_2019_08_001
crossref_primary_10_1109_ACCESS_2020_2995176
crossref_primary_10_1007_s10973_020_09293_8
crossref_primary_10_3390_su11246996
crossref_primary_10_1007_s00158_016_1483_5
crossref_primary_10_1111_mice_12308
crossref_primary_10_1111_mice_13080
crossref_primary_10_3390_ijerph13070707
crossref_primary_10_1111_mice_12121
crossref_primary_10_3233_ICA_160527
crossref_primary_10_1111_mice_12164
crossref_primary_10_3233_ICA_160529
crossref_primary_10_1016_j_trb_2017_05_001
crossref_primary_10_1109_ACCESS_2019_2921758
crossref_primary_10_1111_mice_12083
crossref_primary_10_14359_51689485
crossref_primary_10_1016_j_ejor_2014_04_025
crossref_primary_10_1111_mice_12126
crossref_primary_10_1007_s12559_017_9485_1
crossref_primary_10_1016_j_trb_2016_07_006
crossref_primary_10_1080_23248378_2018_1489741
crossref_primary_10_1016_j_physa_2021_126575
crossref_primary_10_1016_j_trb_2021_05_011
crossref_primary_10_1177_1369433216643250
crossref_primary_10_1016_j_trc_2015_12_007
crossref_primary_10_1109_ACCESS_2023_3292790
crossref_primary_10_1111_mice_12170
crossref_primary_10_1002_atr_1430
crossref_primary_10_1111_mice_12138
crossref_primary_10_1007_s13177_025_00522_8
crossref_primary_10_3233_ICA_170539
crossref_primary_10_1016_j_tra_2018_04_012
crossref_primary_10_1155_2022_4100049
crossref_primary_10_1177_0361198118772958
crossref_primary_10_1080_03081060_2020_1701757
crossref_primary_10_1016_j_physa_2021_125775
crossref_primary_10_1109_ACCESS_2020_3017014
crossref_primary_10_3233_ICA_160532
crossref_primary_10_3390_su12041669
crossref_primary_10_1061__ASCE_CP_1943_5487_0000453
crossref_primary_10_3233_ICA_160536
crossref_primary_10_1080_03155986_2020_1746100
crossref_primary_10_1111_mice_12265
crossref_primary_10_1111_mice_12384
crossref_primary_10_1109_ACCESS_2019_2939483
crossref_primary_10_1016_j_trc_2018_02_016
crossref_primary_10_1111_mice_12304
crossref_primary_10_1111_mice_12148
crossref_primary_10_1111_mice_12102
crossref_primary_10_1111_mice_12300
crossref_primary_10_1109_ACCESS_2022_3210578
crossref_primary_10_1142_S0218001416390018
crossref_primary_10_1088_0964_1726_24_12_125040
crossref_primary_10_1007_s12559_015_9370_8
crossref_primary_10_1177_1687814018768694
crossref_primary_10_1061__ASCE_CO_1943_7862_0001047
crossref_primary_10_3390_su11102791
Cites_doi 10.1111/j.1467-8667.2009.00626.x
10.1111/j.1467-8667.2008.00564.x
10.1111/j.1467-8667.2012.00786.x
10.1016/j.trb.2009.01.009
10.1111/j.1467-8667.2011.00753.x
10.1016/S0305-0548(96)00042-1
10.1111/0885-9507.00234
10.1061/(ASCE)0893-1321(1995)8:3(156)
10.1111/j.1467-8667.2010.00715.x
10.1061/(ASCE)0893-1321(1994)7:3(276)
10.1287/trsc.1080.0247
10.1061/(ASCE)0733-9445(2000)126:5(596)
10.1111/j.1467-8667.2010.00659.x
10.1057/jors.1995.136
10.1177/109434209300700206
10.1111/j.1467-8667.2012.00780.x
10.1111/j.1467-8667.2012.00789.x
10.1023/A:1018906301828
10.1007/s00186-005-0001-0
10.1016/S0191-2615(99)00013-2
10.1016/j.ejor.2004.04.036
10.1016/0925-2312(93)90042-2
10.1061/(ASCE)0733-9445(1995)121:11(1588)
10.1002/nme.549
10.1111/j.1467-8667.2011.00722.x
10.1080/03052150108940930
10.1061/(ASCE)0893-1321(1994)7:1(104)
10.1016/S0965-8564(02)00012-5
10.1287/trsc.1030.0051
10.1016/0191-2615(86)90019-6
10.1111/j.1467-8667.2010.00687.x
10.1061/(ASCE)0893-1321(1993)6:4(315)
10.1109/72.329686
10.1016/S0377-2217(97)00271-3
10.1016/0191-2615(80)90036-3
10.1002/nme.2274
10.1287/trsc.32.4.380
10.1061/(ASCE)0733-9445(2000)126:11(1339)
10.1002/0470867353
10.1287/trsc.25.1.46
10.3141/2289-04
10.1061/(ASCE)0733-9445(1998)124:5(570)
10.1016/j.ejor.2006.10.034
ContentType Journal Article
Copyright 2013
Copyright_xml – notice: 2013
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/mice.12020
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 278
ExternalDocumentID 10_1111_mice_12020
MICE12020
ark_67375_WNG_9JPWXG8T_2
Genre article
GrantInformation_xml – fundername: National Research Council, Taiwan, ROC
  funderid: NSC‐100‐2410‐H‐006‐069‐MY3
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c3770-3d7ce0813bf0977142c0805a1e1e509f53db57b21cdc21e6b10dde60ea49ad1b3
IEDL.DBID DRFUL
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332054800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Tue Nov 18 22:18:53 EST 2025
Sat Nov 29 05:42:04 EST 2025
Wed Jan 22 16:27:18 EST 2025
Tue Nov 11 03:31:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3770-3d7ce0813bf0977142c0805a1e1e509f53db57b21cdc21e6b10dde60ea49ad1b3
Notes ark:/67375/WNG-9JPWXG8T-2
National Research Council, Taiwan, ROC - No. NSC-100-2410-H-006-069-MY3
ArticleID:MICE12020
istex:8EDB05BAE7B92D95B7EBDE8E7201921D77B728BD
PageCount 15
ParticipantIDs crossref_primary_10_1111_mice_12020
crossref_citationtrail_10_1111_mice_12020
wiley_primary_10_1111_mice_12020_MICE12020
istex_primary_ark_67375_WNG_9JPWXG8T_2
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationTitleAlternate Computer-Aided Civil and Infrastructure Engineering
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Sgambi, L., Gkoumas, K. & Bontempi, F. (2012), Genetic algorithms for the dependability assurance in the design of a long span suspension bridge, Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-75.
Adeli, H. & Hung, S. L. (1995), Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy System, John Wiley and Sons, New York.
Carey, M. & Lockwood, D. (1995), A model, algorithms and strategy for train pathing. The Journal of the Operational Research Society, 46(8), 988-1005.
Deb, K. & Goyal, M. (1996), A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 26(4), 30-45.
Jovanovic, D. & Harker, P. T. (1990), A decision support system for train dispatching: an optimization-based methodology, Journal of Transportation Research Forum, 31, 25-37.
Crainic, T. G. & Rousseau, J. M. (1986), Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design problem. Transportation Research Part B: Methodological, 20(3), 225-42.
Carey, M. & Carville, S. (2003), Scheduling and platforming trains at busy complex stations, Transportation Research Part A: Policy and Practice, 37(3), 195-224.
Jafarkhani, R. & Masri, S. F. (2011), Finite element model updating using evolutionary strategy for damage detection, Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-24.
Kim, H. & Adeli, H. (2001), Discrete cost optimization of composite floors using a floating point genetic algorithm, Engineering Optimization, 33(4), 485-501.
Sarma, K. & Adeli, H. (2000a), Fuzzy genetic algorithm for optimization of steel structures, Journal of Structural Engineering, ASCE, 126(5), 596-604.
Claessens, M. T., Dijk, N. M. & Zwaneveld, P. J. (1998), Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110, 474-89.
Lindner, T. & Zimmermann, U. T. (2003), Cost optimal train scheduling. Mathematical Methods of Operations Research, 62(2), 281-95.
Adeli, H. & Kumar, S. (1995b), Distributed genetic algorithms for structural optimization, Journal of Aerospace Engineering, 8(3), 156-63.
Jong, J.-C., Suen, C.-S. & Chang, S. K. (2012) Decision support system to optimize railway stopping patterns, Transportation Research Record: Journal of the Transportation Research Board, 2289, 24-33.
Sarma, K. & Adeli, H. (1998), Cost optimization of concrete structures, Journal of Structural Engineering, ASCE, 124(5), 570-78.
Adeli, H. & Sarma, K. (2006), Cost Optimization of Structures-Fuzzy Logic, Genetic Algorithms, and Parallel Computing, John Wiley and Sons, West Sussex, United Kingdom.
Dridi, L., Parizeau, M., Mailhot, A. & Villeneuve, J. P. (2008), Using evolutionary optimisation techniques for scheduling water pipe renewal considering a short planning horizon, Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-35.
Jiang, X. & Adeli, H. (2008), Neuro-genetic algorithm for nonlinear active control of highrise buildings, International Journal for Numerical Methods in Engineering, 75(8), 770-86.
Unnikrishnan, A. & Lin, D.-Y. (2012), User equilibrium with recourse: continuous network design problem, Computer-Aided Civil and Infrastructure Engineering, 27(7), 512-24.
D'Ariano, A., Corman, F., Pacciarelli, D. & Pranzo, M. (2008), Reordering and local rerouting strategies to manage train traffic in real-time, Transportation Science, 42, 405-19.
Goossens, J. W., Hoesel, S. & Kroon, L. (2004), A branch-and-cut approach for solving railway line-planning problems. Transportation Science, 38(3), 379-93.
Hung, S. L. & Adeli, H. (1993), Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer, Neurocomputing, 5(6), 287-302.
Goossens, J. W., Hoesel, S. & Kroon, L. (2006), Discrete optimization on solving multi-type railway line planning problems. European Journal of Operational Research, 168(2), 403-24.
Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. (1993), Network Flows: Theory, Algorithms and Applications. Prentice Hall, NJ.
Fuggini, C., Chatzi, E., Zangani, D. & Messervey, T. B. (2013), Combining genetic algorithm with a meso-scale approach for system identification of a smart polymeric textile, Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-45.
Gorman, M. F. (1998), An application of genetic and tabu searches to the freight railroad operating plan problem. Annals of Operations Research, 78(0), 51-69.
Adeli, H. & Cheng, N.-T. (1994b), Concurrent genetic algorithms for optimization of large structures, Journal of Aerospace Engineering, ASCE, 7(3), 276-96.
Marano, G. C., Quaranta, G. & Monti, G. (2011), Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements, Computer-Aided Civil and Infrastructure Engineering, 26(2), 92-110.
Assad, A. A. (1980), Modelling of rail networks: toward a routing/makeup model, Transportation Research Part B: Methodological, 14(1-2), 101-14.
Putha, R., Quadrifoglio, L. & Zechman, E. (2011), Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions, Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28.
Chang, Y.-H., Yeh, C.-H. & Shen, C.-C. (2000), A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line, Transportation Research Part B: Methodological, 34(2), 91-106.
Sarma, K. & Adeli, H. (2000b), Fuzzy discrete multicriteria cost optimization of steel structures, Journal of Structural Engineering, ASCE, 126(11), 1339-47.
Adeli, H. & Kumar, S. (1999), Distributed Computer-Aided Engineering for Analysis, Design, and Visualization, CRC Press, Boca Raton, FL.
Sarma, K.C. & Adeli, H. (2002), Life-cycle cost optimization of steel structures, International Journal for Numerical Methods in Engineering, 55(12), 1451-62.
Higgins, H., Kozan, E. & Ferreira, L. (1997), Modeling the number and location of sidings on a single line railway. Computers and Operations Research, 24(3), 209-20.
Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
Jovanovic, D. & Harker, P. T. (1991), Tactical scheduling of rail operations: the SCAN I system. Transportation Science, 25, 46-64.
Adeli, H. & Cheng, N.-T. (1993), Integrated genetic algorithm for optimization of space structures, Journal of Aerospace Engineering, ASCE, 6(4), 315-28.
Lee, Y. & Chen, C.-Y. (2009), A heuristic for the train pathing and timetabling problem, Transportation Research Part B: Methodological, 43(8-9), 837-51.
Karoonsoontawong, A. & Lin, D.-Y. (2011), Time-varying lane-based capacity reversibility for traffic management, Computer-Aided Civil and Infrastructure Engineering, 26(8), 632-46.
Hsiao, F. Y., Wang, S. S., Wang, W. C., Wen, C. P. & Yu, W. D. (2012), Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction, Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-81.
Adeli, H. & Kumar, S. (1995a), Concurrent structural optimization on a massively parallel supercomputer, Journal of Structural Engineering, ASCE, 121(11), 1588-97.
Cordeau, J. F., Toth, P. & Vigo, D. (1998), A survey of optimization models for train routing and scheduling, Transportation Science, 32(4), 380-404.
Adeli, H. & Cheng, N.-T. (1994a), Augmented Lagrangian genetic algorithm for structural optimization, Journal of Aerospace Engineering, ASCE, 7(1), 104-18.
Adeli, H. & Hung, S. L. (1993), A concurrent adaptive conjugate gradient learning algorithm on MIMD machines, Journal of Supercomputer Applications, MIT Press, 7 (2), 155-66.
Sarma, K. C. & Adeli, H. (2001), Bi-level parallel genetic algorithms for optimization of large steel structures, Computer-Aided Civil and Infrastructure Engineering, 16(5), 295-304.
Lee, Y. & Wei, C. H. (2010), A computerized feature selection using genetic algorithms to forecast freeway accident duration times, Computer-Aided Civil and Infrastructure Engineering, 25(2), 132-48.
D'Ariano, A., Pacciarelli, D. & Pranzo, M. (2007), A branch and bound algorithm for scheduling trains in a railway network, European Journal of Operational Research, 183, 643-57.
Deb, K. & Agrawal, R. (1995), Simulated binary crossover for continuous search space. Complex Systems, 9(6), 431-54.
Hung, S. L. & Adeli, H. (1994), A parallel genetic/neural network learning algorithm for MIMD shared memory machines, IEEE Transactions on Neural Networks, 5(6), 900-909.
1993; 7
2013; 28
2009; 43
2007; 183
1995b; 8
2002; 55
1975
2008; 75
1994b; 7
1998; 110
1993; 5
1993; 6
1995a; 121
2010; 25
2000a; 126
2004; 38
2008; 23
2001; 16
2012; 27
2011; 26
2011; 27
1998; 124
1996; 26
1989
2006; 168
1995; 9
1990; 31
2012
1997; 24
2008
2003; 37
1996
1995
2006
1993
1999
1980; 14
2012; 2289
1991; 25
1986; 20
2000; 34
1995; 46
2000b; 126
2008; 42
2001; 33
1998; 32
2003; 62
1998; 78
1994; 5
1994a; 7
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
Jovanovic D. (e_1_2_8_38_1) 1990; 31
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
Adeli H. (e_1_2_8_9_1) 1999
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
Deb K. (e_1_2_8_23_1) 1996; 26
Holland J. H. (e_1_2_8_30_1) 1975
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_29_1
Ahuja R. K. (e_1_2_8_11_1) 1993
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
Deb K. (e_1_2_8_22_1) 1995; 9
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Adeli H. (e_1_2_8_6_1) 1995
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Deb, K. & Goyal, M. (1996), A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 26(4), 30-45.
– reference: Lee, Y. & Wei, C. H. (2010), A computerized feature selection using genetic algorithms to forecast freeway accident duration times, Computer-Aided Civil and Infrastructure Engineering, 25(2), 132-48.
– reference: Lee, Y. & Chen, C.-Y. (2009), A heuristic for the train pathing and timetabling problem, Transportation Research Part B: Methodological, 43(8-9), 837-51.
– reference: Adeli, H. & Hung, S. L. (1995), Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy System, John Wiley and Sons, New York.
– reference: Hung, S. L. & Adeli, H. (1993), Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer, Neurocomputing, 5(6), 287-302.
– reference: Jong, J.-C., Suen, C.-S. & Chang, S. K. (2012) Decision support system to optimize railway stopping patterns, Transportation Research Record: Journal of the Transportation Research Board, 2289, 24-33.
– reference: Adeli, H. & Cheng, N.-T. (1994a), Augmented Lagrangian genetic algorithm for structural optimization, Journal of Aerospace Engineering, ASCE, 7(1), 104-18.
– reference: Goossens, J. W., Hoesel, S. & Kroon, L. (2006), Discrete optimization on solving multi-type railway line planning problems. European Journal of Operational Research, 168(2), 403-24.
– reference: Carey, M. & Carville, S. (2003), Scheduling and platforming trains at busy complex stations, Transportation Research Part A: Policy and Practice, 37(3), 195-224.
– reference: Gorman, M. F. (1998), An application of genetic and tabu searches to the freight railroad operating plan problem. Annals of Operations Research, 78(0), 51-69.
– reference: Higgins, H., Kozan, E. & Ferreira, L. (1997), Modeling the number and location of sidings on a single line railway. Computers and Operations Research, 24(3), 209-20.
– reference: Adeli, H. & Kumar, S. (1995b), Distributed genetic algorithms for structural optimization, Journal of Aerospace Engineering, 8(3), 156-63.
– reference: Sarma, K.C. & Adeli, H. (2002), Life-cycle cost optimization of steel structures, International Journal for Numerical Methods in Engineering, 55(12), 1451-62.
– reference: Unnikrishnan, A. & Lin, D.-Y. (2012), User equilibrium with recourse: continuous network design problem, Computer-Aided Civil and Infrastructure Engineering, 27(7), 512-24.
– reference: Adeli, H. & Cheng, N.-T. (1994b), Concurrent genetic algorithms for optimization of large structures, Journal of Aerospace Engineering, ASCE, 7(3), 276-96.
– reference: Sgambi, L., Gkoumas, K. & Bontempi, F. (2012), Genetic algorithms for the dependability assurance in the design of a long span suspension bridge, Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-75.
– reference: Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. (1993), Network Flows: Theory, Algorithms and Applications. Prentice Hall, NJ.
– reference: Sarma, K. & Adeli, H. (2000b), Fuzzy discrete multicriteria cost optimization of steel structures, Journal of Structural Engineering, ASCE, 126(11), 1339-47.
– reference: Hung, S. L. & Adeli, H. (1994), A parallel genetic/neural network learning algorithm for MIMD shared memory machines, IEEE Transactions on Neural Networks, 5(6), 900-909.
– reference: Adeli, H. & Hung, S. L. (1993), A concurrent adaptive conjugate gradient learning algorithm on MIMD machines, Journal of Supercomputer Applications, MIT Press, 7 (2), 155-66.
– reference: Deb, K. & Agrawal, R. (1995), Simulated binary crossover for continuous search space. Complex Systems, 9(6), 431-54.
– reference: Assad, A. A. (1980), Modelling of rail networks: toward a routing/makeup model, Transportation Research Part B: Methodological, 14(1-2), 101-14.
– reference: Adeli, H. & Sarma, K. (2006), Cost Optimization of Structures-Fuzzy Logic, Genetic Algorithms, and Parallel Computing, John Wiley and Sons, West Sussex, United Kingdom.
– reference: Crainic, T. G. & Rousseau, J. M. (1986), Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design problem. Transportation Research Part B: Methodological, 20(3), 225-42.
– reference: Jovanovic, D. & Harker, P. T. (1991), Tactical scheduling of rail operations: the SCAN I system. Transportation Science, 25, 46-64.
– reference: Sarma, K. & Adeli, H. (1998), Cost optimization of concrete structures, Journal of Structural Engineering, ASCE, 124(5), 570-78.
– reference: Hsiao, F. Y., Wang, S. S., Wang, W. C., Wen, C. P. & Yu, W. D. (2012), Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction, Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-81.
– reference: Jiang, X. & Adeli, H. (2008), Neuro-genetic algorithm for nonlinear active control of highrise buildings, International Journal for Numerical Methods in Engineering, 75(8), 770-86.
– reference: Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
– reference: Claessens, M. T., Dijk, N. M. & Zwaneveld, P. J. (1998), Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110, 474-89.
– reference: Adeli, H. & Cheng, N.-T. (1993), Integrated genetic algorithm for optimization of space structures, Journal of Aerospace Engineering, ASCE, 6(4), 315-28.
– reference: Sarma, K. & Adeli, H. (2000a), Fuzzy genetic algorithm for optimization of steel structures, Journal of Structural Engineering, ASCE, 126(5), 596-604.
– reference: Dridi, L., Parizeau, M., Mailhot, A. & Villeneuve, J. P. (2008), Using evolutionary optimisation techniques for scheduling water pipe renewal considering a short planning horizon, Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-35.
– reference: Putha, R., Quadrifoglio, L. & Zechman, E. (2011), Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions, Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28.
– reference: Adeli, H. & Kumar, S. (1999), Distributed Computer-Aided Engineering for Analysis, Design, and Visualization, CRC Press, Boca Raton, FL.
– reference: D'Ariano, A., Pacciarelli, D. & Pranzo, M. (2007), A branch and bound algorithm for scheduling trains in a railway network, European Journal of Operational Research, 183, 643-57.
– reference: Sarma, K. C. & Adeli, H. (2001), Bi-level parallel genetic algorithms for optimization of large steel structures, Computer-Aided Civil and Infrastructure Engineering, 16(5), 295-304.
– reference: Jafarkhani, R. & Masri, S. F. (2011), Finite element model updating using evolutionary strategy for damage detection, Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-24.
– reference: Kim, H. & Adeli, H. (2001), Discrete cost optimization of composite floors using a floating point genetic algorithm, Engineering Optimization, 33(4), 485-501.
– reference: D'Ariano, A., Corman, F., Pacciarelli, D. & Pranzo, M. (2008), Reordering and local rerouting strategies to manage train traffic in real-time, Transportation Science, 42, 405-19.
– reference: Adeli, H. & Kumar, S. (1995a), Concurrent structural optimization on a massively parallel supercomputer, Journal of Structural Engineering, ASCE, 121(11), 1588-97.
– reference: Lindner, T. & Zimmermann, U. T. (2003), Cost optimal train scheduling. Mathematical Methods of Operations Research, 62(2), 281-95.
– reference: Karoonsoontawong, A. & Lin, D.-Y. (2011), Time-varying lane-based capacity reversibility for traffic management, Computer-Aided Civil and Infrastructure Engineering, 26(8), 632-46.
– reference: Cordeau, J. F., Toth, P. & Vigo, D. (1998), A survey of optimization models for train routing and scheduling, Transportation Science, 32(4), 380-404.
– reference: Chang, Y.-H., Yeh, C.-H. & Shen, C.-C. (2000), A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line, Transportation Research Part B: Methodological, 34(2), 91-106.
– reference: Fuggini, C., Chatzi, E., Zangani, D. & Messervey, T. B. (2013), Combining genetic algorithm with a meso-scale approach for system identification of a smart polymeric textile, Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-45.
– reference: Carey, M. & Lockwood, D. (1995), A model, algorithms and strategy for train pathing. The Journal of the Operational Research Society, 46(8), 988-1005.
– reference: Goossens, J. W., Hoesel, S. & Kroon, L. (2004), A branch-and-cut approach for solving railway line-planning problems. Transportation Science, 38(3), 379-93.
– reference: Jovanovic, D. & Harker, P. T. (1990), A decision support system for train dispatching: an optimization-based methodology, Journal of Transportation Research Forum, 31, 25-37.
– reference: Marano, G. C., Quaranta, G. & Monti, G. (2011), Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements, Computer-Aided Civil and Infrastructure Engineering, 26(2), 92-110.
– volume: 27
  start-page: 14
  issue: 1
  year: 2011
  end-page: 28
  article-title: Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 7
  start-page: 276
  issue: 3
  year: 1994b
  end-page: 96
  article-title: Concurrent genetic algorithms for optimization of large structures
  publication-title: Journal of Aerospace Engineering, ASCE
– volume: 16
  start-page: 295
  issue: 5
  year: 2001
  end-page: 304
  article-title: Bi‐level parallel genetic algorithms for optimization of large steel structures
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 28
  start-page: 227
  issue: 3
  year: 2013
  end-page: 45
  article-title: Combining genetic algorithm with a meso‐scale approach for system identification of a smart polymeric textile
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 1975
– volume: 31
  start-page: 25
  year: 1990
  end-page: 37
  article-title: A decision support system for train dispatching: an optimization‐based methodology
  publication-title: Journal of Transportation Research Forum
– volume: 20
  start-page: 225
  issue: 3
  year: 1986
  end-page: 42
  article-title: Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design problem
  publication-title: Transportation Research Part B: Methodological
– volume: 25
  start-page: 46
  year: 1991
  end-page: 64
  article-title: Tactical scheduling of rail operations: the SCAN I system
  publication-title: Transportation Science
– volume: 46
  start-page: 988
  issue: 8
  year: 1995
  end-page: 1005
  article-title: A model, algorithms and strategy for train pathing
  publication-title: The Journal of the Operational Research Society
– volume: 26
  start-page: 632
  issue: 8
  year: 2011
  end-page: 46
  article-title: Time‐varying lane‐based capacity reversibility for traffic management
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 5
  start-page: 287
  issue: 6
  year: 1993
  end-page: 302
  article-title: Parallel backpropagation learning algorithms on cray Y‐MP8/864 supercomputer
  publication-title: Neurocomputing
– volume: 9
  start-page: 431
  issue: 6
  year: 1995
  end-page: 54
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 38
  start-page: 379
  issue: 3
  year: 2004
  end-page: 93
  article-title: A branch‐and‐cut approach for solving railway line‐planning problems
  publication-title: Transportation Science
– volume: 33
  start-page: 485
  issue: 4
  year: 2001
  end-page: 501
  article-title: Discrete cost optimization of composite floors using a floating point genetic algorithm
  publication-title: Engineering Optimization
– volume: 23
  start-page: 625
  issue: 8
  year: 2008
  end-page: 35
  article-title: Using evolutionary optimisation techniques for scheduling water pipe renewal considering a short planning horizon
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 37
  start-page: 195
  issue: 3
  year: 2003
  end-page: 224
  article-title: Scheduling and platforming trains at busy complex stations
  publication-title: Transportation Research Part A: Policy and Practice
– volume: 183
  start-page: 643
  year: 2007
  end-page: 57
  article-title: A branch and bound algorithm for scheduling trains in a railway network
  publication-title: European Journal of Operational Research
– volume: 24
  start-page: 209
  issue: 3
  year: 1997
  end-page: 20
  article-title: Modeling the number and location of sidings on a single line railway
  publication-title: Computers and Operations Research
– volume: 126
  start-page: 596
  issue: 5
  year: 2000a
  end-page: 604
  article-title: Fuzzy genetic algorithm for optimization of steel structures
  publication-title: Journal of Structural Engineering, ASCE
– volume: 8
  start-page: 156
  issue: 3
  year: 1995b
  end-page: 63
  article-title: Distributed genetic algorithms for structural optimization
  publication-title: Journal of Aerospace Engineering
– volume: 121
  start-page: 1588
  issue: 11
  year: 1995a
  end-page: 97
  article-title: Concurrent structural optimization on a massively parallel supercomputer
  publication-title: Journal of Structural Engineering, ASCE
– volume: 34
  start-page: 91
  issue: 2
  year: 2000
  end-page: 106
  article-title: A multiobjective model for passenger train services planning: application to Taiwan's high‐speed rail line
  publication-title: Transportation Research Part B: Methodological
– volume: 7
  start-page: 104
  issue: 1
  year: 1994a
  end-page: 18
  article-title: Augmented Lagrangian genetic algorithm for structural optimization
  publication-title: Journal of Aerospace Engineering, ASCE
– year: 1993
– volume: 26
  start-page: 92
  issue: 2
  year: 2011
  end-page: 110
  article-title: Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 78
  start-page: 51
  issue: 0
  year: 1998
  end-page: 69
  article-title: An application of genetic and tabu searches to the freight railroad operating plan problem
  publication-title: Annals of Operations Research
– volume: 7
  start-page: 155
  issue: 2
  year: 1993
  end-page: 66
  article-title: A concurrent adaptive conjugate gradient learning algorithm on MIMD machines
  publication-title: Journal of Supercomputer Applications, MIT Press
– volume: 26
  start-page: 30
  issue: 4
  year: 1996
  end-page: 45
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Computer Science and Informatics
– year: 2008
  article-title: Improving real‐time train dispatching: models, algorithms and applications
– volume: 75
  start-page: 770
  issue: 8
  year: 2008
  end-page: 86
  article-title: Neuro‐genetic algorithm for nonlinear active control of highrise buildings
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 5
  start-page: 900
  issue: 6
  year: 1994
  end-page: 909
  article-title: A parallel genetic/neural network learning algorithm for MIMD shared memory machines
  publication-title: IEEE Transactions on Neural Networks
– year: 1989
  article-title: Improving railroad in‐time performance: models, algorithms and applications
– year: 2012
  article-title: Mathematical modeling for optimizing skip‐stop rail transit operation strategy using genetic algorithm
– volume: 27
  start-page: 655
  issue: 9
  year: 2012
  end-page: 75
  article-title: Genetic algorithms for the dependability assurance in the design of a long span suspension bridge
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 110
  start-page: 474
  year: 1998
  end-page: 89
  article-title: Cost optimal allocation of rail passenger lines
  publication-title: European Journal of Operational Research
– volume: 43
  start-page: 837
  issue: 8–9
  year: 2009
  end-page: 51
  article-title: A heuristic for the train pathing and timetabling problem
  publication-title: Transportation Research Part B: Methodological
– volume: 126
  start-page: 1339
  issue: 11
  year: 2000b
  end-page: 47
  article-title: Fuzzy discrete multicriteria cost optimization of steel structures
  publication-title: Journal of Structural Engineering, ASCE
– volume: 42
  start-page: 405
  year: 2008
  end-page: 19
  article-title: Reordering and local rerouting strategies to manage train traffic in real‐time
  publication-title: Transportation Science
– volume: 62
  start-page: 281
  issue: 2
  year: 2003
  end-page: 95
  article-title: Cost optimal train scheduling
  publication-title: Mathematical Methods of Operations Research
– volume: 55
  start-page: 1451
  issue: 12
  year: 2002
  end-page: 62
  article-title: Life‐cycle cost optimization of steel structures
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 168
  start-page: 403
  issue: 2
  year: 2006
  end-page: 24
  article-title: Discrete optimization on solving multi‐type railway line planning problems
  publication-title: European Journal of Operational Research
– volume: 27
  start-page: 512
  issue: 7
  year: 2012
  end-page: 24
  article-title: User equilibrium with recourse: continuous network design problem
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 25
  start-page: 132
  issue: 2
  year: 2010
  end-page: 48
  article-title: A computerized feature selection using genetic algorithms to forecast freeway accident duration times
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 26
  start-page: 207
  issue: 3
  year: 2011
  end-page: 24
  article-title: Finite element model updating using evolutionary strategy for damage detection
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2006
– start-page: 217
  year: 1996
  end-page: 26
– volume: 32
  start-page: 380
  issue: 4
  year: 1998
  end-page: 404
  article-title: A survey of optimization models for train routing and scheduling
  publication-title: Transportation Science
– year: 1995
– volume: 6
  start-page: 315
  issue: 4
  year: 1993
  end-page: 28
  article-title: Integrated genetic algorithm for optimization of space structures
  publication-title: Journal of Aerospace Engineering, ASCE
– volume: 2289
  start-page: 24
  year: 2012
  end-page: 33
  article-title: Decision support system to optimize railway stopping patterns
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– volume: 124
  start-page: 570
  issue: 5
  year: 1998
  end-page: 78
  article-title: Cost optimization of concrete structures
  publication-title: Journal of Structural Engineering, ASCE
– volume: 14
  start-page: 101
  issue: 1–2
  year: 1980
  end-page: 14
  article-title: Modelling of rail networks: toward a routing/makeup model
  publication-title: Transportation Research Part B: Methodological
– volume: 27
  start-page: 764
  issue: 10
  year: 2012
  end-page: 81
  article-title: Neuro‐fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 1999
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1467-8667.2009.00626.x
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1467-8667.2008.00564.x
– ident: e_1_2_8_37_1
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1467-8667.2012.00786.x
– ident: e_1_2_8_42_1
  doi: 10.1016/j.trb.2009.01.009
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1467-8667.2011.00753.x
– ident: e_1_2_8_29_1
  doi: 10.1016/S0305-0548(96)00042-1
– ident: e_1_2_8_44_1
– ident: e_1_2_8_51_1
  doi: 10.1111/0885-9507.00234
– ident: e_1_2_8_8_1
  doi: 10.1061/(ASCE)0893-1321(1995)8:3(156)
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1467-8667.2010.00715.x
– ident: e_1_2_8_4_1
  doi: 10.1061/(ASCE)0893-1321(1994)7:3(276)
– ident: e_1_2_8_20_1
  doi: 10.1287/trsc.1080.0247
– ident: e_1_2_8_49_1
  doi: 10.1061/(ASCE)0733-9445(2000)126:5(596)
– ident: e_1_2_8_46_1
  doi: 10.1111/j.1467-8667.2010.00659.x
– ident: e_1_2_8_14_1
  doi: 10.1057/jors.1995.136
– ident: e_1_2_8_5_1
  doi: 10.1177/109434209300700206
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1467-8667.2012.00780.x
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1467-8667.2012.00789.x
– ident: e_1_2_8_28_1
  doi: 10.1023/A:1018906301828
– ident: e_1_2_8_45_1
  doi: 10.1007/s00186-005-0001-0
– ident: e_1_2_8_15_1
  doi: 10.1016/S0191-2615(99)00013-2
– volume-title: Network Flows: Theory, Algorithms and Applications
  year: 1993
  ident: e_1_2_8_11_1
– volume: 26
  start-page: 30
  issue: 4
  year: 1996
  ident: e_1_2_8_23_1
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Computer Science and Informatics
– ident: e_1_2_8_27_1
  doi: 10.1016/j.ejor.2004.04.036
– ident: e_1_2_8_32_1
  doi: 10.1016/0925-2312(93)90042-2
– ident: e_1_2_8_7_1
  doi: 10.1061/(ASCE)0733-9445(1995)121:11(1588)
– ident: e_1_2_8_52_1
  doi: 10.1002/nme.549
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1467-8667.2011.00722.x
– ident: e_1_2_8_41_1
  doi: 10.1080/03052150108940930
– volume-title: Distributed Computer‐Aided Engineering for Analysis, Design, and Visualization
  year: 1999
  ident: e_1_2_8_9_1
– ident: e_1_2_8_3_1
  doi: 10.1061/(ASCE)0893-1321(1994)7:1(104)
– ident: e_1_2_8_13_1
  doi: 10.1016/S0965-8564(02)00012-5
– ident: e_1_2_8_26_1
  doi: 10.1287/trsc.1030.0051
– ident: e_1_2_8_18_1
  doi: 10.1016/0191-2615(86)90019-6
– ident: e_1_2_8_34_1
  doi: 10.1111/j.1467-8667.2010.00687.x
– ident: e_1_2_8_55_1
– ident: e_1_2_8_2_1
  doi: 10.1061/(ASCE)0893-1321(1993)6:4(315)
– ident: e_1_2_8_33_1
  doi: 10.1109/72.329686
– ident: e_1_2_8_16_1
  doi: 10.1016/S0377-2217(97)00271-3
– ident: e_1_2_8_12_1
  doi: 10.1016/0191-2615(80)90036-3
– volume-title: Adaptation in Natural and Artificial Systems
  year: 1975
  ident: e_1_2_8_30_1
– ident: e_1_2_8_35_1
  doi: 10.1002/nme.2274
– volume: 31
  start-page: 25
  year: 1990
  ident: e_1_2_8_38_1
  article-title: A decision support system for train dispatching: an optimization‐based methodology
  publication-title: Journal of Transportation Research Forum
– ident: e_1_2_8_19_1
– ident: e_1_2_8_17_1
  doi: 10.1287/trsc.32.4.380
– volume: 9
  start-page: 431
  issue: 6
  year: 1995
  ident: e_1_2_8_22_1
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– ident: e_1_2_8_50_1
  doi: 10.1061/(ASCE)0733-9445(2000)126:11(1339)
– ident: e_1_2_8_10_1
  doi: 10.1002/0470867353
– volume-title: Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy System
  year: 1995
  ident: e_1_2_8_6_1
– ident: e_1_2_8_39_1
  doi: 10.1287/trsc.25.1.46
– ident: e_1_2_8_36_1
  doi: 10.3141/2289-04
– ident: e_1_2_8_48_1
  doi: 10.1061/(ASCE)0733-9445(1998)124:5(570)
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ejor.2006.10.034
SSID ssj0000443
Score 2.3502767
Snippet In a passenger railroad system, the stopping pattern optimization problem determines the train stopping strategy, taking into consideration multiple train...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 264
Title Using Genetic Algorithms to Optimize Stopping Patterns for Passenger Rail Transportation
URI https://api.istex.fr/ark:/67375/WNG-9JPWXG8T-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12020
Volume 29
WOSCitedRecordID wos000332054800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_E-aAPTqfi_CKgCAqVNU2aFnwRdYrIHH7g3kraJnO4D2mriH-9SZZuCiKIb224hnKXu_wuXH4HsBcz7jMuPYdgIh1CWOxwTJjDfUGDRISYMWmaTbBWK-h0wvYMHJd3Ycb8EJMDN-0ZJl5rB-dx_sXJdbf2I1fl7iphr-hbVSr1qpzdNh-up5GY2AL70HNCP2CWnlRX8ky__rYhVbRu378DVbPTNKv_-8clWLQIE52Ml8QyzIhhDaoWbSLry7kaKhs6lGM1WPjCTrgCHVNOgDQxtZoKnfS7o6xXPA1yVIzQjQo1g96HQHfFSFM8dFHbMHUOc6RgsHrJc10vm6Fb3uujCYW6WQer8NA8vz-9dGwjBifxGFNxOmWJUNjBi2VD4UWXYM1PTrkrXKEAh6ReGlMWYzdJE-wKP3YbKmr6DcFJyFM39tZgdjgainVAqcSSpszzRBAq7CB5SHlAuQwI5lT6aR0OSmtEiWUp180y-lGZrWidRkanddidyL6MuTl-lNo3Rp2I8OxZV7MxGj22LqLwqv3YuQjuI1yHQ2PLX-aKlGucm6eNvwhvwrzCWbbgZwtmi-xVbMNc8lb08mzHrtpPx0Hwhw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tS-swFD7IJlz94PvF-XYDygWFXta8NO1HUadX5-7wTty3kraJDucmbRXx15tk2VQQQfzWhtNQTnJOnoQnzwHYSbgIuFDEo5gqj1KeeAJT7olAsjCVEeZc2WITvNUKu92o7bg55i7MSB9icuBmIsPmaxPg5kD6TZSbcu1_fL151zv2Kg0IDytQPbxoXDZfUzF1DPuIeFEQcqdPaqg8r1-_W5GqxrlP75GqXWoa89_8yQWYcxgT7Y8mxSJMycESzDu8iVw0F7ppXNJh3LYEs2_0CZehawkFyEhT667Qfv96mPfKm7sClUP0Tyebu96zRP_LoRF5uEZtq9U5KJAGwvqlKAxjNkcXotdHExF1OxNW4LJx1Dk48VwpBi8lnOtMnfFUavRAElXXiNGn2CiUM-FLX2rIoRjJEsYT7KdZin0ZJH5d582gLgWNROYn5CdUBsOBXAWUKaxYxgmRYaTRgxIREyETKqRYMBVkNdgdD0ecOp1yUy6jH4_3K8ansfVpDbYntvcjdY4PrX7bUZ2YiPzW8Nk4i69ax3F02r7qHoedGNdgzw7mJ33FOjiO7NPaV4x_wY-Tznkzbv5tna3DjEZdjv6zAZUyf5CbMJ0-lr0i33JT-AUvGPR3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tS-swFD7IJqIfnK84vXoDiqBQWdOkaT6Oq_P6why-4L6VtE10ODdpq8j99TfJsqkggvitDaehJOecPKc8fQ7ATsJEyIQKPIKJ8ghhiScwYZ4IJY1SyTFjyjabYO121O3yjuPmmH9hRvoQkw9uJjJsvjYBLp8y9S7KTbv2A18X77pirxLKKalA9fCydXP-loqJY9jzwONhxJw-qaHyvD394USqmsV9_YhU7VHTqv3wJRdg3mFM1Bw5xSJMycES1BzeRC6aCz00bukwHluCuXf6hMvQtYQCZKSp9VSo2b8b5r3y_rFA5RBd6GTz2Psn0VU5NCIPd6hjtToHBdJAWN8UhWHM5uhS9PpoIqJuPWEFblpH13_-eq4Vg5cGjOlMnbFUavQQJKqhEaNPsFEop8KXvtSQQ9EgSyhLsJ9mKfZlmPgNnTfDhhSEi8xPglWoDIYDuQYoU1jRjAWBjLhGD0pwKiIqVESwoCrM6rA33o44dTrlpl1GPx7XK2ZNY7umddie2D6N1Dk-tdq1uzoxEfmD4bMxGt-2j2N-2rntHkfXMa7Dvt3ML-aKdXAc2av17xj_hpnOYSs-P2mfbcCsBl2O_fMLKmX-LDdhOn0pe0W-5Tz4P8rk8_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Genetic+Algorithms+to+Optimize+Stopping+Patterns+for+Passenger+Rail+Transportation&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Lin%2C+Dung-Ying&rft.au=Ku%2C+Yu-Hsiung&rft.date=2014-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=29&rft.issue=4&rft.spage=264&rft.epage=278&rft_id=info:doi/10.1111%2Fmice.12020&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9JPWXG8T_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon