NCM: Neutrosophic c-means clustering algorithm
In this paper, a new clustering algorithm, neutrosophic c-means (NCM), is introduced for uncertain data clustering, which is inspired from fuzzy c-means and the neutrosophic set framework. To derive such a structure, a novel suitable objective function is defined and minimized, and the clustering pr...
Saved in:
| Published in: | Pattern recognition Vol. 48; no. 8; pp. 2710 - 2724 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2015
|
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a new clustering algorithm, neutrosophic c-means (NCM), is introduced for uncertain data clustering, which is inspired from fuzzy c-means and the neutrosophic set framework. To derive such a structure, a novel suitable objective function is defined and minimized, and the clustering problem is formulated as a constrained minimization problem, whose solution depends on the objective function. In the objective function, two new types of rejection have been introduced: the ambiguity rejection which concerns the patterns lying near the cluster boundaries, and the distance rejection dealing with patterns that are far away from all the clusters. These measures are able to manage uncertainty due to imprecise and/or incomplete definition of the clusters. We conducted several experiments with synthetic and real data sets. The results are encouraging and compared favorably with results from other methods as FCM, PCM and FPCM algorithms on the same data sets. Finally, the proposed method was applied into image segmentation algorithm. The experimental results show that the proposed algorithm can be considered as a promising tool for data clustering and image processing.
•Neutrosophic set was employed to deal with indeterminate data in clustering analysis.•A new objective function is defined to handle the indeterminacy of data.•Both the degrees belonging to determinate and indeterminate clusters are calculated. |
|---|---|
| AbstractList | In this paper, a new clustering algorithm, neutrosophic c-means (NCM), is introduced for uncertain data clustering, which is inspired from fuzzy c-means and the neutrosophic set framework. To derive such a structure, a novel suitable objective function is defined and minimized, and the clustering problem is formulated as a constrained minimization problem, whose solution depends on the objective function. In the objective function, two new types of rejection have been introduced: the ambiguity rejection which concerns the patterns lying near the cluster boundaries, and the distance rejection dealing with patterns that are far away from all the clusters. These measures are able to manage uncertainty due to imprecise and/or incomplete definition of the clusters. We conducted several experiments with synthetic and real data sets. The results are encouraging and compared favorably with results from other methods as FCM, PCM and FPCM algorithms on the same data sets. Finally, the proposed method was applied into image segmentation algorithm. The experimental results show that the proposed algorithm can be considered as a promising tool for data clustering and image processing.
•Neutrosophic set was employed to deal with indeterminate data in clustering analysis.•A new objective function is defined to handle the indeterminacy of data.•Both the degrees belonging to determinate and indeterminate clusters are calculated. |
| Author | Guo, Yanhui Sengur, Abdulkadir |
| Author_xml | – sequence: 1 givenname: Yanhui orcidid: 0000-0003-1814-9682 surname: Guo fullname: Guo, Yanhui email: yanhui.guo@aggiemail.usu.edu, yguo@stu.edu organization: School of Science, St. Thomas University, Miami Gardens, FL 33054, USA – sequence: 2 givenname: Abdulkadir surname: Sengur fullname: Sengur, Abdulkadir organization: Department of Electrical and Electronics Engineering, Firat University, 23119 Elazig, Turkey |
| BookMark | eNqFj7tOwzAYhS1UJFrgDRjyAgm_7cR2OiChiptUygKz5VtaV2lc2S4Sb0-qMjHAdIaj7-h8MzQZwuAQusFQYcDsdlvtVTZhXRHATQWkAizO0BQLTssG12SCpgAUl5QAvUCzlLYAmI_FFFWrxeu8WLlDjiGF_cabwpQ7p4ZUmP6Qsot-WBeqX4fo82Z3hc471Sd3_ZOX6OPx4X3xXC7fnl4W98vSUM5y2WltDdY114wT1rXM1roVqrUNa02tOug6QTUmBhrNSMttQ60gjQBhcW1bTi_R_LRrxlspuk4an1X2YchR-V5ikEdzuZUnc3k0l0DkaD7C9S94H_1Oxa__sLsT5kaxT--iTMa7wTjrozNZ2uD_HvgGRFB2lQ |
| CitedBy_id | crossref_primary_10_1155_2021_7373620 crossref_primary_10_3390_sym10040119 crossref_primary_10_1007_s00521_022_07313_2 crossref_primary_10_1007_s40747_020_00214_8 crossref_primary_10_1007_s12145_021_00651_0 crossref_primary_10_1002_mp_12350 crossref_primary_10_1016_j_asoc_2018_05_003 crossref_primary_10_1155_2021_5527845 crossref_primary_10_1038_s41598_021_97344_x crossref_primary_10_1016_j_cmpb_2017_02_020 crossref_primary_10_3390_sym10050176 crossref_primary_10_1016_j_patcog_2021_108201 crossref_primary_10_3233_JIFS_190681 crossref_primary_10_1007_s00500_016_2356_y crossref_primary_10_1007_s12559_017_9462_8 crossref_primary_10_3233_JIFS_210375 crossref_primary_10_1016_j_engappai_2019_103411 crossref_primary_10_3390_healthcare9081051 crossref_primary_10_1155_2021_7961306 crossref_primary_10_1016_j_eswa_2018_12_036 crossref_primary_10_3390_info9050126 crossref_primary_10_1016_j_ins_2017_03_001 crossref_primary_10_1016_j_physa_2022_127359 crossref_primary_10_3233_JIFS_152381 crossref_primary_10_3390_sym9090179 crossref_primary_10_1016_j_ijleo_2022_169039 crossref_primary_10_3233_JIFS_212812 crossref_primary_10_1007_s10462_019_09795_4 crossref_primary_10_1016_j_asoc_2025_112717 crossref_primary_10_1007_s41066_024_00452_y crossref_primary_10_1016_j_asoc_2016_10_001 crossref_primary_10_1016_j_asoc_2019_105931 crossref_primary_10_1007_s11629_022_7749_z crossref_primary_10_1016_j_fss_2025_109507 crossref_primary_10_1007_s00500_018_3613_z crossref_primary_10_1007_s00500_022_06882_7 crossref_primary_10_1007_s12652_021_03431_2 crossref_primary_10_1007_s13042_017_0691_7 crossref_primary_10_3390_math11081931 crossref_primary_10_1016_j_sigpro_2019_107347 crossref_primary_10_3390_info8040122 crossref_primary_10_1016_j_measurement_2021_109312 crossref_primary_10_1007_s11760_018_1284_y crossref_primary_10_1007_s00521_023_09115_6 crossref_primary_10_32604_cmes_2023_022961 crossref_primary_10_1186_s12874_021_01400_z crossref_primary_10_3390_sym11050696 crossref_primary_10_1016_j_ins_2017_03_024 crossref_primary_10_1007_s12647_020_00428_8 crossref_primary_10_1049_iet_ipr_2018_5949 crossref_primary_10_1016_j_asoc_2015_11_035 crossref_primary_10_1109_TBME_2017_2734058 crossref_primary_10_3390_sym10090417 crossref_primary_10_3390_sym9080142 crossref_primary_10_1080_13682199_2018_1549694 crossref_primary_10_1155_2021_6564006 crossref_primary_10_1016_j_patcog_2016_05_005 crossref_primary_10_1007_s11071_024_09288_2 crossref_primary_10_1080_15366367_2024_2329504 crossref_primary_10_1016_j_asoc_2021_107759 crossref_primary_10_1007_s00500_021_05661_0 crossref_primary_10_3390_sym9090185 crossref_primary_10_1109_TSMC_2024_3418411 crossref_primary_10_1016_j_bspc_2017_08_025 crossref_primary_10_1109_TKDE_2022_3155924 crossref_primary_10_1186_s12859_020_03775_0 crossref_primary_10_1016_j_asoc_2021_107245 crossref_primary_10_1007_s13755_017_0036_7 crossref_primary_10_1016_j_eswa_2024_125454 crossref_primary_10_1016_j_knosys_2024_112738 crossref_primary_10_1109_ACCESS_2019_2946762 crossref_primary_10_1007_s12190_025_02520_1 crossref_primary_10_1109_TFUZZ_2021_3099560 crossref_primary_10_1007_s13369_020_04384_y crossref_primary_10_1007_s00521_016_2441_2 crossref_primary_10_1155_2021_6657849 crossref_primary_10_1177_00045632211006453 crossref_primary_10_1109_ACCESS_2021_3126790 crossref_primary_10_1155_2020_6662389 crossref_primary_10_3233_XST_17313 crossref_primary_10_3390_sym11091136 crossref_primary_10_3390_axioms6040035 crossref_primary_10_1109_ACCESS_2018_2814827 crossref_primary_10_1049_iet_ipr_2017_0466 crossref_primary_10_1007_s10462_018_9652_0 crossref_primary_10_1007_s12559_016_9394_8 crossref_primary_10_3390_stats5030045 crossref_primary_10_1016_j_compbiomed_2020_103776 crossref_primary_10_1007_s00704_020_03509_5 crossref_primary_10_1007_s42835_023_01779_3 crossref_primary_10_3233_JIFS_171122 crossref_primary_10_1007_s11042_019_7726_x crossref_primary_10_3390_axioms7030057 crossref_primary_10_1016_j_asoc_2025_113613 crossref_primary_10_1016_j_compind_2019_04_005 crossref_primary_10_1016_j_jksus_2020_06_003 crossref_primary_10_1093_comnet_cnad051 |
| Cites_doi | 10.1109/TFUZZ.2012.2187453 10.1109/TNB.2005.853667 10.1142/S1793005708001082 10.1109/91.227387 10.1109/FUZZY.1998.686326 10.1016/S0031-3203(99)00110-7 10.1007/BF01908073 10.1016/j.cviu.2011.04.001 10.1016/0167-8655(91)90002-4 10.1109/TCOMM.2006.878840 10.1016/S0019-9958(69)90591-9 10.1109/3477.809032 10.1016/j.patcog.2007.08.014 10.1117/1.1457458 10.1109/3477.809033 10.1109/FUZZY.1997.616338 10.1016/j.patcog.2008.10.002 10.1016/0031-3203(89)90066-6 10.1016/j.dsp.2007.11.005 10.1016/j.patrec.2009.04.008 10.1109/MCI.2007.357193 10.1016/0031-3203(94)90119-8 10.1111/j.1469-1809.1936.tb02137.x 10.1117/1.JEI.22.1.013005 10.1109/TFUZZ.2004.840099 10.1016/j.patcog.2009.01.023 10.1142/S1793005709001490 10.1080/00207729108910632 10.1109/NAFIPS.2001.944361 10.1109/TSMCB.2008.915537 10.1016/0898-1221(93)90181-T 10.1109/TSMCB.2003.810951 10.1016/0165-0114(78)90016-7 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2015.02.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 2724 |
| ExternalDocumentID | 10_1016_j_patcog_2015_02_018 S0031320315000783 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c376t-fbbdc1b47b6726f96d4b98a9d569c4af0ff83b12c05b6297d53d825808d14d973 |
| ISICitedReferencesCount | 127 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354582700030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 07:54:07 EST 2025 Tue Nov 18 22:03:35 EST 2025 Fri Feb 23 02:25:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Image segmentation Neutrosophic set Neutrosophic clustering Fuzzy c-means clustering Data clustering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c376t-fbbdc1b47b6726f96d4b98a9d569c4af0ff83b12c05b6297d53d825808d14d973 |
| ORCID | 0000-0003-1814-9682 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2015_02_018 crossref_primary_10_1016_j_patcog_2015_02_018 elsevier_sciencedirect_doi_10_1016_j_patcog_2015_02_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-01 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pal, Pal, Keller, Bezdek (bib38) 2005; 13 Andenberg (bib1) 1973 Ruspini (bib4) 1969; 15 Masson, Denoeux (bib25) 2009; 30 N.R. Pal, K. Pal, J.C. Bezdek, A mixed c-means clustering model, in: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, Barcelona, 1997, pp. 11–21. Cheng, Guo (bib34) 2009; 4 Fisher (bib39) 1936; 7 Baraldi, Blonda (bib6) 1999; 29 Kandasamy, Smarandache (bib30) 2006 M. Khoshnevisan, S. Bhattacharya, A short note on financial data set detection using neutrosophic probability, in: F. Smarandache (Ed.), Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, University of New Mexico, 2002, pp. 75–80. Yu, Cheng, Huang (bib14) 2004; 34 Wei (bib8) 2005; 4 Sengur, Guo (bib36) 2011; 115 D.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in: Proceedings of IEEE CDC, San Diego, CA, vol. 10(12), 1979, pp. 761–766. Karabatak, Guo, Sengur (bib43) 2013; 22 Wang, Soh, Song, Kang (bib42) 2009; 42 Bezdek (bib3) 1987 Hathaway, Bezdek (bib22) 1994; 27 Rhee (bib28) 2007; 2 D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM–SIAM Symposium on Discrete Algorithms, 2007, pp. 1027–1035. Yang, Wu, Hsieh, Yu (bib13) 2008; 38 Krishnapuram, Keller (bib15) 1993; 1 Masson, Denoeux (bib24) 2008; 41 Kang, Min, Luan, Li, Liu (bib11) 2009; 19 Kaufman, Rousseeuw (bib12) 1987 Hathaway, Davenport, Bezdek (bib20) 1989; 22 Yang (bib37) 1993; 25 F.C.H., Rhee,C. Hwang, A type-2 fuzzy C-means clustering algorithm, in: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 4, 25–28 2001, pp. 1926–1929 Linda, Manic (bib27) 2012; 20 M. Khoshnevisan, S. Singh, Neurofuzzy and neutrosophic approach to compute the rate of change in new economies, in: F. Smarandache (Ed.), Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, University of New Mexico, 2002, pp. 56–62. Smarandache (bib29) 2003 Zhu, Bentabet, Dupuis, Kaftandjian, Babot, Rombaut (bib41) 2002; 41 Baraldi, Blonda (bib5) 1999; 29 Guo, Cheng (bib33) 2009; 5 R.N. Dave, Clustering of relational data containing noise and outliers, in: Proceedings of the FUZZ׳IEEE 98, vol. 2, 1998, pp. 1411–1416. Guo, Cheng (bib35) 2009; 42 Windham (bib21) 1985; 2 Ménard, Demko, Loonis (bib2) 2000; 33 Tong, Arye, Boaz (bib7) 2006; 54 Hartigan, Wong (bib9) 1977; 28 Pal (bib40) 1991; 22 Dave (bib18) 1991; 12 Roubens (bib19) 1978; 1 Baraldi (10.1016/j.patcog.2015.02.018_bib5) 1999; 29 Windham (10.1016/j.patcog.2015.02.018_bib21) 1985; 2 10.1016/j.patcog.2015.02.018_bib23 Masson (10.1016/j.patcog.2015.02.018_bib24) 2008; 41 Fisher (10.1016/j.patcog.2015.02.018_bib39) 1936; 7 Zhu (10.1016/j.patcog.2015.02.018_bib41) 2002; 41 Hartigan (10.1016/j.patcog.2015.02.018_bib9) 1977; 28 Wang (10.1016/j.patcog.2015.02.018_bib42) 2009; 42 Cheng (10.1016/j.patcog.2015.02.018_bib34) 2009; 4 Yang (10.1016/j.patcog.2015.02.018_bib37) 1993; 25 Guo (10.1016/j.patcog.2015.02.018_bib33) 2009; 5 Linda (10.1016/j.patcog.2015.02.018_bib27) 2012; 20 Tong (10.1016/j.patcog.2015.02.018_bib7) 2006; 54 Yu (10.1016/j.patcog.2015.02.018_bib14) 2004; 34 10.1016/j.patcog.2015.02.018_bib17 Bezdek (10.1016/j.patcog.2015.02.018_bib3) 1987 10.1016/j.patcog.2015.02.018_bib16 Hathaway (10.1016/j.patcog.2015.02.018_bib20) 1989; 22 Kandasamy (10.1016/j.patcog.2015.02.018_bib30) 2006 10.1016/j.patcog.2015.02.018_bib10 10.1016/j.patcog.2015.02.018_bib32 Baraldi (10.1016/j.patcog.2015.02.018_bib6) 1999; 29 10.1016/j.patcog.2015.02.018_bib31 Karabatak (10.1016/j.patcog.2015.02.018_bib43) 2013; 22 Masson (10.1016/j.patcog.2015.02.018_bib25) 2009; 30 Ruspini (10.1016/j.patcog.2015.02.018_bib4) 1969; 15 Pal (10.1016/j.patcog.2015.02.018_bib38) 2005; 13 Kaufman (10.1016/j.patcog.2015.02.018_bib12) 1987 Roubens (10.1016/j.patcog.2015.02.018_bib19) 1978; 1 Pal (10.1016/j.patcog.2015.02.018_bib40) 1991; 22 Yang (10.1016/j.patcog.2015.02.018_bib13) 2008; 38 Guo (10.1016/j.patcog.2015.02.018_bib35) 2009; 42 Wei (10.1016/j.patcog.2015.02.018_bib8) 2005; 4 Sengur (10.1016/j.patcog.2015.02.018_bib36) 2011; 115 Dave (10.1016/j.patcog.2015.02.018_bib18) 1991; 12 Smarandache (10.1016/j.patcog.2015.02.018_bib29) 2003 Ménard (10.1016/j.patcog.2015.02.018_bib2) 2000; 33 Rhee (10.1016/j.patcog.2015.02.018_bib28) 2007; 2 Hathaway (10.1016/j.patcog.2015.02.018_bib22) 1994; 27 Andenberg (10.1016/j.patcog.2015.02.018_bib1) 1973 Krishnapuram (10.1016/j.patcog.2015.02.018_bib15) 1993; 1 10.1016/j.patcog.2015.02.018_bib26 Kang (10.1016/j.patcog.2015.02.018_bib11) 2009; 19 |
| References_xml | – volume: 29 start-page: 778 year: 1999 end-page: 785 ident: bib5 article-title: A survey of fuzzy clustering algorithms for pattern recognition – Part I publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 29 start-page: 786 year: 1999 end-page: 801 ident: bib6 article-title: A survey of fuzzy clustering algorithms for pattern recognition – Part II publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – reference: N.R. Pal, K. Pal, J.C. Bezdek, A mixed c-means clustering model, in: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, Barcelona, 1997, pp. 11–21. – volume: 2 start-page: 157 year: 1985 end-page: 172 ident: bib21 article-title: Numerical classification of proximity data with assignment measures publication-title: J. Classif. – volume: 42 start-page: 2029 year: 2009 end-page: 2044 ident: bib42 article-title: Adaptive spatial information-theoretic clustering for image segmentation publication-title: Pattern Recognit. – volume: 2 start-page: 44 year: 2007 end-page: 56 ident: bib28 article-title: Uncertain fuzzy clustering: insights and recommendations publication-title: IEEE Comput. Intell. Mag. – volume: 33 start-page: 1219 year: 2000 end-page: 1237 ident: bib2 article-title: The fuzzy c+2 means: solving the ambiguity rejection in clustering publication-title: Pattern Recognit. – volume: 1 start-page: 98 year: 1993 end-page: 110 ident: bib15 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. – volume: 15 start-page: 22 year: 1969 end-page: 32 ident: bib4 article-title: A new approach to clustering publication-title: Inf. Control – year: 1973 ident: bib1 article-title: Cluster Analysis for Applications – volume: 4 start-page: 291 year: 2009 end-page: 308 ident: bib34 article-title: A new neutrosophic approach to image thresholding publication-title: New Math. Nat. Comput. – volume: 22 start-page: 013005 year: 2013 end-page: 013015 ident: bib43 article-title: A modified neutrosophic approach to color image segmentation publication-title: J. Electron. Imaging – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bib39 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen – start-page: 405 year: 1987 end-page: 416 ident: bib12 article-title: Clustering by Means of Medoids publication-title: Facul. Mathe. Infor. – volume: 1 start-page: 239 year: 1978 end-page: 253 ident: bib19 article-title: Pattern classification problems and fuzzy sets publication-title: Fuzzy Sets Syst. – volume: 22 start-page: 205 year: 1989 end-page: 212 ident: bib20 article-title: Relational duals of the c-means clustering algorithms publication-title: Pattern Recognit. – volume: 28 start-page: 100 year: 1977 end-page: 108 ident: bib9 article-title: A K-means clustering algorithm publication-title: J. R. Stat. Soc. – volume: 5 start-page: 653 year: 2009 end-page: 662 ident: bib33 article-title: A new neutrosophic approach to image denoising publication-title: New Math. Nat. Comput. – volume: 115 start-page: 1134 year: 2011 end-page: 1144 ident: bib36 article-title: Color texture image segmentation based on neutrosophic set and wavelet transformation publication-title: Comput. Vis. Image Underst. – volume: 41 start-page: 1384 year: 2008 end-page: 1397 ident: bib24 article-title: ECM: an evidential version of the fuzzy c-means algorithm publication-title: Pattern Recognit. – volume: 30 start-page: 1015 year: 2009 end-page: 1026 ident: bib25 article-title: RECM: relational evidential c-means algorithm publication-title: Pattern Recognit. Lett. – year: 2003 ident: bib29 article-title: A Unifying Field in Logics Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability – volume: 27 start-page: 429 year: 1994 end-page: 437 ident: bib22 article-title: Nerf c-means: non-Euclidean relational fuzzy clustering publication-title: Pattern Recognit. – reference: D.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in: Proceedings of IEEE CDC, San Diego, CA, vol. 10(12), 1979, pp. 761–766. – reference: R.N. Dave, Clustering of relational data containing noise and outliers, in: Proceedings of the FUZZ׳IEEE 98, vol. 2, 1998, pp. 1411–1416. – volume: 4 start-page: 255 year: 2005 end-page: 265 ident: bib8 article-title: Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property publication-title: IEEE Trans. Nanobiosci. – volume: 19 start-page: 309 year: 2009 end-page: 319 ident: bib11 article-title: Novel modified fuzzy c-means algorithm with applications publication-title: Digit. Signal Process. – year: 2006 ident: bib30 article-title: Neutrosophic Algebraic Structures – volume: 38 start-page: 588 year: 2008 end-page: 603 ident: bib13 article-title: Alpha-cut implemented fuzzy clustering algorithms and switching regressions publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 41 start-page: 760 year: 2002 end-page: 770 ident: bib41 article-title: Automatic determination of mass functions in Dempster–Shafer theory using fuzzy C-means and spatial neighborhood information for image segmentation publication-title: Opt. Eng. – volume: 34 start-page: 634 year: 2004 end-page: 639 ident: bib14 article-title: Analysis of the weighting exponent in the FCM publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – reference: M. Khoshnevisan, S. Singh, Neurofuzzy and neutrosophic approach to compute the rate of change in new economies, in: F. Smarandache (Ed.), Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, University of New Mexico, 2002, pp. 56–62. – year: 1987 ident: bib3 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – reference: D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM–SIAM Symposium on Discrete Algorithms, 2007, pp. 1027–1035. – reference: M. Khoshnevisan, S. Bhattacharya, A short note on financial data set detection using neutrosophic probability, in: F. Smarandache (Ed.), Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, University of New Mexico, 2002, pp. 75–80. – volume: 22 start-page: 511 year: 1991 end-page: 549 ident: bib40 article-title: Fuzzy tools in the management of uncertainty in pattern recognition, image analysis, vision and expert systems publication-title: Int. J. Syst. Sci. – volume: 25 start-page: 3 year: 1993 end-page: 11 ident: bib37 article-title: Convergence properties of the generalized fuzzy c-means clustering algorithms publication-title: Comput. Math. Appl. – volume: 13 start-page: 517 year: 2005 end-page: 530 ident: bib38 article-title: A possibilistic fuzzy c-means clustering algorithm publication-title: IEEE Trans. Fuzzy Syst. – volume: 12 start-page: 657 year: 1991 end-page: 664 ident: bib18 article-title: Clustering relational data containing noise and outliers publication-title: Pattern Recognit. Lett. – volume: 20 start-page: 883 year: 2012 end-page: 897 ident: bib27 article-title: General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. – volume: 54 start-page: 1492 year: 2006 end-page: 1501 ident: bib7 article-title: K-means clustering-based data detection and symbol-timing recovery for burst-mode optical receiver publication-title: IEEE Trans. Commun. – reference: F.C.H., Rhee,C. Hwang, A type-2 fuzzy C-means clustering algorithm, in: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 4, 25–28 2001, pp. 1926–1929 – volume: 42 start-page: 587 year: 2009 end-page: 595 ident: bib35 article-title: A new neutrosophic approach to image segmentation publication-title: Pattern Recognit. – ident: 10.1016/j.patcog.2015.02.018_bib32 – volume: 20 start-page: 883 issue: 5 year: 2012 ident: 10.1016/j.patcog.2015.02.018_bib27 article-title: General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2012.2187453 – volume: 4 start-page: 255 issue: 3 year: 2005 ident: 10.1016/j.patcog.2015.02.018_bib8 article-title: Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property publication-title: IEEE Trans. Nanobiosci. doi: 10.1109/TNB.2005.853667 – volume: 4 start-page: 291 issue: 3 year: 2009 ident: 10.1016/j.patcog.2015.02.018_bib34 article-title: A new neutrosophic approach to image thresholding publication-title: New Math. Nat. Comput. doi: 10.1142/S1793005708001082 – year: 1987 ident: 10.1016/j.patcog.2015.02.018_bib3 – volume: 1 start-page: 98 issue: 2 year: 1993 ident: 10.1016/j.patcog.2015.02.018_bib15 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.227387 – year: 2003 ident: 10.1016/j.patcog.2015.02.018_bib29 – ident: 10.1016/j.patcog.2015.02.018_bib23 doi: 10.1109/FUZZY.1998.686326 – volume: 28 start-page: 100 issue: 1 year: 1977 ident: 10.1016/j.patcog.2015.02.018_bib9 article-title: A K-means clustering algorithm publication-title: J. R. Stat. Soc. – volume: 33 start-page: 1219 year: 2000 ident: 10.1016/j.patcog.2015.02.018_bib2 article-title: The fuzzy c+2 means: solving the ambiguity rejection in clustering publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00110-7 – volume: 2 start-page: 157 year: 1985 ident: 10.1016/j.patcog.2015.02.018_bib21 article-title: Numerical classification of proximity data with assignment measures publication-title: J. Classif. doi: 10.1007/BF01908073 – volume: 115 start-page: 1134 issue: 8 year: 2011 ident: 10.1016/j.patcog.2015.02.018_bib36 article-title: Color texture image segmentation based on neutrosophic set and wavelet transformation publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2011.04.001 – volume: 12 start-page: 657 year: 1991 ident: 10.1016/j.patcog.2015.02.018_bib18 article-title: Clustering relational data containing noise and outliers publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(91)90002-4 – volume: 54 start-page: 1492 issue: 8 year: 2006 ident: 10.1016/j.patcog.2015.02.018_bib7 article-title: K-means clustering-based data detection and symbol-timing recovery for burst-mode optical receiver publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2006.878840 – volume: 15 start-page: 22 year: 1969 ident: 10.1016/j.patcog.2015.02.018_bib4 article-title: A new approach to clustering publication-title: Inf. Control doi: 10.1016/S0019-9958(69)90591-9 – volume: 29 start-page: 778 issue: 6 year: 1999 ident: 10.1016/j.patcog.2015.02.018_bib5 article-title: A survey of fuzzy clustering algorithms for pattern recognition – Part I publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. doi: 10.1109/3477.809032 – year: 1973 ident: 10.1016/j.patcog.2015.02.018_bib1 – ident: 10.1016/j.patcog.2015.02.018_bib17 – volume: 41 start-page: 1384 year: 2008 ident: 10.1016/j.patcog.2015.02.018_bib24 article-title: ECM: an evidential version of the fuzzy c-means algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.08.014 – volume: 41 start-page: 760 issue: 4 year: 2002 ident: 10.1016/j.patcog.2015.02.018_bib41 article-title: Automatic determination of mass functions in Dempster–Shafer theory using fuzzy C-means and spatial neighborhood information for image segmentation publication-title: Opt. Eng. doi: 10.1117/1.1457458 – ident: 10.1016/j.patcog.2015.02.018_bib31 – volume: 29 start-page: 786 issue: 6 year: 1999 ident: 10.1016/j.patcog.2015.02.018_bib6 article-title: A survey of fuzzy clustering algorithms for pattern recognition – Part II publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. doi: 10.1109/3477.809033 – ident: 10.1016/j.patcog.2015.02.018_bib10 – ident: 10.1016/j.patcog.2015.02.018_bib16 doi: 10.1109/FUZZY.1997.616338 – volume: 42 start-page: 587 year: 2009 ident: 10.1016/j.patcog.2015.02.018_bib35 article-title: A new neutrosophic approach to image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.10.002 – volume: 22 start-page: 205 year: 1989 ident: 10.1016/j.patcog.2015.02.018_bib20 article-title: Relational duals of the c-means clustering algorithms publication-title: Pattern Recognit. doi: 10.1016/0031-3203(89)90066-6 – volume: 19 start-page: 309 year: 2009 ident: 10.1016/j.patcog.2015.02.018_bib11 article-title: Novel modified fuzzy c-means algorithm with applications publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2007.11.005 – volume: 30 start-page: 1015 year: 2009 ident: 10.1016/j.patcog.2015.02.018_bib25 article-title: RECM: relational evidential c-means algorithm publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.04.008 – volume: 2 start-page: 44 issue: 1 year: 2007 ident: 10.1016/j.patcog.2015.02.018_bib28 article-title: Uncertain fuzzy clustering: insights and recommendations publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2007.357193 – volume: 27 start-page: 429 year: 1994 ident: 10.1016/j.patcog.2015.02.018_bib22 article-title: Nerf c-means: non-Euclidean relational fuzzy clustering publication-title: Pattern Recognit. doi: 10.1016/0031-3203(94)90119-8 – volume: 7 start-page: 179 year: 1936 ident: 10.1016/j.patcog.2015.02.018_bib39 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 22 start-page: 013005 issue: 1 year: 2013 ident: 10.1016/j.patcog.2015.02.018_bib43 article-title: A modified neutrosophic approach to color image segmentation publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.22.1.013005 – volume: 13 start-page: 517 issue: 4 year: 2005 ident: 10.1016/j.patcog.2015.02.018_bib38 article-title: A possibilistic fuzzy c-means clustering algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2004.840099 – volume: 42 start-page: 2029 year: 2009 ident: 10.1016/j.patcog.2015.02.018_bib42 article-title: Adaptive spatial information-theoretic clustering for image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.01.023 – volume: 5 start-page: 653 issue: 3 year: 2009 ident: 10.1016/j.patcog.2015.02.018_bib33 article-title: A new neutrosophic approach to image denoising publication-title: New Math. Nat. Comput. doi: 10.1142/S1793005709001490 – start-page: 405 year: 1987 ident: 10.1016/j.patcog.2015.02.018_bib12 article-title: Clustering by Means of Medoids publication-title: Facul. Mathe. Infor. – volume: 22 start-page: 511 year: 1991 ident: 10.1016/j.patcog.2015.02.018_bib40 article-title: Fuzzy tools in the management of uncertainty in pattern recognition, image analysis, vision and expert systems publication-title: Int. J. Syst. Sci. doi: 10.1080/00207729108910632 – ident: 10.1016/j.patcog.2015.02.018_bib26 doi: 10.1109/NAFIPS.2001.944361 – year: 2006 ident: 10.1016/j.patcog.2015.02.018_bib30 – volume: 38 start-page: 588 issue: 3 year: 2008 ident: 10.1016/j.patcog.2015.02.018_bib13 article-title: Alpha-cut implemented fuzzy clustering algorithms and switching regressions publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. doi: 10.1109/TSMCB.2008.915537 – volume: 25 start-page: 3 issue: 12 year: 1993 ident: 10.1016/j.patcog.2015.02.018_bib37 article-title: Convergence properties of the generalized fuzzy c-means clustering algorithms publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(93)90181-T – volume: 34 start-page: 634 issue: 1 year: 2004 ident: 10.1016/j.patcog.2015.02.018_bib14 article-title: Analysis of the weighting exponent in the FCM publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. doi: 10.1109/TSMCB.2003.810951 – volume: 1 start-page: 239 year: 1978 ident: 10.1016/j.patcog.2015.02.018_bib19 article-title: Pattern classification problems and fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(78)90016-7 |
| SSID | ssj0017142 |
| Score | 2.510451 |
| Snippet | In this paper, a new clustering algorithm, neutrosophic c-means (NCM), is introduced for uncertain data clustering, which is inspired from fuzzy c-means and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2710 |
| SubjectTerms | Data clustering Fuzzy c-means clustering Image segmentation Neutrosophic clustering Neutrosophic set |
| Title | NCM: Neutrosophic c-means clustering algorithm |
| URI | https://dx.doi.org/10.1016/j.patcog.2015.02.018 |
| Volume | 48 |
| WOSCitedRecordID | wos000354582700030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05b9swFCZaJ0OXJM2BuDmgoVvAQKIOkt0CwzkK1PDgAs4k8JLjxJENWyry8_skUbLaFDmGLoJEiJTI7_G9R_IdCH01BSEQI3CU6ATDTPQx58bDVChFBNCINm6ZbIIOBmw85kObpW9VphOgacqenvjiv0INZQB24Tr7DribRqEA7gF0uALscH0T8IPej2KZPzB5tiyTFEzVmcKPBmTSmZrlRWCE0jFxNpkvp9ndY1s9HZbRNgsPF2tWtD6kv8rLTdVbkd7l02ZfxqSTvEqHLXU-exAgIdv7CF7YWLE1vNH3sE9cv80bA9aiAdZmdNRaoxr7WHlCP2PI1d7A_fkCBMt8UpjShWWMVMt0_4h__ZdcaqwFa0O0-7hqJS5aiV0SQysf0QahIWcdtHFx0x9_b06QqBdUkeJtr2q3ydK27_nf_Fstaakaox20ZdcIzkWF7Wf0waS7aLvOv-FYdryHzgHqb04baMcC7ayBdhqg99HPy_6od41t_gusgO1nOJFSK08GVEaURAmPdCA5E1yHEVeBSNwkYb70iHJDGRFOdehrWPAzl2kv0Jz6B6iTzlNziBxQSWCy6lC4kgSCUS5dqrkRQgUMFDrWRX7d_VjZ4PBFjpJZ_NLgdxFuai2q4CivvE_rkY2tglcpbjGQy4s1v7zzS0fo05rGj1EnW-bmBG2qX9l0tTy1tPIb8CNyJg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NCM%3A+Neutrosophic+c-means+clustering+algorithm&rft.jtitle=Pattern+recognition&rft.au=Guo%2C+Yanhui&rft.au=Sengur%2C+Abdulkadir&rft.date=2015-08-01&rft.issn=0031-3203&rft.volume=48&rft.issue=8&rft.spage=2710&rft.epage=2724&rft_id=info:doi/10.1016%2Fj.patcog.2015.02.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2015_02_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |